JPH09325059A - Ultrasonic flow speed meter - Google Patents

Ultrasonic flow speed meter

Info

Publication number
JPH09325059A
JPH09325059A JP14405296A JP14405296A JPH09325059A JP H09325059 A JPH09325059 A JP H09325059A JP 14405296 A JP14405296 A JP 14405296A JP 14405296 A JP14405296 A JP 14405296A JP H09325059 A JPH09325059 A JP H09325059A
Authority
JP
Japan
Prior art keywords
reception
circuit
voltage conversion
ultrasonic
conversion circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14405296A
Other languages
Japanese (ja)
Other versions
JP3689977B2 (en
Inventor
Yuji Nakabayashi
裕治 中林
Yukio Nagaoka
行夫 長岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP14405296A priority Critical patent/JP3689977B2/en
Publication of JPH09325059A publication Critical patent/JPH09325059A/en
Application granted granted Critical
Publication of JP3689977B2 publication Critical patent/JP3689977B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PROBLEM TO BE SOLVED: To measure flow speed of a fluid with precision. SOLUTION: Relating to a propagation time in which an ultrasonic wave outputted from a transmission ultrasonic wave vibrator 4 reaches a reception ultrasonic wave vibrator 6, when the flow speed of a fluid at a measurement path 3 is measured based on a propagation time and a path length of the measurement path 3, based on the lapse time starting from when a control part 8 outputs a transmission start signal to a transmission circuit 5 till when a reception circuit 7 receives/judges and outputs a reception judgement signal, a capacitive element 13 is which an electric charge is accumulated while the output of a voltage conversion circuit 2 supplied to the reception circuit 7 while the voltage of a battery 1 is converted is smoothed and a power source control circuit 12 which controls the action of the voltage conversion circuit 2 are provided, and, the power source control circuit 12, after the transmission start signal is outputted, stops the action of the voltage conversion circuit 2 at least when the reception circuit 7 performs reception judgement, so that, the reception circuit 7 can be driven only with an accumulated electric charge of the capacitive element 13.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、超音波を用いて気
体や液体の流速を測定する超音波流速計の測定精度を向
上させる手段に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to means for improving the measurement accuracy of an ultrasonic velocity meter that measures the flow velocity of gas or liquid using ultrasonic waves.

【0002】[0002]

【従来の技術】以下、従来の超音波流速計について図面
を参照しながら説明する。図10は従来の超音波流速計
の構成を示すブロック図である。図において、1は電
源、2は前記電源1を昇圧または降圧する電圧変換回
路、3は流体の流れる測定経路、4は測定経路3に設置
した送信用超音波振動子、5は送信用超音波振動子4を
駆動する送信回路、6は送信用超音波振動子4から送信
した超音波を受ける受信用超音波振動子、7は電圧変換
回路2の出力を電源とし、受信用超音波振動子6の出力
を受ける受信回路、8は送信回路5に送信開始信号を送
り受信回路7の出力を受ける制御部である。
2. Description of the Related Art A conventional ultrasonic velocity meter will be described below with reference to the drawings. FIG. 10 is a block diagram showing the configuration of a conventional ultrasonic velocity meter. In the figure, 1 is a power supply, 2 is a voltage conversion circuit for stepping up or down the power supply 1, 3 is a measurement path through which a fluid flows, 4 is an ultrasonic transducer for transmission installed in the measurement path 3, and 5 is an ultrasonic wave for transmission. A transmission circuit that drives the oscillator 4, a reception ultrasonic oscillator 6 that receives the ultrasonic waves transmitted from the transmission ultrasonic oscillator 4, and a reception ultrasonic oscillator 7 that uses the output of the voltage conversion circuit 2 as a power source. A receiving circuit 6 receives the output of 6 and a control unit 8 receives the output of the receiving circuit 7 by sending a transmission start signal to the transmitting circuit 5.

【0003】上記構成においてその動作を説明する。制
御部8から送信開始信号を入力した送信回路5が一定時
間パルスを出力し、送信用超音波振動子4を駆動する。
送信用超音波振動子4から送信した超音波は被測定流体
中を伝播し、t秒経過後に受信用超音波振動子6で受信
され、受信回路7で受信判定の後に制御部8に受信判定
信号として出力される。受信回路7は、図11に示した
ように、受信用超音波振動子6の受信出力を入力して増
幅する増幅器9と、増幅器9の出力を基準電圧10と比
較して受信判定を行う比較器11を備え、受信用超音波
振動子6の受信出力が基準電圧10に達した時点で受信
判定信号を出力する。制御部8は、送信開始信号を出力
した時点から受信回路7の前記受信判定信号を入力する
までの時間を測定して伝播時間tを求め、この伝播時間
tから、被測定流体の流速vを(1)式によって求め
る。
The operation of the above configuration will be described. The transmission circuit 5 that receives the transmission start signal from the control unit 8 outputs a pulse for a certain period of time to drive the transmission ultrasonic transducer 4.
The ultrasonic wave transmitted from the transmitting ultrasonic transducer 4 propagates through the fluid to be measured, is received by the receiving ultrasonic transducer 6 after t seconds have passed, and is received by the control circuit 8 after the receiving circuit 7 makes the receiving judgment. It is output as a signal. As shown in FIG. 11, the receiving circuit 7 compares the output of the receiving ultrasonic transducer 6 with the amplifier 9 that amplifies the received output and compares the output of the amplifier 9 with the reference voltage 10 to perform reception determination. And a reception determination signal is output when the reception output of the reception ultrasonic transducer 6 reaches the reference voltage 10. The control unit 8 measures the time from the time when the transmission start signal is output to the time when the reception determination signal of the receiving circuit 7 is input to obtain the propagation time t, and from this propagation time t, the flow velocity v of the fluid to be measured is calculated. It is calculated by the equation (1).

【0004】いま、超音波振動子間の流れ方向の有効距
離をL、音速をc、被測定流体の流速をv、送信用超音
波振動子4から受信用超音波振動子6への方向を正とす
るとき、 v=(L/t)−c ・・・・・・・・・(1) また、送信用超音波振動子4と受信用超音波振動子6を
切り替え、被測定流体の上流から下流へと、下流から上
流へのそれぞれの伝播時間を測定し、(2)式により速
度vを求める方法もある。
Now, the effective distance in the flow direction between the ultrasonic transducers is L, the sound velocity is c, the flow velocity of the fluid to be measured is v, and the direction from the transmitting ultrasonic transducer 4 to the receiving ultrasonic transducer 6 is When it is positive, v = (L / t) −c (1) Further, the ultrasonic transducer 4 for transmission and the ultrasonic transducer 6 for reception are switched to change the fluid to be measured. There is also a method in which the propagation time from upstream to downstream and from downstream to upstream are measured, and the velocity v is calculated by the equation (2).

