JPH0938648A - Treatment of blow water of power plant - Google Patents

Treatment of blow water of power plant

Info

Publication number
JPH0938648A
JPH0938648A JP21659395A JP21659395A JPH0938648A JP H0938648 A JPH0938648 A JP H0938648A JP 21659395 A JP21659395 A JP 21659395A JP 21659395 A JP21659395 A JP 21659395A JP H0938648 A JPH0938648 A JP H0938648A
Authority
JP
Japan
Prior art keywords
water
hollow fiber
oxidizing agent
differential pressure
blow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21659395A
Other languages
Japanese (ja)
Inventor
Satoru Tsuda
悟 津田
Toshio Morita
利夫 森田
Masahiro Kuwata
政博 桑田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP21659395A priority Critical patent/JPH0938648A/en
Publication of JPH0938648A publication Critical patent/JPH0938648A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To assure a differential pressure restoring property by washing using gas-liquid mixed water and to easily, inexpensively and stably treat blow water while suppressing the degradation in the strength of hollow fiber filter membranes by an oxidizing agent by intermittently eexecuting the addition of the oxidizing agent to blow water. SOLUTION: The blow water or the water mixture composed of this blow water and city water, etc., is admitted from an inflow pipe 9 for the water to be treated into a filter column 1. The water to be treated is risen in this filter column 1 and is admitted into a hollow fiber module 3, where the water is passed through the hollow fiber filter membranes 4 to have iron oxide filtered. In the meantime, the filtrate is collected above a partition plate 2 and is discharged from an outflow pipe 8. Air is thereafter admitted from an air inflow pipe 11A into the filter column A to stir the water and to peel the iron oxide. The waste washing water is removed from a drain pipe 20. Incidentally, the oxidizing agent is intermittently added to the water to be treated. Namely, an injecting pump 16 is driven at every cycle of a prescribed number of times to inject the oxidizing agent in an oxidizing agent soln. tank 15 into the inflow pipe 9 for the water to be treated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、発電所におけるタ
ービン駆動用蒸気及び復水の循環系統から排出されるブ
ロー水の中空糸濾過膜を用いた処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of treating blow water discharged from a circulation system of turbine driving steam and condensate in a power plant using a hollow fiber filtration membrane.

【0002】[0002]

【従来の技術】火力発電所、原子力発電所においては、
基本的には復水をボイラーで加熱して蒸気を発生させ、
該蒸気でタービンを駆動させた後、蒸気を復水器で冷却
して復水とし、この復水を再びボイラーに供給するとい
う循環サイクルで発電を行っている。このような循環サ
イクルでは、タービン駆動用蒸気及び復水の循環系統か
らブロー水が排出される。
2. Description of the Related Art In thermal power plants and nuclear power plants,
Basically, condensate is heated by a boiler to generate steam,
After the turbine is driven by the steam, the steam is cooled by a condenser to be condensed water, and the condensed water is supplied to the boiler again to generate electricity. In such a circulation cycle, blow water is discharged from the circulation system of turbine driving steam and condensed water.

【0003】ブロー水は、配管や装置内で蒸気が凝縮す
るなどして生成するドレン水であり、例えばヒータード
レン水、タービンドレン水等がある。ブロー水には、発
電プラントから常時排出されるものと、発電タービン起
動時に特に排出されるものとがあるが、いずれも比較的
高温であり、かつ装置、配管等の金属面の腐食に起因す
る酸化鉄の含有量が100〜1000ppb以上とかな
り多いが、塩類等は殆ど含まれていない。
Blow water is drain water produced by condensation of steam in pipes and equipment, such as heater drain water and turbine drain water. Blow water includes those that are constantly discharged from the power plant and those that are discharged particularly when the power generation turbine is started. Both are at relatively high temperatures and are caused by corrosion of metal surfaces such as equipment and piping. The content of iron oxide is considerably large, 100 to 1000 ppb or more, but almost no salt or the like is contained.

【0004】そのため、発電所においては、上述したブ
ロー水をタンクに回収し、ブロー水から酸化鉄を除去し
た後、酸化鉄除去後のブロー水を復水循環系への補給水
処理系統の前段に供給して再利用することが行われてお
り、このようなブロー水の処理方法として、従来、ブロ
ー水に酸化剤を添加した後に中空糸濾過膜で濾過する方
法が知られている(特開昭63−80896号)。
Therefore, in the power plant, the above-mentioned blow water is collected in a tank, iron oxide is removed from the blow water, and the blow water after the iron oxide is removed is supplied to the front stage of the makeup water treatment system to the condensate circulation system. It is supplied and reused. As a method for treating such blow water, conventionally known is a method of adding an oxidizing agent to the blow water and then filtering with a hollow fiber filtration membrane. 63-80896).

【0005】特開昭63−80896号の処理方法は、
中空糸濾過膜の濾過膜面で酸化鉄を除去し、また濾過差
圧が上昇した時点で中空糸濾過膜に気液混合水を接触さ
せることにより濾過膜面の酸化鉄を剥離し、再び濾過を
行うものである。この場合、ブロー水に酸化剤を添加し
ないで行う従前の中空糸濾過膜処理では、差圧上昇時点
で中空糸濾過膜面に付着した酸化鉄を常法により気液混
合水のみで洗浄しても、その差圧がもとの状態に回復し
ないものであった。これに対し、特開昭63−8089
6号の処理方法では、ブロー水に酸化剤を添加してから
中空糸濾過膜で濾過することにより、差圧上昇時点で中
空糸濾過膜を常法により気液混合水のみで洗浄すれば、
差圧がもとの状態に回復し、ブロー水の安定処理が可能
となるものである。
The processing method disclosed in JP-A-63-80896 is as follows.
Iron oxide is removed from the filtration membrane surface of the hollow fiber filtration membrane, and when the filtration pressure difference rises, gas-liquid mixed water is brought into contact with the hollow fiber filtration membrane to remove the iron oxide from the filtration membrane surface and filter again. Is to do. In this case, in the conventional hollow fiber filtration membrane treatment performed without adding an oxidizing agent to the blow water, iron oxide adhering to the hollow fiber filtration membrane surface at the time of increasing the differential pressure was washed with only the gas-liquid mixed water by a conventional method. However, the pressure difference was not restored to the original state. On the other hand, JP-A-63-8089
In the treatment method of No. 6, by adding an oxidizing agent to blow water and then filtering with a hollow fiber filtration membrane, if the hollow fiber filtration membrane is washed with only gas-liquid mixed water by a conventional method at the time of increasing the differential pressure,
The differential pressure is restored to the original state, and stable treatment of blow water becomes possible.

【0006】[0006]

【発明が解決しようとする課題】本発明者らは、上述し
たブロー水の処理方法について更に検討を重ねた結果、
ブロー水に酸化剤を連続的に添加して中空糸濾過膜によ
る濾過を行うと、洗浄による差圧回復性は向上するもの
の、中空糸濾過膜の材質の酸化劣化が促進され、その物
理的強度の著しい低下を招き、中空糸濾過膜の寿命が著
しく短くなることを知見した。そのため、一定期間を経
過すると中空糸濾過膜の物理強度が一定の限界値まで低
下し、通水時や気液混合水による洗浄時の振動や圧力に
より中空糸濾過膜が破損するので、この破損を防止する
ために中空糸濾過膜の強度が一定値以下に低下する前に
中空糸濾過膜を新品に交換しなければならず、操作が煩
雑になる上、ランニングコストが上昇するものであっ
た。
DISCLOSURE OF INVENTION Problems to be Solved by the Invention
When an oxidant is continuously added to blow water and filtration is performed using a hollow fiber filtration membrane, the recovery of the differential pressure by washing is improved, but the oxidative deterioration of the material of the hollow fiber filtration membrane is promoted and its physical strength is increased. It was found that the hollow fiber membrane significantly shortens the life of the hollow fiber filtration membrane. Therefore, after a certain period of time, the physical strength of the hollow fiber filtration membrane decreases to a certain limit value and the hollow fiber filtration membrane is damaged by vibration and pressure during water passage or washing with gas-liquid mixed water. In order to prevent this, the hollow fiber filtration membrane must be replaced with a new one before the strength of the hollow fiber filtration membrane falls below a certain value, which complicates the operation and increases the running cost. .