【0005】いま、上流から下流への伝播時間t1 、下
流から上流への伝播時間t2 とするとき、 v=L/2・(1/t1−1/t2) ・・・・・・・・・(2) この方法によれば、音速cの変化の影響を受けずに流速
を測定することができるので、流速、流量、距離などの
測定に広く利用されている。
Now, assuming that the propagation time from upstream to downstream is t1 and the propagation time from downstream to upstream is t2, v = L / 2. (1 / t1-1 / t2) .... (2) According to this method, since the flow velocity can be measured without being affected by the change in the sound velocity c, it is widely used for measuring the flow velocity, the flow rate, the distance and the like.

【0006】なお、電源1は、電池の電圧、または商用
電源をスイッチング素子を用いて昇圧した電圧、または
レギュレータを用いて降圧する電圧変換回路2により変
圧した電圧を測定回路に供給している。
The power supply 1 supplies to the measurement circuit the voltage of the battery, the voltage obtained by boosting the commercial power supply using a switching element, or the voltage transformed by the voltage conversion circuit 2 that steps down the voltage using a regulator.

【0007】[0007]

【発明が解決しようとする課題】このような従来の超音
波流速計では、精度の高い測定を行う場合、たとえば数
mm/sの測定を行う場合、tの測定精度には数nsが
要求されるが、電圧変換回路2のレギュレータが発生さ
せる電圧の変動、すなわちリップル成分、または電圧変
換回路2のスイッチング素子が発生させるノイズによっ
て目的の精度を得ることが困難であった。
In such a conventional ultrasonic velocity meter, when performing highly accurate measurement, for example, when measuring several mm / s, the measurement accuracy of t requires several ns. However, it is difficult to obtain the target accuracy due to the fluctuation of the voltage generated by the regulator of the voltage conversion circuit 2, that is, the ripple component or the noise generated by the switching element of the voltage conversion circuit 2.

【0008】すなわち、送信用超音波振動子4と受信用
超音波振動子6と距離を100mm程度、送信用超音波
振動子4の駆動電圧を5vとした場合、一般的な送信用
超音波振動子4と受信用超音波振動子6との間の感度は
−80〜−50dB程度である。また、受信用超音波振
動子6から出力される受信出力は図12に示したような
波形を備え、そのレベルは数mV程度である。この受信
出力を増幅器9で数百倍増幅しているため、増幅器9の
入力部にノイズが入ると、数百倍に増幅され、大きな誤
差を発生させる。
That is, when the distance between the transmitting ultrasonic transducer 4 and the receiving ultrasonic transducer 6 is about 100 mm and the driving voltage of the transmitting ultrasonic transducer 4 is 5 v, a general transmitting ultrasonic vibration is generated. The sensitivity between the child 4 and the receiving ultrasonic transducer 6 is about -80 to -50 dB. Further, the reception output output from the reception ultrasonic transducer 6 has a waveform as shown in FIG. 12, and its level is about several mV. Since the received output is amplified by the amplifier 9 by several hundred times, if noise enters the input part of the amplifier 9, it is amplified by several hundred times and a large error occurs.

【0009】また、超音波の受信周波数を200KH
z、振幅を3V(p−p)とすると、増幅器9の出力信
号は V=sin(ωt) となり、その信号の傾きは、 2・106・cos(ωt) [V/s] となる。この信号と基準電圧とを比較して受信判定する
が、この場合、測定精度が最も高いタイミングは傾きが
最大であるところであり、その値は2・106 [V/
s]となる。しかし、この傾き最大のレベルで受信判定
を行っても、増幅器9の出力信号と比較する基準電圧が
ノイズまたは電源のリップル成分によって、たとえば1
0mV変動した場合、5nsの誤差が発生してしまうと
言う問題があった。
Further, the reception frequency of ultrasonic waves is 200 KH.
When z and the amplitude are 3V (pp), the output signal of the amplifier 9 is V = sin (ωt), and the inclination of the signal is 2 · 10 6 · cos (ωt) [V / s]. Reception judgment is performed by comparing this signal with a reference voltage. In this case, the timing at which the measurement accuracy is highest is where the slope is maximum, and the value is 2.10 6 [V /
s]. However, even if the reception determination is performed at the maximum inclination level, the reference voltage to be compared with the output signal of the amplifier 9 may be, for example, 1 due to noise or ripple component of the power supply.
There was a problem that an error of 5 ns would occur when the fluctuation was 0 mV.

【0010】本発明は上記の課題を解決するもので、電
源のレベル変動およびノイズの影響を回避して高精度に
流速を測定できる超音波流速計を提供することを目的と
する。
The present invention solves the above problems, and an object of the present invention is to provide an ultrasonic velocity meter capable of measuring the flow velocity with high accuracy while avoiding the influence of the level fluctuation of the power supply and noise.

【0011】[0011]

【課題を解決するための手段】請求項1に係わる本発明
は、受信回路に電源を供給する電圧変換回路の出力に容
量性素子を接続して出力電圧を平滑するとともに電荷を
蓄積し、少なくとも受信回路が受信判定処理を行うとき
には電圧変換回路の動作を停止して、容量性素子の蓄積
電荷で受信回路を駆動するようにした超音波流速計であ
る。これにより、受信回路が受信判定処理を実行すると
きに、電圧変換回路の電圧変動およびノイズの影響を回
避でき、精度よく流速を測定することができる。
According to a first aspect of the present invention, a capacitive element is connected to the output of a voltage conversion circuit that supplies power to a receiving circuit to smooth the output voltage and accumulate electric charge. This is an ultrasonic velocity meter in which the operation of the voltage conversion circuit is stopped when the reception circuit performs the reception determination process, and the reception circuit is driven by the electric charge accumulated in the capacitive element. As a result, when the reception circuit executes the reception determination process, it is possible to avoid the influence of voltage fluctuation and noise of the voltage conversion circuit, and it is possible to accurately measure the flow velocity.

【0012】請求項2に係わる本発明は、送信開始信号
が出力された時点で電圧変換回路の動作を停止して前記
容量性素子に蓄積した電荷で前記受信回路を駆動するよ
うにした請求項1に係わる超音波流速計である。これに
より、超音波が送信された時点から電圧変換回路は停止
しており、受信回路が受信判定するときには電圧変換回
路の時に電圧変換回路の電圧変動およびノイズの影響を
受けず、高精度に流速を測定することができる。また、
受信回路が容量性素子から消費する電気量を低減できる
ので、容量性素子の容量値を小さい値に選定することも
できる。
According to a second aspect of the present invention, the operation of the voltage conversion circuit is stopped when the transmission start signal is output, and the receiving circuit is driven by the electric charge accumulated in the capacitive element. It is an ultrasonic velocity meter according to 1. As a result, the voltage conversion circuit is stopped from the time when the ultrasonic wave is transmitted, and when the receiving circuit determines reception, it is not affected by the voltage fluctuation and noise of the voltage conversion circuit when the voltage conversion circuit is in operation, and the flow velocity is highly accurate. Can be measured. Also,
Since the amount of electricity consumed by the receiving circuit from the capacitive element can be reduced, the capacitance value of the capacitive element can be selected to be a small value.

【0013】請求項3に係わる本発明は、超音波が送出
されてから受信用超音波振動子に達する以前の所定時間
経過時点までは電圧変換回路を動作させたのち停止させ
るようにした請求項1に係わる超音波流速計である。こ
れにより、容量性素子への電荷蓄積量を多くし、かつ受
信判定時には容量性素子のみで受信回路を駆動するの
で、受信回路の電力消費による電圧変化を低減して高精
度に流速を測定することができる。
According to a third aspect of the present invention, the voltage conversion circuit is operated and then stopped until a predetermined time elapses before the ultrasonic wave is transmitted to the receiving ultrasonic vibrator. It is an ultrasonic velocity meter according to 1. As a result, the amount of charge accumulated in the capacitive element is increased, and the receiving circuit is driven only by the capacitive element at the time of reception determination, so that the voltage change due to the power consumption of the receiving circuit is reduced and the flow velocity is measured with high accuracy. be able to.

【0014】請求項4に係わる本発明は、超音波が送出
されてから、前回に測定した超音波の伝播時間より僅か
に短い時間を経過する時点までは電圧変換回路を動作さ
せたのち停止させるようにした請求項1に係わる超音波
流速計である。これにより、流速の変化に対応して受信
判定の直前近くまで容量性素子への電荷蓄積を継続でき
るので、容量性素子の電荷蓄積量をさらに多くでき、か
つ受信判定時には容量性素子のみで受信回路を駆動する
ので、受信回路の電力消費による電圧変化をさらに低減
してより高精度に流速を測定することができる。
In the present invention according to claim 4, the voltage conversion circuit is operated and then stopped until a time slightly shorter than the propagation time of the ultrasonic wave measured last time after the ultrasonic wave is transmitted. The ultrasonic velocity meter according to claim 1 configured as described above. This allows the charge accumulation in the capacitive element to be continued until just before the reception determination in response to the change in the flow velocity, so that the charge accumulation amount of the capacitive element can be further increased, and only the capacitive element can receive the reception determination. Since the circuit is driven, the voltage change due to the power consumption of the receiving circuit can be further reduced and the flow velocity can be measured with higher accuracy.

【0015】請求項5に係わる本発明は、受信回路の受
信判定レベルより低いレベルで超音波を検知し、その時
点まで電圧変換回路を動作させたのち停止させるように
した請求項1に係わる超音波流速計である。これによ
り、受信判定の直前まで容量性素子への電荷蓄積を継続
できるので、容量性素子の電荷蓄積量を極限まで多くで
き、かつ受信判定時には容量性素子のみで受信回路を駆
動するので、受信回路の電力消費による電圧変化をなお
一層低減してさらにより高精度に流速を測定することが
できる。
According to a fifth aspect of the present invention, the ultrasonic wave is detected at a level lower than the reception determination level of the receiving circuit, and the voltage converting circuit is operated and stopped until that time. Sonic velocity meter. As a result, since the charge accumulation in the capacitive element can be continued until just before the reception judgment, the charge accumulation amount of the capacitive element can be maximized, and the reception circuit is driven only by the capacitive element when the reception judgment is made. It is possible to further reduce the voltage change due to the power consumption of the circuit and measure the flow velocity with higher accuracy.

【0016】請求項6に係わる本発明は、容量性素子と
受信回路とを他に分岐しないようにした請求項1に係わ
る超音波流速計である。これにより容量性素子の蓄積電
荷をすべて受信回路に供して電圧変動を低減するととも
に、他の構成部分からノイズが迂回侵入しないようにで
き、高精度に流速を測定することができる。
The present invention according to claim 6 is the ultrasonic velocity meter according to claim 1, wherein the capacitive element and the receiving circuit are not branched. This makes it possible to supply all the accumulated charges of the capacitive element to the receiving circuit to reduce voltage fluctuations, prevent noise from detouring from other components, and measure the flow velocity with high accuracy.

【0017】[0017]

【発明の実施の形態】請求項1に係わる本発明におい
て、電圧変換回路は、電圧変動およびノイズの少ない電
池などの電源の電圧を昇圧して受信回路に供給する手段
を意味し、実施例ではチョッパ回路を用いるが他の手段
でもよい。また、容量性素子は電荷を蓄積する素子を意
味し、電圧変換回路の出力に接続して出力電圧を平滑す
るとともに電荷を蓄積し、電圧変換回路の動作を停止さ
せたのちは蓄積電荷により受信回路を駆動する電源とす
る。したがって、容量性素子の容量値は受信回路の駆動
に十分な大きさに実態に見合って決定できる。実施例で
はコンデンサを用いる。また、電源制御回路は上記電圧
変換回路の動作を制御して、動作開始または動作停止を
制御する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention according to claim 1, the voltage conversion circuit means a means for boosting the voltage of a power source such as a battery having less voltage fluctuation and noise and supplying the voltage to a receiving circuit. Although a chopper circuit is used, other means may be used. Also, a capacitive element means an element that accumulates electric charge, connects to the output of the voltage conversion circuit to smooth the output voltage, accumulates electric charge, stops the operation of the voltage conversion circuit, and then receives the accumulated electric charge. It is used as a power supply to drive the circuit. Therefore, the capacitance value of the capacitive element can be appropriately determined to be large enough to drive the receiving circuit. A capacitor is used in the embodiment. In addition, the power supply control circuit controls the operation of the voltage conversion circuit to control the start or stop of the operation.

【0018】また、送信開始信号を、送信開始時点で立
ち上がり、受信手段が受信検知処理を十分に完了できる
タイミングで立ち下がる矩形波とすることにより、その
立ち上がりで送信開始を指示でき、その立ち下がりで電
圧変換回路の再起動を指示できる。送信回路は送信開始
信号を入力した時点から所定時間だけ送信用超音波振動
子を駆動し、その所定時間幅の超音波を送出させる。受
信回路は受信用超音波振動子の受信出力を入力し、増幅
器により増幅したのち比較器により基準電圧値と比較
し、前記基準値に達した時点で受信検知信号を出力する
ものとする。また、制御部はマイクロコンピュータによ
るプログラム処理で実現される。
Further, by setting the transmission start signal to be a rectangular wave which rises at the start of transmission and falls at the timing when the receiving means can sufficiently complete the reception detection processing, the start of transmission can be instructed at the rise and the fall thereof. Can instruct to restart the voltage conversion circuit. The transmission circuit drives the ultrasonic transducer for transmission for a predetermined time from the time when the transmission start signal is input, and transmits the ultrasonic wave having the predetermined time width. The reception circuit inputs the reception output of the ultrasonic transducer for reception, amplifies it by an amplifier, compares it with a reference voltage value by a comparator, and outputs a reception detection signal when the reference value is reached. Further, the control unit is realized by program processing by a microcomputer.

【0019】請求項2に係わる本発明において、電源制
御回路は、制御部から送信開始信号を入力した時点で電
圧変換回路の動作を停止させ、容量性素子からの放電の
みで受信回路を駆動させる。
In the present invention according to claim 2, the power supply control circuit stops the operation of the voltage conversion circuit when the transmission start signal is input from the control unit, and drives the reception circuit only by discharging from the capacitive element. .