【0007】しかし、酸化剤の添加無しで中空糸濾過膜
による濾過を行った場合は、前述したように気液混合水
で洗浄しても差圧がもとの差圧に回復せず、差圧が徐々
に上昇する。そのため、一定期間毎に中空糸濾過膜のア
ルカリ、酸等による薬品洗浄を行って、膜面に付着残留
した酸化鉄等の微粒子や有機物等の付着性の大きい不純
物を剥離する操作が必要になり、やはり操作が煩雑にな
るとともに、ランニングコストが上昇するものであっ
た。
However, in the case where filtration is carried out using a hollow fiber filtration membrane without addition of an oxidizing agent, the differential pressure does not recover to the original differential pressure even after washing with gas-liquid mixed water as described above, The pressure rises gradually. Therefore, it is necessary to clean the hollow fiber filtration membrane with a chemical agent such as alkali and acid at regular intervals to remove fine particles such as iron oxide remaining on the membrane surface and impurities with high adhesion such as organic substances. However, the operation was complicated and the running cost was increased.

【0008】本発明は、上記事情に鑑みてなされたもの
で、発電所ブロー水に酸化剤を添加してから中空糸濾過
膜による濾過を行う処理方法において、酸化剤による中
空糸濾過膜の強度低下を抑制しつつ、気液混合水を用い
た洗浄による差圧回復性を確保することができ、したが
って煩雑な操作を行うことなく低ランニングコストで安
定したブロー水の処理を行うことが可能な発電所ブロー
水の処理方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and in a treatment method in which an oxidizing agent is added to blown water in a power plant and then filtration is performed using the hollow fiber filtering membrane, the strength of the hollow fiber filtering membrane using the oxidizing agent is increased. While suppressing the decrease, it is possible to secure the recoverability of the differential pressure by washing with gas-liquid mixed water, and therefore it is possible to perform stable blow water treatment at low running cost without performing a complicated operation. It is an object to provide a method for treating power plant blow water.

【0009】[0009]

【課題を解決するための手段】本発明は、上記目的を達
成するため、発電所におけるタービン駆動用蒸気及び復
水の循環系統から排出されるブロー水に酸化剤を添加し
た後、該ブロー水を中空糸濾過膜で濾過する処理方法に
おいて、前記ブロー水への酸化剤の添加を間欠的に行う
ことを特徴とする発電所ブロー水の処理方法(請求項
1)を提供する。
In order to achieve the above object, the present invention is to add an oxidizer to blow water discharged from a turbine drive steam and condensate circulation system in a power plant, and then add the blow water. A method for treating blow water of a power plant, wherein the oxidant is intermittently added to the blow water in a treatment method of filtering the water with a hollow fiber filtration membrane (claim 1).

【0010】本発明において、酸化剤による中空糸濾過
膜の強度低下を抑制しつつ、気液混合水を用いた洗浄に
よる差圧回復性を確保することができるのは、次の理由
によるものと推測される。すなわち、酸化剤無添加の濾
過時においては、被処理水中の微量有機物が中空糸濾過
膜の膜面に付着してバクテリア発生を促進し、膜面上に
スライムが形成されて付着する。また、被処理水中に含
まれる非晶質酸化鉄も膜面に付着するが、これは気液混
合水を用いた洗浄では剥離しにくい酸化鉄である。した
がって、酸化剤無添加の濾過時においては、前記のスラ
イムや非晶質酸化鉄が膜面に付着して差圧を上昇させる
ことになる。これに対し、本発明のように酸化剤無添加
の濾過の後に酸化剤添加の濾過を実施すると、酸化剤無
添加時の濾過において膜面上に付着したのスライムを酸
化剤が酸化して剥離し易くするとともに、酸化剤が非晶
質酸化鉄を剥離性の良い結晶質酸化鉄に変化させ、これ
により酸化剤添加の濾過終了時における洗浄によって上
記スライムや酸化鉄が容易に剥離し、差圧が初期差圧ま
で回復するものと考えられる。
In the present invention, the reason why the recovery of the differential pressure by washing with gas-liquid mixed water can be ensured while suppressing the strength reduction of the hollow fiber filtration membrane due to the oxidizing agent is as follows. Guessed. That is, at the time of filtration without addition of an oxidizing agent, a trace amount of organic matter in the water to be treated adheres to the membrane surface of the hollow fiber filtration membrane to promote bacteria generation, and slime is formed and adheres on the membrane surface. Amorphous iron oxide contained in the water to be treated also adheres to the film surface, but this is iron oxide that is difficult to peel off by cleaning with gas-liquid mixed water. Therefore, during filtration without addition of an oxidizing agent, the slime or amorphous iron oxide adheres to the membrane surface to increase the differential pressure. On the other hand, when the filtration with the addition of the oxidant is carried out after the filtration without the addition of the oxidant as in the present invention, the slime adhering to the film surface during the filtration without the addition of the oxidant is oxidized and removed by the oxidant. At the same time, the oxidizing agent changes the amorphous iron oxide into crystalline iron oxide with good releasability, which allows the slime and iron oxide to be easily peeled off by washing at the end of filtration with the addition of the oxidant. It is considered that the pressure recovers to the initial differential pressure.

【0011】また、本発明では、酸化剤の間欠添加を行
うことにより、中空糸濾過膜が酸化剤に接触する時間を
大幅に短縮することができるため、酸化劣化による中空
糸濾過膜の物理的強度の低下を大きく抑制でき、中空糸
濾過膜の使用寿命を延ばすことができるものである。
Further, according to the present invention, the time during which the hollow fiber filtration membrane is in contact with the oxidizing agent can be greatly shortened by intermittently adding the oxidizing agent, so that the physical properties of the hollow fiber filtration membrane due to oxidative deterioration can be reduced. It is possible to greatly suppress the decrease in strength and extend the service life of the hollow fiber filtration membrane.

【0012】本発明において、ブロー水に間欠的に添加
する酸化剤の種類に限定はなく、例えば、次亜塩素酸ソ
ーダ等の塩素系酸化剤、過酸化水素、オゾン等の任意の
酸化剤を用いることができる。この場合、次亜塩素酸ソ
ーダ等の塩素系酸化剤を用いるとランニングコストの点
で有利になり、過酸化水素、オゾンを用いると濾過水の
イオン量を増加させないという利点が得られる。
In the present invention, the kind of the oxidizing agent intermittently added to the blow water is not limited, and for example, a chlorine-based oxidizing agent such as sodium hypochlorite, an arbitrary oxidizing agent such as hydrogen peroxide, ozone and the like can be used. Can be used. In this case, using a chlorine-based oxidizing agent such as sodium hypochlorite is advantageous in terms of running cost, and using hydrogen peroxide or ozone is advantageous in that the amount of ions in the filtered water is not increased.

【0013】間欠添加時における酸化剤の添加量として
は、中空糸濾過膜の濾過水中に酸化剤が少量残留する程
度の添加量が望ましい。例えば、次亜塩素酸ソーダを用
いる場合には、濾過水中の残留塩素濃度が1ppm程度
となるように添加することが適当である。
The amount of the oxidizing agent added during the intermittent addition is preferably such that a small amount of the oxidizing agent remains in the filtered water of the hollow fiber filtration membrane. For example, when sodium hypochlorite is used, it is appropriate to add it so that the residual chlorine concentration in the filtered water is about 1 ppm.

【0014】中空糸濾過膜としては、ポリオレフィン
系、ポリビニルアルコール系、ポリスルホン系等の任意
の材質のものを用いることができる。中空糸濾過膜の性
状に限定はないが、例えば、膜面に孔径0.01〜1μ
m、好ましくは0.1μm前後の微細孔を有し、外径
0.3〜2mm、内径0.2〜1.5mmのものを好適
に使用することができる。また、中空糸濾過膜として
は、膜の外側から内側に被処理水を通過させるもの(外
圧式)であってもよく、膜の内側から外側に被処理水を
通過させるもの(内圧式)であってもよい。本発明で
は、通常、上記中空糸濾過膜を多数本束ねて中空糸モジ
ュールとなし、この中空糸モジュールの多数本を濾過塔
内に装着して外圧式として用いる。
The hollow fiber filtration membrane may be made of any material such as polyolefin, polyvinyl alcohol and polysulfone. The properties of the hollow fiber filtration membrane are not limited, but for example, the membrane surface has a pore size of 0.01 to 1 μm.
m, preferably about 0.1 μm, having fine pores with an outer diameter of 0.3 to 2 mm and an inner diameter of 0.2 to 1.5 mm can be suitably used. The hollow fiber filtration membrane may be one that allows the treated water to pass from the outside to the inside of the membrane (external pressure type), or one that allows the treated water to pass from the inside to the outside of the membrane (internal pressure type). It may be. In the present invention, usually, a large number of the hollow fiber filtration membranes are bundled to form a hollow fiber module, and a large number of the hollow fiber modules are mounted in a filtration tower and used as an external pressure type.

【0015】なお、ブロー水は比較的高温であるため、
中空糸濾過膜の耐熱性がそれほど高くない場合は、ブロ
ー水に常温の市水、工業用水又はその除濁濾過水などを
混合して冷却したり、ブロー水を熱交換器に通して冷却
したりした後、中空糸濾過膜による濾過処理を行うこと
が好ましい。
Since blow water has a relatively high temperature,
When the heat resistance of the hollow fiber filtration membrane is not so high, the blow water is mixed with room temperature city water, industrial water or its turbidity filtered water for cooling, or the blow water is passed through a heat exchanger for cooling. After this, it is preferable to perform a filtration treatment with a hollow fiber filtration membrane.

【0016】ブロー水への酸化剤の間欠添加方法に特に
限定はないが、例えば下記(a)〜(c)の方法を好適
に採用することができる。
The method for intermittently adding the oxidizing agent to the blow water is not particularly limited, but the following methods (a) to (c) can be preferably adopted.

【0017】(a)ブロー水の中空糸濾過膜による濾過
処理では、通常、濾過を開始したのち濾過差圧が一定の
値に達する時点まで連続して濾過を行い、この差圧が一
定の値に達した時点で濾過を停止して気液混合水による
中空糸濾過膜の洗浄を行う。すなわち、[濾過処理開始
〜差圧上昇〜洗浄]という操作を1つのサイクルとし、
このサイクルを繰り返しつつブロー水の処理を行う。
(A) In the filtration treatment of blown water with a hollow fiber filtration membrane, usually, after the filtration is started, the filtration is carried out continuously until the filtration differential pressure reaches a constant value. When the temperature reaches, the filtration is stopped and the hollow fiber filtration membrane is washed with gas-liquid mixed water. That is, the operation of [starting filtration process-increasing differential pressure-washing] is one cycle,
The blow water is treated while repeating this cycle.

【0018】そこで、1つの酸化剤間欠添加方法とし
て、1回又は複数回のサイクルを酸化剤の添加無しで実
施した後、1回又は複数回のサイクルを酸化剤を添加し
て実施するという手順を予め決めておき、この手順にし
たがって酸化剤を間欠添加する方法を採用することがで
きる。
Therefore, as one method of intermittently adding the oxidant, a procedure of carrying out one or a plurality of cycles without adding the oxidant and then carrying out one or a plurality of cycles by adding the oxidant. Can be determined in advance, and an oxidant can be intermittently added according to this procedure.

【0019】(b)別の酸化剤間欠添加方法としては、
上述したサイクルとは無関係に、中空糸濾過膜による濾
過時において、一定時間間隔毎に酸化剤を一定時間添加
する方法を採用することができる。
(B) Another method for intermittently adding an oxidant is as follows.
Regardless of the cycle described above, a method of adding an oxidizing agent for a certain period of time can be adopted at the time of filtration by the hollow fiber filtration membrane.

【0020】(c)発電所ブロー水の水質や内容物は、
発電プラントの運転状況により変化する。例えば、発電
プラントの定期検査後の起動時に排出されるブロー水
は、多量の酸化鉄を含んでおり、この起動時ブロー水を
処理する場合は、1回のサイクル内における中空糸濾過
膜の差圧上昇速度がきわめて速くなる。したがって、
[濾過処理開始〜差圧上昇〜洗浄]という1回のサイク
ルにおける濾過時間が短くなり、酸化剤添加のサイクル
において酸化剤が膜面付着物に接触する時間も短くなる
ので、酸化剤による膜面付着物の除去効果が低下し、酸
化剤を添加して濾過を行った後の洗浄で差圧がもとの状
態に回復しなくなることがある。
(C) The quality and contents of the blow water of the power plant are
It changes depending on the operating conditions of the power plant. For example, blow water discharged at the time of start-up after periodic inspection of a power plant contains a large amount of iron oxide, and when treating this start-up blow water, the difference between hollow fiber filtration membranes in one cycle is The pressure rise speed becomes extremely fast. Therefore,
Since the filtration time in one cycle of [starting filtration process-increasing differential pressure-washing] is shortened and the time during which the oxidant contacts the deposit on the film surface in the cycle of adding the oxidant is also shortened, In some cases, the effect of removing the deposits is reduced, and the differential pressure may not be restored to the original state by washing after adding an oxidizing agent and performing filtration.

【0021】そこで、さらに別の酸化剤間欠添加方法と
して、差圧上昇速度の変化に応じて酸化剤添加の間隔を
変化させ、起動時ブロー水を処理する場合のごとく1回
のサイクル内における差圧上昇速度が極めて速い場合
は、酸化剤が膜面付着物に接触する時間を長くして、酸
化剤による膜面付着物の除去効果を上げる方法を採用す
ることができる。このように、中空糸濾過膜の濾過差圧
の上昇速度の変化に応じてブロー水への酸化剤の間欠添
加の間隔を変化させる酸化剤間欠添加方法(請求項2)
は、発電プラントの定期検査後の起動時に排出されるブ
ロー水を処理する場合に好適に使用される。なお、
(c)の方法は、起動時ブロー水を処理する場合に限ら
ず、定常時のブロー水処理にも適用可能である。
Therefore, as still another method for intermittently adding the oxidant, the interval of the oxidant addition is changed according to the change in the differential pressure increase rate, and the difference in one cycle is treated as in the case of treating the blow water at startup. When the rate of pressure increase is extremely fast, it is possible to adopt a method in which the time during which the oxidizing agent contacts the film surface deposit is lengthened to enhance the effect of removing the film surface deposit by the oxidizing agent. Thus, the intermittent oxidizing agent addition method in which the interval of the intermittent addition of the oxidizing agent to the blow water is changed according to the change in the increasing rate of the filtration differential pressure of the hollow fiber filtration membrane (claim 2).
Is preferably used when treating blow water discharged at the time of start-up after periodic inspection of a power plant. In addition,
The method (c) can be applied not only to the case of treating blow water at startup but also to the treatment of blow water in a steady state.

【0022】上述した方法の内、前記サイクルを単位と
して酸化剤の間欠添加を行う(a)及び(c)の方法
は、一定時間間隔で酸化剤の間欠添加を行う(b)の方
法に較べ、酸化剤間欠添加による濾過差圧回復効果を明
確に判断できる点で有利である。
Among the above-mentioned methods, the methods (a) and (c) in which the oxidant is intermittently added in units of the cycle are more than the method (b) in which the oxidant is intermittently added at a constant time interval. It is advantageous in that the effect of recovering the filtration differential pressure by the intermittent addition of the oxidizing agent can be clearly determined.