【0020】請求項3に係わる本発明において、電源制
御回路にタイマを設けて送信開始後の一定時間を計測
し、そのタイムアップで電圧変換回路の動作を停止させ
る。この一定時間は超音波が受信用超音波振動子に至る
伝播時間を想定し、その伝播時間より短く設定する。こ
れらの処理はマイクロコンピュータのプログラム処理で
実現できる。
In the present invention according to claim 3, a timer is provided in the power supply control circuit to measure a fixed time after the start of transmission, and the operation of the voltage conversion circuit is stopped when the time is up. This fixed time is set to be shorter than the propagation time assuming the propagation time of the ultrasonic waves to reach the ultrasonic transducer for reception. These processes can be realized by a microcomputer program process.

【0021】請求項4に係わる本発明において、電源制
御回路にメモリを設けて前回測定した伝播時間を保存す
るとともに、時計を設けて送信開始からの経過時間を計
測し、比較手段により経過時間を前回の伝播時間と比較
して、前回の伝播時間より僅かに短い経過時間に達した
時点で電圧変換回路の動作を停止させる。これらの処理
はマイクロコンピュータのプログラム処理で実現でき
る。
In the present invention according to claim 4, a memory is provided in the power supply control circuit to store the propagation time measured last time, a clock is provided to measure the elapsed time from the start of transmission, and the elapsed time is calculated by the comparing means. The operation of the voltage conversion circuit is stopped when an elapsed time slightly shorter than the previous propagation time is reached as compared with the previous propagation time. These processes can be realized by a microcomputer program process.

【0022】請求項5に係わる本発明において、電源制
御回路に受信検知を設け、受信回路の受信検知レベルよ
り小さいレベルで超音波の到来を検知し、そのタイミン
グで電圧変換回路の動作を停止させる。
In the present invention according to claim 5, the power supply control circuit is provided with reception detection, the arrival of ultrasonic waves is detected at a level lower than the reception detection level of the reception circuit, and the operation of the voltage conversion circuit is stopped at that timing. .

【0023】請求項6に係わる本発明において、容量性
素子から受信回路に至る電源線を他の回路に分岐しな
い。
In the present invention according to claim 6, the power supply line from the capacitive element to the receiving circuit is not branched to another circuit.

【0024】以下、実施例について説明する。Examples will be described below.

【0025】[0025]

【実施例】【Example】

(実施例1)以下、本発明の超音波流速計の実施例1に
ついて図面を参照しながら説明する。
(Embodiment 1) Hereinafter, Embodiment 1 of the ultrasonic velocity meter of the present invention will be described with reference to the drawings.

【0026】図1は本実施例の構成を示すブロック図で
ある。なお、図10と同じ構成要素には同一番号を付与
して説明を省略する。図において、送信用超音波振動子
4は制御部8から送信開始信号を入力した送信回路5に
よって駆動され、超音波を測定経路3に出力する。受信
用超音波振動子6は受信した超音波を電気信号に変換
し、受信出力として受信回路7に出力する。受信回路7
は受信出力を受け、受信判定信号を制御部8へ出力す
る。1は電池で構成した電源、2はチョッパ回路で構成
され、電源1の電圧を昇圧して出力する電圧変換回路、
12は電圧変換回路2の動作を制御する電源制御回路、
13は電圧変換回路2の出力電圧により電荷を蓄積する
コンデンサで構成した容量性素子である。
FIG. 1 is a block diagram showing the configuration of this embodiment. In addition, the same components as those in FIG. In the figure, the transmission ultrasonic transducer 4 is driven by the transmission circuit 5 which receives a transmission start signal from the control unit 8 and outputs ultrasonic waves to the measurement path 3. The receiving ultrasonic transducer 6 converts the received ultrasonic wave into an electric signal and outputs it as a reception output to the receiving circuit 7. Receiver circuit 7
Receives the reception output and outputs a reception determination signal to the control unit 8. Reference numeral 1 is a power supply composed of a battery, 2 is a chopper circuit, and a voltage conversion circuit for boosting the voltage of the power supply 1 and outputting the boosted voltage,
12 is a power supply control circuit for controlling the operation of the voltage conversion circuit 2,
Reference numeral 13 is a capacitive element composed of a capacitor for accumulating charges according to the output voltage of the voltage conversion circuit 2.

【0027】図2は本実施例における受信回路7の構成
を示すブロック図であり、図11に示した構成と同じで
ある。図に示したように、受信出力を増幅する増幅器9
と、増幅器9の出力と基準電圧10とを比較し、受信判
定を行う比較器11を備え、受信用超音波振動子の出力
が基準電圧値に達した時点で受信判定信号を出力する。
FIG. 2 is a block diagram showing the structure of the receiving circuit 7 in this embodiment, which is the same as the structure shown in FIG. As shown in the figure, an amplifier 9 for amplifying the received output
And a comparator 11 that compares the output of the amplifier 9 with the reference voltage 10 to perform reception determination, and outputs a reception determination signal when the output of the ultrasonic transducer for reception reaches the reference voltage value.

【0028】上記構成においてその動作を説明する。図
3は本実施例の動作を示すタイミングチャートである。
制御部8から送信開始信号を入力した送信回路5は一定
時間パルスを出力し、送信用超音波振動子4を駆動す
る。送信用超音波振動子4から送信した超音波は被測定
流体中を伝播し、t秒後に受信用超音波振動子6で受信
される。受信回路7は受信用超音波振動子6の受信出力
を増幅器9により増幅し、比較器11により基準電圧値
10と比較して前記制御部8および電源制御回路12に
受信判定信号を出力する。制御部8は送信開始信号を出
力してから受信判定信号を受けるまでの時間を測定して
伝播時間tを求め、(1)式を用いて流速を求める。
The operation of the above configuration will be described. FIG. 3 is a timing chart showing the operation of this embodiment.
The transmission circuit 5 that receives the transmission start signal from the control unit 8 outputs a pulse for a certain period of time to drive the transmission ultrasonic transducer 4. The ultrasonic wave transmitted from the transmitting ultrasonic transducer 4 propagates in the fluid to be measured and is received by the receiving ultrasonic transducer 6 after t seconds. The reception circuit 7 amplifies the reception output of the reception ultrasonic transducer 6 by the amplifier 9, compares it with the reference voltage value 10 by the comparator 11, and outputs a reception determination signal to the control unit 8 and the power supply control circuit 12. The control unit 8 measures the time from the output of the transmission start signal to the reception of the reception determination signal, obtains the propagation time t, and obtains the flow velocity using the equation (1).