【0023】[0023]

【発明の実施の形態】図1は本発明の実施に用いるブロ
ー水処理装置の一例を示すフロー図である。図中1は濾
過塔を示す。濾過塔1の上方部には仕切板2が設置さ
れ、この仕切板2に多数本の中空糸モジュール3が懸架
されている。中空糸モジュール3は、外筒(図示せず)
内に多数本の中空糸濾過膜4を配置したもので、各中空
糸濾過膜4の外側から内側に水を通して、中空糸濾過膜
4の外表面でブロー水に含まれる酸化鉄を濾過し、濾過
水を仕切板2の上方で集合させるものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a flow chart showing an example of a blow water treatment apparatus used for carrying out the present invention. In the figure, 1 indicates a filtration tower. A partition plate 2 is installed above the filtration tower 1, and a large number of hollow fiber modules 3 are suspended on the partition plate 2. The hollow fiber module 3 is an outer cylinder (not shown)
In which a large number of hollow fiber filtration membranes 4 are arranged inside, water is passed from the outside to the inside of each hollow fiber filtration membrane 4 to filter the iron oxide contained in the blown water on the outer surface of the hollow fiber filtration membranes 4, The filtered water is collected above the partition plate 2.

【0024】各中空糸モジュール3の下端には、中空糸
モジュール3内に気泡を流入させるための気泡流入機構
5が設置されている。また、濾過塔1の下端には流入管
6、仕切板2のやや下方には空気抜き管7A、濾過塔1
の上方部には空気抜き管7B及び濾過水流出管8がそれ
ぞれ接続されている。流入管6には被処理水流入管9、
ドレン管10、空気流入管11Aが連通され、濾過水流
出管8には空気流入管11Bが連通されている。
At the lower end of each hollow fiber module 3, a bubble inflow mechanism 5 for introducing bubbles into the hollow fiber module 3 is installed. An inlet pipe 6 is provided at the lower end of the filtration tower 1, an air vent pipe 7A is provided slightly below the partition plate 2, and a filtration tower 1 is provided.
An air vent pipe 7B and a filtered water outflow pipe 8 are connected to the upper part of the. The inflow pipe 6 has a treated water inflow pipe 9,
The drain pipe 10 and the air inflow pipe 11A communicate with each other, and the filtered water outflow pipe 8 communicates with the air inflow pipe 11B.

【0025】図中12は空気サージ槽、13は空気貯槽
を示す。空気サージ槽12と空気貯槽13とは空気管1
4を介して接続されているとともに、これら空気貯槽1
3及び空気サージ槽12にはそれぞれ空気流入管11A
及び空気流入管11Bが連通されている。また、本装置
では酸化剤溶液槽15が設置され、酸化剤溶液槽15と
被処理水流入管9とは注入ポンプ16が介装された注入
管17によって接続されている。なお、図中18〜25
はそれぞれ弁であり、26は差圧計、27は空気供給管
である。
In the figure, 12 is an air surge tank and 13 is an air storage tank. The air surge tank 12 and the air storage tank 13 are the air pipe 1
These air storage tanks 1 are connected through
3 and the air surge tank 12 have an air inlet pipe 11A, respectively.
And the air inflow pipe 11B is connected. Further, in this apparatus, an oxidant solution tank 15 is installed, and the oxidant solution tank 15 and the treated water inflow pipe 9 are connected by an injection pipe 17 in which an injection pump 16 is interposed. In addition, 18 to 25 in the figure
Are valves, 26 is a differential pressure gauge, and 27 is an air supply pipe.

【0026】次に、図1の装置を用いた本発明処理方法
の好適な実施態様を説明する。 まず、弁18及び弁24を開弁して、ブロー水又は
ブロー水に市水、工業用水若しくはその除濁濾過水を混
合した混合水を被処理水流入管9、流入管6を通して濾
過塔1内に流入させる。被処理水は濾過塔1内を上昇
し、各中空糸モジュール3内に流入し、各中空糸濾過膜
4の外側から内側に通過する。このとき、各中空糸濾過
膜4の外表面で酸化鉄が濾過され、濾過水は仕切板2の
上方で集合して濾過水流出管8から取り出される。この
ような濾過の継続により、差圧計26で示される差圧が
予め定められた値に上昇した時点で濾過を終了し、弁1
8、24を閉弁する。
Next, a preferred embodiment of the processing method of the present invention using the apparatus of FIG. 1 will be described. First, the valves 18 and 24 are opened, and blow water or a mixed water of blow water mixed with city water, industrial water, or turbidity filtered water thereof is passed through the treated water inflow pipe 9 and the inflow pipe 6 in the filtration tower 1. Flow into. The water to be treated rises in the filtration tower 1, flows into each hollow fiber module 3, and passes from the outside to the inside of each hollow fiber filtration membrane 4. At this time, iron oxide is filtered on the outer surface of each hollow fiber filtration membrane 4, and the filtered water is collected above the partition plate 2 and taken out from the filtered water outflow pipe 8. By continuing such filtration, when the differential pressure indicated by the differential pressure gauge 26 rises to a predetermined value, the filtration is terminated and the valve 1
Close valves 8 and 24.

【0027】 次いで、以下に説明する気液混合水に
よる洗浄を行う。すなわち、仕切板2の上方に濾過水
を、また仕切板2の下方に被処理水を満たしたまま、弁
20及び弁22を開弁し、空気流入管11A、流入管6
を通して濾過塔1内に空気を流入させる。空気は気泡流
入機構5から各中空糸モジュール3内に気泡となって流
入し、各中空糸モジュール3内の水を攪拌するととも
に、各中空糸濾過膜4を振動させてその表面に付着して
いる酸化鉄を剥離する。気泡は各中空糸モジュール3の
上方に設けた流通口(図示せず)から流出し、空気抜き
管7Aから濾過塔1外に放出される。
Next, cleaning with gas-liquid mixed water described below is performed. That is, with the filtered water above the partition plate 2 and the water to be treated below the partition plate 2, the valves 20 and 22 are opened, and the air inflow pipe 11A and the inflow pipe 6 are opened.
Through which air is introduced into the filtration tower 1. Air flows as bubbles from the bubble inflow mechanism 5 into each hollow fiber module 3, agitates the water in each hollow fiber module 3, and vibrates each hollow fiber filtration membrane 4 to adhere to its surface. Remove the iron oxide that is present. The air bubbles flow out from a flow port (not shown) provided above each hollow fiber module 3 and are discharged to the outside of the filtration tower 1 through the air vent pipe 7A.

【0028】このような空気攪拌が終了した後、弁22
を開弁したまま弁20を閉弁し、弁19を開弁して、仕
切板2の下方に存在する酸化鉄を多量に含む洗浄排水を
ドレン管10から抜く。次いで、弁25を開弁して空気
サージ槽12内の圧縮空気を濾過塔1内にその上方から
流入させ、仕切板2の上方に存在する濾過水を各中空糸
濾過膜4に逆流させる。この逆洗排水もドレン管10か
ら濾過塔1外に抜く。
After completion of such air stirring, the valve 22
While the valve is open, the valve 20 is closed, the valve 19 is opened, and the cleaning waste water existing below the partition plate 2 and containing a large amount of iron oxide is drained from the drain pipe 10. Next, the valve 25 is opened to allow the compressed air in the air surge tank 12 to flow into the filtration tower 1 from above, and the filtered water existing above the partition plate 2 is caused to flow back to each hollow fiber filtration membrane 4. This backwash drainage is also drained from the drain pipe 10 to the outside of the filtration tower 1.

【0029】 のような洗浄工程が終了した後、再
び濾過を行う。このとき、まず弁18及び弁22を開弁
し、被処理水を濾過塔1内に流入させて、仕切板2の下
方の空気を被処理水により押出して空気抜き管7Aから
抜く。次いで、弁22を閉弁し、弁23を開弁して、仕
切板2の上方の空気を濾過水により押出して空気抜き管
7Bから抜く。その後、弁23を閉弁し、弁24を開弁
して、の濾過を行う。
After the washing process as described above is completed, the filtration is performed again. At this time, first, the valves 18 and 22 are opened, the water to be treated is allowed to flow into the filtration tower 1, and the air below the partition plate 2 is extruded by the water to be treated and withdrawn from the air vent pipe 7A. Next, the valve 22 is closed and the valve 23 is opened, and the air above the partition plate 2 is extruded by the filtered water and withdrawn from the air vent pipe 7B. After that, the valve 23 is closed and the valve 24 is opened to perform filtration.

【0030】 本実施態様では、前記(a)の方法で
酸化剤の間欠添加を行う。すなわち、[濾過処理開始〜
差圧上昇〜洗浄]の一連の操作(〜の操作)を1サ
イクルとし、注入ポンプ16をある定められた回数のサ
イクル毎に駆動させて、酸化剤溶液槽15中の酸化剤溶
液(次亜塩素酸ソーダ溶液)を被処理水流入管9を流れ
る被処理水中に添加する。
In this embodiment, the oxidizing agent is intermittently added by the method (a). That is, [Filtration process start ~
Increase of differential pressure-cleaning] is set as one cycle, and the injection pump 16 is driven every predetermined number of cycles, so that the oxidant solution in the oxidant solution tank 15 (Sodium chlorate solution) is added to the water to be treated which flows through the treated water inflow pipe 9.

【0031】例えば、被処理水に酸化剤を添加しないで
濾過を行う酸化剤無添加サイクルを4サイクル実施した
後、5サイクル目の濾過開始時から注入ポンプ16を駆
動させ、5サイクル目の濾過終了時まで酸化剤添加を継
続する。そして、5サイクル目の洗浄に移行し、6サイ
クル目の濾過開始時から酸化剤無添加サイクルを9サイ
クル目まで継続した後、10サイクル目を酸化剤添加サ
イクルとし、以降同様の酸化剤間欠添加を繰り返す。こ
の場合、酸化剤添加サイクルでは、濾過水流出管8から
流出する濾過水中の残留塩素濃度が1ppm前後となる
ように被処理水に次亜塩素酸ソーダ溶液を添加する。
For example, after carrying out 4 cycles of the oxidizing agent-free cycle for filtering without adding an oxidizing agent to the water to be treated, the injection pump 16 is driven from the start of the 5th cycle filtration and the 5th cycle filtration. Continue adding oxidant until the end. Then, the process proceeds to the 5th cycle of washing, and the oxidant-free cycle from the start of the 6th cycle is continued until the 9th cycle, and then the 10th cycle is taken as the oxidant addition cycle. repeat. In this case, in the oxidizing agent addition cycle, the sodium hypochlorite solution is added to the water to be treated so that the residual chlorine concentration in the filtered water flowing out from the filtered water outflow pipe 8 becomes about 1 ppm.

【0032】[0032]

【実施例】次に、実施例により本発明を具体的に示す
が、本発明は下記実施例に限定されるものではない。図
1に示した装置を用いて発電所ブロー水の処理を行っ
た。この場合、中空糸濾過膜4としては、外径1.2m
m、内径0.7mmで、膜面に孔径0.1μmの微細孔
を多数有するポリオレフィン系の中空糸濾過膜を用い
た。中空糸モジュール3は、上記中空糸濾過膜を約40
00本束ねて作製した外径5インチ、長さ2mのもので
あり、仕切板2には上記中空糸モジュール3を18本装
着した。
EXAMPLES Next, the present invention will be illustrated concretely by examples, but the present invention is not limited to the following examples. Power plant blow water was treated using the apparatus shown in FIG. In this case, the hollow fiber filtration membrane 4 has an outer diameter of 1.2 m.
m, an inner diameter of 0.7 mm, and a polyolefin-based hollow fiber filtration membrane having a large number of fine pores with a pore diameter of 0.1 μm on the membrane surface. The hollow fiber module 3 has about 40 hollow fiber membranes.
An outer diameter of 5 inches and a length of 2 m were prepared by bundling 00 pieces, and 18 hollow fiber modules 3 were attached to the partition plate 2.

【0033】[実施例1]前述した装置を用い、酸化剤
無添加、酸化剤連続添加、酸化剤間欠添加の3種類の運
転方法により発電所ブロー水の処理を行った。図2に各
運転方法における中空糸濾過膜の差圧と処理時間との関
係を示す。図2(a)は酸化剤無添加の運転結果、図2
(b)は酸化剤連続添加の運転結果、図2(c)は酸化
剤間欠添加の運転結果を示す。図中、Aは初期差圧、B
は設定差圧であり、各運転例では、差圧が設定差圧Bに
到達する前に気液混合水による洗浄を行うようにするた
め、予め1サイクルを約200時間に設定している。ま
た、予め設定されたサイクル時間(約200時間)が経
過する前に差圧が設定差圧Bに到達した場合には、その
時点で濾過を終了して洗浄を行うよう設定してある。以
下に各運転例について説明する。
[Example 1] Using the above-mentioned apparatus, the blow water of the power plant was treated by three kinds of operating methods, that is, no oxidant addition, continuous oxidant addition and intermittent oxidant addition. FIG. 2 shows the relationship between the differential pressure of the hollow fiber filtration membrane and the treatment time in each operating method. Figure 2 (a) shows the results of operation without addition of oxidant.
2B shows the operation result of the continuous addition of the oxidizing agent, and FIG. 2C shows the operation result of the intermittent addition of the oxidizing agent. In the figure, A is the initial differential pressure, B
Is a set differential pressure, and in each operation example, one cycle is set to about 200 hours in advance so that cleaning with the gas-liquid mixed water is performed before the differential pressure reaches the set differential pressure B. Further, when the differential pressure reaches the set differential pressure B before the preset cycle time (about 200 hours) elapses, the filtration is terminated and the cleaning is performed at that time. Each operation example will be described below.

【0034】酸化剤無添加 酸化剤無添加の運転を行った場合、図2(a)に示すよ
うに、運転初期の差圧はAであったが、気液混合水によ
る洗浄後の差圧は初期差圧Aまで回復せず、しかも洗浄
後の差圧はサイクル毎に上昇した。そして、ついには予
め設定されたサイクル時間(約200時間)が終了する
前に設定差圧Bに到達するようになった。すなわち、洗
浄後の差圧はサイクルを増す毎に設定差圧Bに近づき、
洗浄と洗浄との間隔が次第に短くなり、最後には濾過不
能となった。このようにして濾過不能となった中空糸濾
過膜は、アルカリ、酸、還元剤、酸化剤等の薬品を用い
て洗浄を行わなければ差圧を回復させることはできなか
った。
[0034] When performing the operation of the oxidizing agent additive-free oxidizing agent not added, as shown in FIG. 2 (a), although initial operation of the differential pressure was A, the differential pressure after washing with gas-liquid mixed water Did not recover to the initial differential pressure A, and the differential pressure after cleaning increased with each cycle. Then, finally, the set differential pressure B is reached before the preset cycle time (about 200 hours) is completed. That is, the differential pressure after cleaning approaches the set differential pressure B each time the cycle is increased,
The interval between washes gradually became shorter and finally filtration was impossible. The hollow fiber filtration membrane which cannot be filtered in this way cannot recover the differential pressure unless it is washed with a chemical such as an alkali, an acid, a reducing agent or an oxidizing agent.