【0029】上記動作において、電源制御回路12は、
制御部8から送信開始信号を入力するまでは電圧変換回
路2を動作させ、容量性素子13に電力を蓄積し、制御
部8から送信開始信号を入力すると電圧変換回路2の動
作を停止させる。つぎに、制御部8は受信回路7から受
信判定信号を入力すると送信開始信をオフとし、それに
対応して電源制御回路12は電圧変換回路2の動作を再
開させ、容量性素子13に電力を供給してつぎの測定に
備える。電圧変換回路2の停止期間中にも容量性素子1
3から受信回路7に電流が流れるので、その間に容量性
素子13の出力電圧は僅かに低下するが、容量性素子1
3の容量を受信回路7の消費電流に比べて十分大きく設
定することにより、電圧の低下はほとんど測定精度に影
響を与えることはない。
In the above operation, the power supply control circuit 12
The voltage conversion circuit 2 is operated until the transmission start signal is input from the control unit 8, electric power is accumulated in the capacitive element 13, and the operation of the voltage conversion circuit 2 is stopped when the transmission start signal is input from the control unit 8. Next, when the control unit 8 inputs the reception determination signal from the reception circuit 7, the transmission start signal is turned off, and in response to this, the power supply control circuit 12 restarts the operation of the voltage conversion circuit 2 to supply power to the capacitive element 13. Supply and prepare for the next measurement. Even when the voltage conversion circuit 2 is stopped, the capacitive element 1
Since a current flows from 3 to the receiving circuit 7, the output voltage of the capacitive element 13 slightly drops during that time.
By setting the capacitance of 3 to be sufficiently larger than the current consumption of the receiving circuit 7, the drop in voltage hardly affects the measurement accuracy.

【0030】以上のように、超音波受信時には電圧変換
回路2は停止しているのでノイズまたはリップルは発生
していない。また、電圧変換回路2の停止時に、容量性
素子13からの電力放出先は受信回路7のみとなってい
るので、容量性素子13の出力電圧変化は小さくできる
とともに、送信回路5または制御部8から電源ラインを
介して伝播するノイズを防止することができる。
As described above, since the voltage conversion circuit 2 is stopped at the time of ultrasonic wave reception, noise or ripple is not generated. Further, when the voltage conversion circuit 2 is stopped, the electric power is discharged from the capacitive element 13 to the receiving circuit 7 only, so that the change in the output voltage of the capacitive element 13 can be reduced and the transmitting circuit 5 or the control unit 8 can be used. Can be prevented from propagating through the power supply line.

【0031】(実施例2)以下、本発明の超音波流速計
の実施例2について図面を参照しながら説明する。
(Second Embodiment) A second embodiment of the ultrasonic velocity meter of the present invention will be described below with reference to the drawings.

【0032】図4は本実施例における電源制御回路12
の構成を示すブロック図である。本実施例が実施例1と
異なる点は、電源制御回路12がタイマ14を備え、制
御部8から送信開始信号を入力してから、一定時間経過
後に電圧変換回路2を停止させるようにしたことにあ
る。
FIG. 4 shows the power supply control circuit 12 in this embodiment.
FIG. 3 is a block diagram showing the configuration of FIG. The present embodiment is different from the first embodiment in that the power supply control circuit 12 includes a timer 14 and the voltage conversion circuit 2 is stopped after a lapse of a certain time after the transmission start signal is input from the control unit 8. It is in.

【0033】上記構成においてその動作を説明する。図
5は本実施例の動作を示すタイミングチャートである。
図に示したように、制御部8から送信開始信号を入力し
た送信回路5は一定時間パルスを出力して送信用超音波
振動子4を駆動し、また、制御部8から送信開始信号を
入力した電源制御回路12はタイマ14の動作を開始さ
せ、電圧変換回路2の動作を継続させる。つぎに、タイ
マ14が一定時間をカウントすると、その時点で電圧変
換回路2の動作を停止させる。タイマ14の設定時間
は、送信用超音波振動子4と受信用超音波振動子6との
間の最短の超音波伝播時間より僅かに短く設定してあ
る。したがって、受信回路7が超音波を受信する以前に
電圧変換回路2を確実に停止することができ、かつ、電
源変換回路2の動作停止時間を短くすることができる。
The operation of the above configuration will be described. FIG. 5 is a timing chart showing the operation of this embodiment.
As shown in the figure, the transmission circuit 5 that receives the transmission start signal from the control unit 8 outputs a pulse for a certain period of time to drive the ultrasonic transducer 4 for transmission, and also inputs the transmission start signal from the control unit 8. Then, the power supply control circuit 12 starts the operation of the timer 14 and continues the operation of the voltage conversion circuit 2. Next, when the timer 14 counts a certain time, the operation of the voltage conversion circuit 2 is stopped at that time. The set time of the timer 14 is set to be slightly shorter than the shortest ultrasonic wave propagation time between the transmitting ultrasonic transducer 4 and the receiving ultrasonic transducer 6. Therefore, the voltage conversion circuit 2 can be reliably stopped before the reception circuit 7 receives the ultrasonic wave, and the operation stop time of the power supply conversion circuit 2 can be shortened.

【0034】以上のように本実施例によれば、電圧変換
回路2の動作を受信回路7が超音波を受信する僅か前の
時点まで継続させることにより、容量性素子13の電圧
低下を低減でき、かつ受信回路7が超音波を受信する時
点では電圧変換回路2の動作を停止させているのでノイ
ズや電圧変動の影響を防止でき、さらにより高精度に測
定することができる。
As described above, according to this embodiment, the voltage drop of the capacitive element 13 can be reduced by continuing the operation of the voltage conversion circuit 2 until just before the reception circuit 7 receives the ultrasonic wave. Moreover, since the operation of the voltage conversion circuit 2 is stopped at the time when the reception circuit 7 receives the ultrasonic wave, the influence of noise and voltage fluctuation can be prevented, and the measurement can be performed with higher accuracy.

【0035】(実施例3)以下、本発明の超音波流速計
の実施例3について図面を参照しながら説明する。
(Embodiment 3) Hereinafter, Embodiment 3 of the ultrasonic velocity meter of the present invention will be described with reference to the drawings.

【0036】図6は本実施例における電源制御回路12
の構成を示すブロック図である。図において、15は測
定後に測定データを制御部8から受け取って記憶するメ
モリ、16は制御部8の送信開始信号を入力し、その後
の経過時間を測定する時計、17はメモリ15と時計1
6とを比較して、結果を電圧変換回路2に出力する比較
器である。本実施例が実施例2と異なる点は、測定開始
時点から電圧変換回路2の動作を継続させる時間を前回
の測定結果に基づいて決定するようにしたことにある。
FIG. 6 shows the power supply control circuit 12 in this embodiment.
FIG. 3 is a block diagram showing the configuration of FIG. In the figure, 15 is a memory for receiving and storing measured data from the control unit 8 after measurement, 16 is a clock for inputting a transmission start signal of the control unit 8 and measuring elapsed time thereafter, 17 is a memory 15 and a clock 1.
6 is a comparator which outputs the result to the voltage conversion circuit 2. The present embodiment is different from the second embodiment in that the time for continuing the operation of the voltage conversion circuit 2 from the measurement start time is determined based on the previous measurement result.