【0035】酸化剤連続添加 酸化剤連続添加の運転を行った場合、図2(b)に示す
ように、各サイクルにおいて気液混合水による洗浄後の
差圧は初期差圧Aまで回復した。しかし、本運転方法で
は、酸化剤の連続添加により中空糸濾過膜の酸化劣化が
促進され、その物理的強度の著しい低下を招いた。すな
わち、中空糸濾過膜の物理的強度の指標である伸度保持
率の初期値を100%とした場合、酸化剤無添加の運転
では100日後でも98%の伸度保持率を保持していた
のに対し、酸化剤連続添加の運転では100日後におけ
る伸度保持率は30%に低下していた。
In the case of performing the operation of the oxidizing agent continuously added oxidant continuous addition, as shown in FIG. 2 (b), the differential pressure after washing by gas-liquid mixed water in each cycle was restored to the initial pressure difference A. However, in the present operating method, the continuous addition of the oxidizing agent promotes the oxidative deterioration of the hollow fiber filtration membrane, resulting in a significant decrease in its physical strength. That is, when the initial value of the elongation retention rate, which is an index of the physical strength of the hollow fiber filtration membrane, was 100%, the elongation retention rate of 98% was retained even after 100 days in the operation without adding the oxidizing agent. On the other hand, in the operation in which the oxidizing agent was continuously added, the elongation retention rate after 100 days was reduced to 30%.

【0036】酸化剤間欠添加 酸化剤間欠添加の運転を行った場合、図2(c)に示す
ように、酸化剤無添加サイクル(最初の4サイクル)で
は洗浄後の差圧が徐々に上昇しているが、酸化剤添加サ
イクル(5サイクル目)では洗浄後の差圧が初期差圧A
まで回復した。また、本運転方法では、酸化剤による中
空糸濾過膜の物理的強度の低下が大きく抑制されてい
た。すなわち、前述した伸度保持率は、100日後でも
80%であった。
In the case of performing the operation of the oxidizing agent intermittent addition oxidant intermittent addition, as shown in FIG. 2 (c), the differential pressure after washing the oxidizing agent without addition cycle (first 4 cycles) gradually increases However, in the oxidizing agent addition cycle (fifth cycle), the differential pressure after cleaning is the initial differential pressure A.
Recovered. Further, in the present operating method, the decrease in physical strength of the hollow fiber filtration membrane due to the oxidizing agent was greatly suppressed. That is, the elongation retention rate was 80% even after 100 days.

【0037】以上により、ブロー水に酸化剤を間欠的に
添加して中空糸濾過膜による濾過を行うことにより、酸
化剤による中空糸濾過膜の強度低下を抑制しつつ、気液
混合水を用いた洗浄による差圧回復性を確保できること
が確認された。
As described above, the oxidizing agent is intermittently added to the blow water to carry out filtration through the hollow fiber filtration membrane, so that the gas-liquid mixed water can be used while suppressing the decrease in strength of the hollow fiber filtration membrane due to the oxidizing agent. It was confirmed that the recovery of the differential pressure due to the washing was secured.

【0038】[実施例2]前述したように、発電プラン
トの定期検査後の起動時に排出されるブロー水は多量の
酸化鉄を含んでおり、この起動時ブロー水を処理する場
合は1回のサイクル内における中空糸濾過膜の差圧上昇
速度がきわめて速くなる。そこで、前記(c)の間欠添
加方法を用いて起動時ブロー水の処理を行った。結果を
図3に示す。
[Embodiment 2] As described above, the blow water discharged at the time of start-up after the periodical inspection of the power plant contains a large amount of iron oxide. The differential pressure rising speed of the hollow fiber filtration membrane in the cycle becomes extremely fast. Therefore, the start-up blow water was treated using the intermittent addition method (c). The results are shown in FIG.

【0039】通常のブロー水処理時には、予め設定され
たサイクル時間(約200時間)内に差圧が設定値Bに
到達することはなく、予め設定されたサイクル時間毎に
洗浄が実施される。しかし、起動時ブロー水を通水する
と差圧上昇がきわめて速くなるため、予め設定されたサ
イクル時間が経過する前に差圧が設定値Bまで到達し、
洗浄が実施される。その結果、起動時ブロー水を通水す
ると1サイクルに要する時間が短くなり、図3の例では
最短で約15時間となった。そして、1サイクルの通水
時間が短くなった結果、酸化剤添加サイクルで酸化剤が
膜面付着物に接触する時間が短くなり、酸化剤添加サイ
クルにおける洗浄後に差圧が初期値Aまで回復しなくな
った。
During normal blow water treatment, the differential pressure does not reach the set value B within a preset cycle time (about 200 hours), and the cleaning is performed every preset cycle time. However, since the differential pressure rises very quickly when the blow water is started, the differential pressure reaches the set value B before the preset cycle time elapses.
Washing is performed. As a result, the time required for one cycle was shortened when the blow-off water at the time of startup was passed, and in the example of FIG. As a result of shortening the water passage time for one cycle, the time during which the oxidant contacts the deposits on the film surface during the oxidant addition cycle becomes shorter, and the differential pressure recovers to the initial value A after cleaning in the oxidant addition cycle. lost.

【0040】そこで、図3の例では、差圧上昇速度の変
化に応じて酸化剤の添加間隔を変化させた。すなわち、
通常時は酸化剤無添加サイクルを4回繰り返した後に酸
化剤添加サイクルを1回実施しているが、起動時ブロー
水の通水により差圧上昇速度が変化した場合は、その変
化に応じて、無添加サイクルの回数を減らして酸化剤添
加間隔を短くすることにより、酸化剤添加サイクルを増
やし、さらには酸化剤添加サイクルを数サイクル連続さ
せた。これにより、酸化剤添加サイクルにおける洗浄後
の差圧が初期差圧Aまで回復するようになった。また、
このような運転を行っても、酸化剤による中空糸濾過膜
の物理的強度の低下は抑制されていた。すなわち、前述
した伸度保持率は、50日後でも75%であった。
Therefore, in the example of FIG. 3, the interval of addition of the oxidant is changed according to the change in the differential pressure increase rate. That is,
Normally, the oxidizer addition cycle is performed once after repeating the oxidizer non-addition cycle four times. However, if the differential pressure increase rate changes due to the flow of blow water at startup, depending on the change. By reducing the number of non-addition cycles and shortening the oxidant addition interval, the oxidant addition cycle was increased, and further the oxidant addition cycle was continued for several cycles. As a result, the differential pressure after cleaning in the oxidant addition cycle was restored to the initial differential pressure A. Also,
Even when such an operation was performed, the decrease in physical strength of the hollow fiber filtration membrane due to the oxidizing agent was suppressed. That is, the elongation retention rate described above was 75% even after 50 days.

【0041】なお、差圧上昇速度を検知する方法として
は、いかなる方法を用いてもよいが、本例では1サイク
ルに要する時間を監視し、その時の差圧上昇カーブから
通水時間当たりの差圧上昇速度を検知する手法を用い
た。本手法を用いて酸化剤添加間隔を変化させること
で、ブロー水の水質が変化した場合、例えば差圧上昇速
度が速い起動時ブロー水が通水された場合でも、十分な
洗浄後の差圧回復性を維持できることがわかった。差圧
上昇速度を検知する方法としては、上述した方法の他、
例えばブロー水の通水量を監視して通水量当たりの差圧
上昇速度を検知するようにしてもよい。
Any method may be used to detect the differential pressure increase rate. In this example, the time required for one cycle is monitored, and the difference per water passage time is calculated from the differential pressure increase curve at that time. The method of detecting the pressure rise rate was used. By changing the oxidant addition interval using this method, even if the water quality of the blow water changes, for example, even if the blow water at the startup has a high differential pressure rising speed, the differential pressure after sufficient washing is sufficient. It was found that the recoverability can be maintained. As a method of detecting the differential pressure increase rate, other than the method described above,
For example, the flow rate of blow water may be monitored to detect the differential pressure increase rate per flow rate.

【0042】[0042]

【発明の効果】以上のように、本発明にかかる発電所ブ
ロー水の処理方法によれば、酸化剤による中空糸濾過膜
の強度低下を抑制しつつ、気液混合水を用いた洗浄によ
る差圧回復性を確保することができ、したがって薬品洗
浄等の煩雑な操作を行うことなく低ランニングコストで
安定したブロー水の処理を行うことが可能である。
As described above, according to the method for treating blow water of a power plant according to the present invention, it is possible to suppress the decrease in strength of the hollow fiber filtration membrane due to the oxidant while maintaining the difference due to the cleaning using the gas-liquid mixed water. The pressure recoverability can be ensured, and therefore stable blow water treatment can be performed at low running cost without performing complicated operations such as chemical cleaning.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施に用いるブロー水処理装置の一例
を示すフロー図である。
FIG. 1 is a flow chart showing an example of a blow water treatment apparatus used for carrying out the present invention.

【図2】実施例1の濾過処理における中空糸濾過膜の差
圧の上昇傾向と洗浄での差圧回復傾向を示したグラフで
あり、(a)は酸化剤無添加の運転結果、(b)は酸化
剤連続添加の運転結果、(c)は酸化剤間欠添加の運転
結果を示す。
FIG. 2 is a graph showing an increasing tendency of the differential pressure of the hollow fiber filtration membrane and a recovering tendency of the differential pressure after washing in the filtration treatment of Example 1, in which (a) is the operation result without addition of an oxidizing agent, and (b) is ) Shows the operation result of the continuous addition of the oxidizing agent, and (c) shows the operation result of the intermittent addition of the oxidizing agent.

【図3】差圧の上昇速度の変化に応じてブロー水への酸
化剤の間欠添加間隔を変化させた場合における中空糸濾
過膜の差圧の上昇傾向と洗浄での差圧回復傾向を示した
グラフである。
FIG. 3 shows the increasing tendency of the differential pressure of the hollow fiber filtration membrane and the recovering tendency of the differential pressure during washing when the interval of intermittent addition of the oxidizing agent to the blow water is changed according to the change of the increasing rate of the differential pressure. It is a graph.

【符号の説明】[Explanation of symbols]

1 濾過塔 3 中空糸モジュール 4 中空糸濾過膜 5 気泡流入機構 8 濾過水流出管 9 被処理水流入管 15 酸化剤溶液槽 16 注入ポンプ 17 注入管 26 差圧計 1 Filtration Tower 3 Hollow Fiber Module 4 Hollow Fiber Filtration Membrane 5 Bubble Inflow Mechanism 8 Filtered Water Outflow Pipe 9 Treated Water Inflow Pipe 15 Oxidant Solution Tank 16 Injection Pump 17 Injection Pipe 26 Differential Pressure Meter

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成8年8月5日[Submission date] August 5, 1996

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0010[Correction target item name] 0010

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0010】 本発明において、酸化剤による中空糸濾
過膜の強度低下を抑制しつつ、気液混合水を用いた洗浄
による差圧回復性を確保することができるのは、次の理
由によるものと推測される。すなわち、酸化剤無添加の
濾過時においては、被処理水中の微量有機物が中空糸濾
過膜の膜面に付着してバクテリア発生を促進し、膜面上
にスライムが形成されて付着する。また、被処理水中に
含まれる非晶質酸化鉄も膜面に付着するが、これは気液
混合水を用いた洗浄では剥離しにくい酸化鉄である。し
たがって、酸化剤無添加の濾過時においては、前記のス
ライムや非晶質酸化鉄が膜面に付着して差圧を上昇させ
ることになる。これに対し、本発明のように酸化剤無添
加の濾過の後に酸化剤添加の濾過を実施すると、酸化剤
無添加時の濾過において膜面上に付着したスライムを酸
化剤が酸化して剥離し易くするとともに、酸化剤が非晶
質酸化鉄を剥離性の良い結晶質酸化鉄に変化させ、これ
により酸化剤添加の濾過終了時における洗浄によって上
記スライムや酸化鉄が容易に剥離し、差圧が初期差圧ま
で回復するものと考えられる。
In the present invention, it is possible to secure the differential pressure recoverability by washing with gas-liquid mixed water while suppressing the strength reduction of the hollow fiber filtration membrane due to the oxidizing agent, for the following reason. Guessed. That is, at the time of filtration without addition of an oxidizing agent, a trace amount of organic matter in the water to be treated adheres to the membrane surface of the hollow fiber filtration membrane to promote bacteria generation, and slime is formed and adheres on the membrane surface. Amorphous iron oxide contained in the water to be treated also adheres to the film surface, but this is iron oxide that is difficult to peel off by cleaning with gas-liquid mixed water. Therefore, during filtration without addition of an oxidizing agent, the slime or amorphous iron oxide adheres to the membrane surface to increase the differential pressure. In contrast, when carrying out the filtration of the oxidizing agent added after filtration of the oxidizing agent additive-free as in the present invention, the scan lime deposited on the film surface in the filtration of the oxidation agent additive-free oxidizing agent oxidizes Along with facilitating exfoliation, the oxidizing agent changes the amorphous iron oxide into crystalline iron oxide with good exfoliation property, whereby the slime and iron oxide are easily exfoliated by washing at the end of filtration of addition of the oxidizing agent, It is considered that the differential pressure recovers to the initial differential pressure.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図1[Correction target item name] Fig. 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図 1】 [Fig. 1]

【手続補正3】[Procedure 3]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図3[Correction target item name] Figure 3

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図 3】 [Fig. 3]

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 発電所におけるタービン駆動用蒸気及び
復水の循環系統から排出されるブロー水に酸化剤を添加
した後、該ブロー水を中空糸濾過膜で濾過する処理方法
において、前記ブロー水への酸化剤の添加を間欠的に行
うことを特徴とする発電所ブロー水の処理方法。
1. A treatment method in which an oxidant is added to blow water discharged from a circulation system of turbine driving steam and condensate in a power plant, and the blow water is filtered by a hollow fiber filtration membrane. A method for treating blow water of a power plant, which comprises intermittently adding an oxidizing agent to the power plant.
【請求項2】 中空糸濾過膜の濾過差圧の上昇速度の変
化に応じてブロー水への酸化剤の間欠添加の間隔を変化
させる請求項1記載の処理方法。
2. The treatment method according to claim 1, wherein the interval of intermittent addition of the oxidizing agent to the blown water is changed according to the change in the rising speed of the filtration differential pressure of the hollow fiber filtration membrane.
JP21659395A 1995-08-02 1995-08-02 Treatment of blow water of power plant Pending JPH0938648A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21659395A JPH0938648A (en) 1995-08-02 1995-08-02 Treatment of blow water of power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21659395A JPH0938648A (en) 1995-08-02 1995-08-02 Treatment of blow water of power plant

Publications (1)

Publication Number Publication Date
JPH0938648A true JPH0938648A (en) 1997-02-10

Family

ID=16690858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21659395A Pending JPH0938648A (en) 1995-08-02 1995-08-02 Treatment of blow water of power plant

Country Status (1)