【0037】上記構成においてその動作を説明する。図
7は本実施例の動作を示すタイミングチャートである。
メモリ15は前回の測定データを記憶している。図に示
したように、制御部8から送信開始信号を入力した送信
回路5は一定時間パルスを出力して送信用超音波振動子
4を駆動し、また、制御部8から送信開始信号を入力し
た電源制御回路12は時計16の動作を開始させ、電圧
変換回路2の動作を継続させる。つぎに、比較器17に
より、時計16の経過時間とメモリ15に保存している
前回の測定結果、すなわち前回測定した超音波伝播時間
とを常に比較し、前回の測定結果より僅かに短い時間、
たとえば100μs速く電圧変換回路2を停止させる出
力を発生する。この場合、流速が変化する割合に対して
測定間隔を短く設定することにより、電圧変換回路2を
停止させるタイミングは流速に応じて変化し、電圧変換
回路2が停止する以前に受信回路7で受信出力を受ける
ことはない。
The operation of the above configuration will be described. FIG. 7 is a timing chart showing the operation of this embodiment.
The memory 15 stores the previous measurement data. As shown in the figure, the transmission circuit 5 that receives the transmission start signal from the control unit 8 outputs a pulse for a certain period of time to drive the ultrasonic transducer 4 for transmission, and also inputs the transmission start signal from the control unit 8. The power supply control circuit 12 starts the operation of the clock 16 and continues the operation of the voltage conversion circuit 2. Next, the comparator 17 constantly compares the elapsed time of the clock 16 with the previous measurement result stored in the memory 15, that is, the previously measured ultrasonic wave propagation time, and the time slightly shorter than the previous measurement result,
For example, an output for stopping the voltage conversion circuit 2 is generated 100 μs faster. In this case, by setting the measurement interval to be short with respect to the rate at which the flow velocity changes, the timing for stopping the voltage conversion circuit 2 changes according to the flow velocity, and the reception circuit 7 receives the voltage before the voltage conversion circuit 2 stops. It receives no output.

【0038】以上のように本実施例によれば、送信開始
後に電圧変換回路2の動作を継続させる時間を前回の測
定データに基づいて設定するので、流速の変化に対応し
て継続時間を設定でき、より高精度に測定することがで
きる。
As described above, according to this embodiment, since the time for which the operation of the voltage conversion circuit 2 is continued after the start of transmission is set based on the previous measurement data, the continuation time is set according to the change in the flow velocity. It is possible to measure with higher accuracy.

【0039】(実施例4)以下、本発明の超音波流速計
の実施例4について図面を参照しながら説明する。
(Embodiment 4) Hereinafter, Embodiment 4 of the ultrasonic velocity meter of the present invention will be described with reference to the drawings.

【0040】図8は本実施例における電源制御回路12
の構成を示すブロック図である。図において、本実施例
における電源制御回路12は、受信回路7を介して入力
する受信出力を増幅する増幅器18と、第2の基準電圧
19と、増幅器18の出力電圧を第2の基準電圧19と
比較して受信判定する比較器20とを備え、受信回路7
が受信判定する直前のタイミングを検知して電圧変換回
路2の動作を停止させるようにしている。
FIG. 8 shows the power supply control circuit 12 in this embodiment.
FIG. 3 is a block diagram showing the configuration of FIG. In the figure, the power supply control circuit 12 in this embodiment has an amplifier 18 that amplifies a reception output that is input via the reception circuit 7, a second reference voltage 19, and an output voltage of the amplifier 18 that is a second reference voltage 19. And a reception circuit 7 for determining reception by comparing
Is detecting the timing immediately before the reception determination is performed to stop the operation of the voltage conversion circuit 2.

【0041】上記構成においてその動作を説明する。図
9は本実施例の動作を示すタイミングチャートである。
図に示したように、受信出力は振幅が徐々に大きくなる
波形を備えており、第2の基準電圧を受信回路7におけ
る基準電圧10より低く設定することにより電源制御回
路12は受信回路7が受信判定信号を出力するよりも僅
かに速く受信判定を行い、そのタイミングで電圧変換回
路2の動作を停止させる。この動作では、実際に受信出
力を入力した初期段階で電圧変換回路2を確実に停止さ
せるため、電圧変換回路2は受信回路7が受信判定時に
動作していることはない。このため、流速の変化が測定
間隔に対して早くても、常に電圧変換回路2を停止させ
るタイミングを流速に応じて変化させることができるの
で、簡単な構成で広範囲の流速を精度よく測定すること
ができる。なお、上記第2の基準電圧19の設定値は増
幅器18の利得により必ずしも基準電圧10より低く設
定するとは限らないことは言うまでもない。
The operation of the above configuration will be described. FIG. 9 is a timing chart showing the operation of this embodiment.
As shown in the figure, the reception output has a waveform in which the amplitude gradually increases. By setting the second reference voltage lower than the reference voltage 10 in the reception circuit 7, the power supply control circuit 12 causes the reception circuit 7 to operate. The reception determination is performed slightly faster than the reception determination signal is output, and the operation of the voltage conversion circuit 2 is stopped at that timing. In this operation, the voltage conversion circuit 2 is surely stopped at the initial stage when the reception output is actually input, so that the voltage conversion circuit 2 does not operate when the reception circuit 7 is receiving. For this reason, even if the change in the flow velocity is earlier than the measurement interval, the timing for stopping the voltage conversion circuit 2 can always be changed according to the flow velocity, so that a wide range of flow velocity can be accurately measured with a simple configuration. You can Needless to say, the set value of the second reference voltage 19 is not always set lower than the reference voltage 10 due to the gain of the amplifier 18.

【0042】[0042]

【発明の効果】以上の説明から明らかなように、本発明
は、電源制御回路により少なくとも受信回路が受信判定
処理を行うときには電圧変換回路の動作を停止させるの
で、電圧変換回路が発生するノイズやリップルは受信タ
イミングを決定するときに発生せず、測定誤差を小さく
することができ、精度の高い超音波流速計を実現するこ
とができる。
As is apparent from the above description, according to the present invention, the operation of the voltage conversion circuit is stopped at least when the power supply control circuit performs the reception determination processing by the reception circuit. Ripple does not occur when determining the reception timing, the measurement error can be reduced, and a highly accurate ultrasonic velocity meter can be realized.

【0043】また、送信開始から一定時間経過した時点
で電圧変換回路の動作を停止させ、前記一定時間は、送
信用超音波振動子と前記受信用超音波振動子との間の最
短の超音波伝播時間より僅かに短く設定しているので、
前記電圧変換回路を停止してから超音波を受信するまで
の時間を短く設定することができ、容量性素子から受信
回路に供給する電力を少なくできるので、受信回路に供
給している電圧の低下を小さくすることができ、したが
って、より精度の高い超音波流速計を実現することがで
きる。また、容量性素子の容量値を小さく選定すること
もできる。
The operation of the voltage conversion circuit is stopped when a certain time has elapsed from the start of transmission, and the shortest ultrasonic wave between the ultrasonic transducer for transmission and the ultrasonic transducer for reception is kept for the certain time. Since it is set slightly shorter than the propagation time,
Since the time from stopping the voltage conversion circuit to receiving ultrasonic waves can be set short and the electric power supplied from the capacitive element to the receiving circuit can be reduced, the voltage supplied to the receiving circuit can be reduced. Can be made smaller, and thus a more accurate ultrasonic velocity meter can be realized. Also, the capacitance value of the capacitive element can be selected small.