Country Link
JP (1) JPH0938648A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11319516A (en) * 1998-05-21 1999-11-24 Nkk Corp Water filtration apparatus and method for operating the same
JP2006075247A (en) * 2004-09-07 2006-03-23 Toyobo Co Ltd Polysulfone-based permselective hollow fiber membrane bundle
JP2009226345A (en) * 2008-03-25 2009-10-08 Metawater Co Ltd Backwash method and apparatus for membrane filtration apparatus
US7651618B2 (en) 2006-09-11 2010-01-26 Organo Corporation Method and apparatus for treatment of an effluent containing radioactive materials
JP2010058120A (en) * 2004-12-24 2010-03-18 Siemens Water Technologies Corp Cleaning in membrane filtration system
WO2011122175A1 (en) * 2010-03-30 2011-10-06 株式会社神鋼環境ソリューション Water treatment device and water treatment method
JP4825933B1 (en) * 2010-03-30 2011-11-30 株式会社神鋼環境ソリューション Water treatment method
WO2013005787A1 (en) * 2011-07-06 2013-01-10 栗田工業株式会社 Method for membrane separation
US8840783B2 (en) 2007-05-29 2014-09-23 Evoqua Water Technologies Llc Water treatment membrane cleaning with pulsed airlift pump
US8858796B2 (en) 2005-08-22 2014-10-14 Evoqua Water Technologies Llc Assembly for water filtration using a tube manifold to minimise backwash
US8956464B2 (en) 2009-06-11 2015-02-17 Evoqua Water Technologies Llc Method of cleaning membranes
US9023206B2 (en) 2008-07-24 2015-05-05 Evoqua Water Technologies Llc Frame system for membrane filtration modules
US9022224B2 (en) 2010-09-24 2015-05-05 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US9533261B2 (en) 2012-06-28 2017-01-03 Evoqua Water Technologies Llc Potting method
US9604166B2 (en) 2011-09-30 2017-03-28 Evoqua Water Technologies Llc Manifold arrangement
US9675938B2 (en) 2005-04-29 2017-06-13 Evoqua Water Technologies Llc Chemical clean for membrane filter
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
US9764289B2 (en) 2012-09-26 2017-09-19 Evoqua Water Technologies Llc Membrane securement device
US9815027B2 (en) 2012-09-27 2017-11-14 Evoqua Water Technologies Llc Gas scouring apparatus for immersed membranes
US9914097B2 (en) 2010-04-30 2018-03-13 Evoqua Water Technologies Llc Fluid flow distribution device
US9925499B2 (en) 2011-09-30 2018-03-27 Evoqua Water Technologies Llc Isolation valve with seal for end cap of a filtration system
US9962865B2 (en) 2012-09-26 2018-05-08 Evoqua Water Technologies Llc Membrane potting methods
US10322375B2 (en) 2015-07-14 2019-06-18 Evoqua Water Technologies Llc Aeration device for filtration system
US10427102B2 (en) 2013-10-02 2019-10-01 Evoqua Water Technologies Llc Method and device for repairing a membrane filtration module

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11319516A (en) * 1998-05-21 1999-11-24 Nkk Corp Water filtration apparatus and method for operating the same
JP2006075247A (en) * 2004-09-07 2006-03-23 Toyobo Co Ltd Polysulfone-based permselective hollow fiber membrane bundle
JP2010058120A (en) * 2004-12-24 2010-03-18 Siemens Water Technologies Corp Cleaning in membrane filtration system
US9675938B2 (en) 2005-04-29 2017-06-13 Evoqua Water Technologies Llc Chemical clean for membrane filter
US8894858B1 (en) 2005-08-22 2014-11-25 Evoqua Water Technologies Llc Method and assembly for water filtration using a tube manifold to minimize backwash
US8858796B2 (en) 2005-08-22 2014-10-14 Evoqua Water Technologies Llc Assembly for water filtration using a tube manifold to minimise backwash
US7651618B2 (en) 2006-09-11 2010-01-26 Organo Corporation Method and apparatus for treatment of an effluent containing radioactive materials
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
US8840783B2 (en) 2007-05-29 2014-09-23 Evoqua Water Technologies Llc Water treatment membrane cleaning with pulsed airlift pump
US9206057B2 (en) 2007-05-29 2015-12-08 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US9573824B2 (en) 2007-05-29 2017-02-21 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US10507431B2 (en) 2007-05-29 2019-12-17 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
JP2009226345A (en) * 2008-03-25 2009-10-08 Metawater Co Ltd Backwash method and apparatus for membrane filtration apparatus
US9023206B2 (en) 2008-07-24 2015-05-05 Evoqua Water Technologies Llc Frame system for membrane filtration modules
US8956464B2 (en) 2009-06-11 2015-02-17 Evoqua Water Technologies Llc Method of cleaning membranes
JP4825933B1 (en) * 2010-03-30 2011-11-30 株式会社神鋼環境ソリューション Water treatment method
WO2011122175A1 (en) * 2010-03-30 2011-10-06 株式会社神鋼環境ソリューション Water treatment device and water treatment method
US10441920B2 (en) 2010-04-30 2019-10-15 Evoqua Water Technologies Llc Fluid flow distribution device
US9914097B2 (en) 2010-04-30 2018-03-13 Evoqua Water Technologies Llc Fluid flow distribution device
US9022224B2 (en) 2010-09-24 2015-05-05 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US9630147B2 (en) 2010-09-24 2017-04-25 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US9458034B2 (en) 2011-07-06 2016-10-04 Kurita Water Industries Ltd. Method of membrane separation
JPWO2013005787A1 (en) * 2011-07-06 2015-02-23 栗田工業株式会社 Membrane separation method
JP5672383B2 (en) * 2011-07-06 2015-02-18 栗田工業株式会社 Membrane separation method
WO2013005787A1 (en) * 2011-07-06 2013-01-10 栗田工業株式会社 Method for membrane separation
US9925499B2 (en) 2011-09-30 2018-03-27 Evoqua Water Technologies Llc Isolation valve with seal for end cap of a filtration system
US10391432B2 (en) 2011-09-30 2019-08-27 Evoqua Water Technologies Llc Manifold arrangement
US9604166B2 (en) 2011-09-30 2017-03-28 Evoqua Water Technologies Llc Manifold arrangement
US11065569B2 (en) 2011-09-30 2021-07-20 Rohm And Haas Electronic Materials Singapore Pte. Ltd. Manifold arrangement
US9533261B2 (en) 2012-06-28 2017-01-03 Evoqua Water Technologies Llc Potting method
US9764289B2 (en) 2012-09-26 2017-09-19 Evoqua Water Technologies Llc Membrane securement device
US9962865B2 (en) 2012-09-26 2018-05-08 Evoqua Water Technologies Llc Membrane potting methods
US9815027B2 (en) 2012-09-27 2017-11-14 Evoqua Water Technologies Llc Gas scouring apparatus for immersed membranes
US10427102B2 (en) 2013-10-02 2019-10-01 Evoqua Water Technologies Llc Method and device for repairing a membrane filtration module
US11173453B2 (en) 2013-10-02 2021-11-16 Rohm And Haas Electronic Materials Singapores Method and device for repairing a membrane filtration module
US10322375B2 (en) 2015-07-14 2019-06-18 Evoqua Water Technologies Llc Aeration device for filtration system

Similar Documents

Publication Publication Date Title
JPH0938648A (en) Treatment of blow water of power plant
KR101589763B1 (en) Method for cleaning Filtering Membrane
CN107261854B (en) Method for cleaning membrane in leachate treatment process
CN106251924B (en) The method of supercritical water oxidation processing PVA polymeric material
CN115121124A (en) Method and apparatus for cleaning filtration membrane, and water treatment system
CN102295356A (en) Method for treating steam condensed water by virtue of organic separation membrane
CN111217425A (en) Cleaning method of immersed ultrafiltration membrane
JPH09122460A (en) Cleaning method for membrane module
JP2005034694A (en) Membrane cleaning method, and filter
JP2000167555A (en) Cleaning of immersion membrane
CN107321189A (en) A kind of outer cleaning device of MBR films line and cleaning method
JP3620577B2 (en) Cleaning method for ultrapure water production system
JP2016078014A (en) Treatment method and treatment device for ammonia-containing waste water
JPH07144120A (en) Reverse osmosis device, washing method therefor and washing operation therefor
JP2004057883A (en) Water cleaning method using external pressure type hollow fiber membrane module and apparatus therefor
JPS60190298A (en) Preparation of ultra-pure water
JPH0785796B2 (en) Power plant blow water treatment method
CN207187519U (en) A kind of outer cleaning device of MBR films line
CN206814545U (en) Reverse osmosis unit and desalting water treatment system
JPH10309595A (en) Biological treatment
CN108249674A (en) A kind of pickle liquor Treatment and recovery utilizes device and method
JPH10137755A (en) Membrane treating device of waste water
JPH0785797B2 (en) Condensate filter
JP2008119669A (en) Sodium bisulfite storage system
JPS62279897A (en) Methane fermentation of organic aqueous solution