【0044】また、前回に測定した伝播時間を記憶して
おき、送信開始から前回測定の伝播時間より僅かに短い
時間を経過した時点で電圧変換回路を停止することによ
り、測定間隔を流速の変化する時間割合に対して短く設
定でき、電圧変換回路を停止させるタイミングを流速に
応じて変化させることができるので、より広範囲の流速
について精度よく測定することができる。
Further, the propagation time measured last time is stored, and the voltage conversion circuit is stopped when a time slightly shorter than the propagation time measured last time from the start of transmission, so that the measurement interval is changed. Since it can be set shorter than the time ratio and the timing for stopping the voltage conversion circuit can be changed according to the flow velocity, it is possible to accurately measure a wider range of flow velocity.

【0045】また、電源制御回路は、受信用超音波振動
子から受信出力を受けてから、受信回路が受信判定信号
を出力するよりも早く受信判定を行って、そのタイミン
グで電圧変換回路を停止させ、受信出力を入力した初期
段階で前記電圧変換回路を確実に停止させるので、流速
の変化が測定間隔に対して早くても、前記電圧変換回路
を停止させるタイミングを流速に応じて変化させること
ができ、簡単な構成で広範囲の流速を精度よく測定する
ことができる。
Further, the power supply control circuit receives the reception output from the ultrasonic transducer for reception, makes a reception judgment earlier than the reception circuit outputs the reception judgment signal, and stops the voltage conversion circuit at that timing. Since the voltage conversion circuit is surely stopped at the initial stage when the reception output is input, the timing of stopping the voltage conversion circuit can be changed according to the flow speed even if the change of the flow speed is earlier than the measurement interval. Therefore, a wide range of flow velocity can be accurately measured with a simple configuration.

【0046】また、前記容量性素子と受信回路間の接続
を他へ分岐しない経路で構成とすることにより、電圧変
換回路が停止時に、測定に影響する回路動作を変化させ
ることなく前記容量性素子からの電力放出を最小に抑制
することができるので、容量性素子の容量を小さくする
ことができる。また、送信回路または制御部から電源ラ
インを通じて伝播するノイズを除去することができる、
ノイズに強く安価で高精度な超音波流速計を実現するこ
とができる。
Further, by configuring the connection between the capacitive element and the receiving circuit with a path that does not branch to another, when the voltage conversion circuit is stopped, the capacitive element can be operated without changing the circuit operation that affects the measurement. Since it is possible to suppress the electric power discharge from the capacitor to the minimum, it is possible to reduce the capacitance of the capacitive element. Further, it is possible to remove noise propagating from the transmission circuit or the control unit through the power supply line,
It is possible to realize an ultrasonic velocity meter that is resistant to noise, inexpensive, and highly accurate.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の超音波流速計の実施例1の構成を示す
ブロック図
FIG. 1 is a block diagram showing a configuration of a first embodiment of an ultrasonic velocity meter of the present invention.

【図2】同実施例1における受信回路の構成を示すブロ
ック図
FIG. 2 is a block diagram showing a configuration of a receiving circuit according to the first embodiment.

【図3】同実施例1の動作を示すタイミングチャートFIG. 3 is a timing chart showing the operation of the first embodiment.

【図4】本発明の超音波流速計の実施例2における電源
制御回路の構成を示すブロック図
FIG. 4 is a block diagram showing the configuration of a power supply control circuit in Embodiment 2 of the ultrasonic velocity meter of the present invention.

【図5】同実施例2の動作を示すタイミングチャートFIG. 5 is a timing chart showing the operation of the second embodiment.

【図6】本発明の超音波流速計の実施例3における電源
制御回路の構成を示すブロック図
FIG. 6 is a block diagram showing the configuration of a power supply control circuit in Embodiment 3 of the ultrasonic velocity meter of the present invention.

【図7】同実施例3の動作を示すタイミングチャートFIG. 7 is a timing chart showing the operation of the third embodiment.

【図8】本発明の超音波流速計の実施例4における電源
制御回路の構成を示すブロック図
FIG. 8 is a block diagram showing a configuration of a power supply control circuit in Embodiment 4 of the ultrasonic velocity meter of the present invention.

【図9】同実施例4の動作を示すタイミングチャートFIG. 9 is a timing chart showing the operation of the fourth embodiment.

【図10】従来の超音波流速計の構成を示すブロック図FIG. 10 is a block diagram showing a configuration of a conventional ultrasonic velocity meter.

【図11】同流速計における受信回路の構成を示すブロ
ック図
FIG. 11 is a block diagram showing a configuration of a receiving circuit in the same velocity meter.

【図12】受信用超音波振動子の受信出力を示す波形図FIG. 12 is a waveform chart showing the reception output of the ultrasonic transducer for reception.

【符号の説明】[Explanation of symbols]

1 電池(電源) 2 電圧変換回路 3 測定経路 4 送信用超音波振動子 5 送信回路 6 受信用超音波振動子 7 受信回路 8 制御部 9 増幅器 10 基準電圧 11 比較器 12 電源制御回路 13 容量性素子 14 タイマ 15 メモリ 16 時計 17 比較器 18 増幅器 19 第2の基準電圧 20 比較器 DESCRIPTION OF SYMBOLS 1 Battery (power supply) 2 Voltage conversion circuit 3 Measurement path 4 Transmission ultrasonic transducer 5 Transmission circuit 6 Reception ultrasonic transducer 7 Reception circuit 8 Controller 9 Amplifier 10 Reference voltage 11 Comparator 12 Power control circuit 13 Capacitive Element 14 Timer 15 Memory 16 Clock 17 Comparator 18 Amplifier 19 Second Reference Voltage 20 Comparator

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 電源と、前記電源の出力電圧を変換する
電圧変換回路と、前記電圧変換回路の出力電圧を平滑し
ながら電荷を蓄積する容量性素子と、超音波を送信する
送信用超音波振動子と、前記送信用超音波振動子を駆動
する送信回路と、前記送信用超音波振動子から測定経路
を経由して到達した超音波を受信して受信出力を出力す
る受信用超音波振動子と、前記電圧変換回路の出力を電
源とし、前記受信用超音波振動子の受信出力を入力して
受信判定処理により受信判定信号を出力する受信回路
と、前記電圧変換回路の動作を制御する電源制御回路
と、前記送信用超音波振動子が出力した超音波が前記受
信用超音波振動子に到達する伝播時間を、前記送信開始
信号の出力時点から前記受信判定信号の入力時点までの
経過時間に基づいて計測し、その伝播時間と前記測定経
路の経路長とにより前記測定経路における流体の流速を
測定するとともに全体の動作を制御する制御部とを備
え、前記電源制御回路は前記制御部から前記送信開始信
号を入力したのち、少なくとも前記受信回路が受信判定
処理を実行するときには前記電圧変換回路の動作を停止
させ、前記容量性素子の蓄積電荷により前記受信回路を
駆動するようにした超音波流速計。
1. A power supply, a voltage conversion circuit that converts an output voltage of the power supply, a capacitive element that accumulates charges while smoothing an output voltage of the voltage conversion circuit, and a transmission ultrasonic wave that transmits an ultrasonic wave. A transducer, a transmission circuit that drives the transmission ultrasonic transducer, and a reception ultrasonic vibration that receives an ultrasonic wave that has arrived from the transmission ultrasonic transducer via a measurement path and outputs a reception output. And a receiver circuit that uses the output of the voltage conversion circuit as a power source, receives the reception output of the ultrasonic transducer for reception, and outputs a reception determination signal by reception determination processing, and controls the operation of the voltage conversion circuit. The power supply control circuit and the propagation time of the ultrasonic waves output by the ultrasonic transducer for transmission reaching the ultrasonic transducer for reception are the elapsed times from the output time of the transmission start signal to the input time of the reception determination signal. Measured based on time However, the power supply control circuit includes a control unit that controls the overall operation while measuring the flow velocity of the fluid in the measurement path according to the propagation time and the path length of the measurement path, and the power supply control circuit includes the transmission start signal from the control unit. After the input, the operation of the voltage conversion circuit is stopped at least when the reception circuit executes the reception determination process, and the reception circuit is driven by the electric charge accumulated in the capacitive element.
【請求項2】 電源制御回路は、制御部から送信開始信
号を入力した時点で電圧変換回路の動作を停止するよう
に制御する請求項1記載の超音波流速計。
2. The ultrasonic velocity meter according to claim 1, wherein the power supply control circuit controls so as to stop the operation of the voltage conversion circuit at the time point when the transmission start signal is input from the control unit.
【請求項3】 電源制御回路は、制御部から送信開始信
号を入力したときから一定時間経過した時点で電圧変換
回路の動作を停止させるように制御する請求項1記載の
超音波流速計。
3. The ultrasonic velocity meter according to claim 1, wherein the power supply control circuit controls so as to stop the operation of the voltage conversion circuit at a time point when a predetermined time has elapsed since the transmission start signal was input from the control unit.
【請求項4】 電源制御回路は、前回測定した伝播時間
を保存し、制御部が送信開始信号を出力してから前記保
存した伝播時間よりも僅かに短い時間を経過した時点で
電圧変換回路の動作を停止させるように制御する請求項
1記載の超音波流速計。
4. The power supply control circuit stores the propagation time measured last time, and when a time slightly shorter than the stored propagation time elapses after the control unit outputs a transmission start signal, The ultrasonic flowmeter according to claim 1, which is controlled to stop its operation.
【請求項5】 電源制御回路は、受信回路が受信用超音
波振動子の受信出力を受信判定するレベルよりも低いレ
ベルにより受信判定し、その時点で電圧変換回路の動作
を停止するように制御する超音波流速計。
5. The power supply control circuit controls so that the reception circuit determines the reception output of the reception ultrasonic transducer at a level lower than the reception determination level, and stops the operation of the voltage conversion circuit at that time. Ultrasonic current meter.
【請求項6】 容量性素子と受信回路間を他へ分岐しな
い経路で構成した請求項1〜5のいずれか1項記載の超
音波流速計。
6. The ultrasonic velocity meter according to claim 1, wherein a path between the capacitive element and the receiving circuit does not branch to another.
JP14405296A 1996-06-06 1996-06-06 Ultrasonic current meter Expired - Fee Related JP3689977B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14405296A JP3689977B2 (en) 1996-06-06 1996-06-06 Ultrasonic current meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14405296A JP3689977B2 (en) 1996-06-06 1996-06-06 Ultrasonic current meter

Publications (2)

Publication Number Publication Date
JPH09325059A true JPH09325059A (en) 1997-12-16
JP3689977B2 JP3689977B2 (en) 2005-08-31

Family

ID=15353204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14405296A Expired - Fee Related JP3689977B2 (en) 1996-06-06 1996-06-06 Ultrasonic current meter

Country Status (1)

Country Link
JP (1) JP3689977B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002365108A (en) * 2001-06-11 2002-12-18 Aichi Tokei Denki Co Ltd Ultrasonic flowmeter
JP2004333428A (en) * 2003-05-12 2004-11-25 Matsushita Electric Ind Co Ltd Fluid flow measuring device
US7308283B2 (en) 2004-07-01 2007-12-11 Nec Corporation Portable radio terminal, antenna selector control method for use in portable radio terminal, and antenna selector control program
US8748839B2 (en) 2011-10-03 2014-06-10 Konica Minolta Medical & Graphic, Inc. Radiation image capturing system and radiation image capturing apparatus
JP2016206127A (en) * 2015-04-28 2016-12-08 横河電機株式会社 Ultrasonic flowmeter

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002365108A (en) * 2001-06-11 2002-12-18 Aichi Tokei Denki Co Ltd Ultrasonic flowmeter
JP2004333428A (en) * 2003-05-12 2004-11-25 Matsushita Electric Ind Co Ltd Fluid flow measuring device
JP4649822B2 (en) * 2003-05-12 2011-03-16 パナソニック株式会社 Fluid flow measuring device
US7308283B2 (en) 2004-07-01 2007-12-11 Nec Corporation Portable radio terminal, antenna selector control method for use in portable radio terminal, and antenna selector control program
US8748839B2 (en) 2011-10-03 2014-06-10 Konica Minolta Medical & Graphic, Inc. Radiation image capturing system and radiation image capturing apparatus
JP2016206127A (en) * 2015-04-28 2016-12-08 横河電機株式会社 Ultrasonic flowmeter

Also Published As

Publication number Publication date
JP3689977B2 (en) 2005-08-31

Similar Documents

Publication Publication Date Title
KR101269284B1 (en) Method of ultrasonic flow measurement and ultrasonic flow meter
US4183244A (en) Ultrasonic flow rate measuring apparatus
US6941821B2 (en) Ultrasonic flowmeter including stable flow rate calculation means based on instantaneous flow rate
US6606916B2 (en) Timed window ultrasonic gas meter with nose cone
CA2233974A1 (en) Digital speed determination in ultrasonic flow measurements
EP1193476A1 (en) Flow rate measuring device
JP3689977B2 (en) Ultrasonic current meter
KR20110095272A (en) Method for determining the starting instant of a periodically oscillating signal response
KR100450537B1 (en) Parts feeder and method of controlling the same
JPH1151725A (en) Ultrasonic flowmeter
JP2003014515A (en) Ultrasonic flowmeter
RU2289792C2 (en) Device for measuring volumetric or mass flow rate
JPH1151724A (en) Ultrasonic current meter
JPH09133562A (en) Ultrasonic flowmeter
JPH09304139A (en) Measuring apparatus for flow rate
JP4735005B2 (en) Flow measuring device
JP4649822B2 (en) Fluid flow measuring device
JP3443659B2 (en) Flow measurement device
JP2002365108A (en) Ultrasonic flowmeter
JP4686848B2 (en) Flow measuring device
JP2002296085A (en) Ultrasonic flowmeter
JP3689982B2 (en) Ultrasonic current meter
JP3651110B2 (en) Ultrasonic current meter
JPH1019619A (en) Method of ultrasonic measuring flow velocity
JP5556034B2 (en) Flow velocity or flow rate measuring device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050606

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080624

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130624

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees