JPH09318800A - Multilayer film mirror for x-ray - Google Patents

Multilayer film mirror for x-ray

Info

Publication number
JPH09318800A
JPH09318800A JP8133161A JP13316196A JPH09318800A JP H09318800 A JPH09318800 A JP H09318800A JP 8133161 A JP8133161 A JP 8133161A JP 13316196 A JP13316196 A JP 13316196A JP H09318800 A JPH09318800 A JP H09318800A
Authority
JP
Japan
Prior art keywords
film
thin film
multilayer
thin
ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8133161A
Other languages
Japanese (ja)
Inventor
Keiji Nishimoto
圭司 西本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aviation Electronics Industry Ltd
Original Assignee
Japan Aviation Electronics Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aviation Electronics Industry Ltd filed Critical Japan Aviation Electronics Industry Ltd
Priority to JP8133161A priority Critical patent/JPH09318800A/en
Publication of JPH09318800A publication Critical patent/JPH09318800A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To extremely reduce the coarseness of a thin film and improve the reflection factor of a multifilm layer by epitaxial-growing an Si alloy and Si by turns on a single crystal substrate and forming a superlattice thin film. SOLUTION: On a substrate 1 of a single crystal (Ge or Si), a very thin cryastal layer 2 of Si and a very thin crystal layer 3 of an Si alloy are epitaxial-growing by turns with a thin film forming method such as an MBE method. By this, tens of layers are piled to form a superlattice multilayer film. The heteroepitaxy on the single crystal substrate is limited by the kind of material and so multilayer film formation with combination of a variety of materials is not possble. However, an Si-Ge alloy thin film can realize heteroepitaxy for a substrate 1 of Si or Ge. By epitaxial-growing the mutlilayer film, thin film density can be made high and the reflection factor for X-ray is improved. Furthermore by constituting the multilayer film with a crystal thin film, the multilayer film is chemically stabilized, thermal diffusion at the mutlilayer film boundary is suppressed and so durability is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、X線多層膜反射
鏡に関し、特に、Si合金の極めて薄い結晶層とSiの
極めて薄い結晶層を交互にエピタキシャル成長させて形
成した超格子多層膜である結晶薄膜により構成されるX
線多層膜反射鏡に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an X-ray multilayer mirror, and more particularly to a crystal that is a superlattice multilayer film formed by alternately epitaxially growing an extremely thin crystal layer of Si alloy and an extremely thin crystal layer of Si. X composed of thin film
The present invention relates to a line multilayer film reflecting mirror.

【0002】[0002]

【従来の技術】X線用多層膜反射鏡は、屈折率の相異な
る材料より成る薄膜を基板上に交互に積層形成し、その
人工格子によるブラック回折を利用してX線を反射させ
るものである。特に、硬X線用多層膜反射鏡、高入射角
用多層膜反射鏡は多層膜の周期長が数nm程度と非常に
短くなり、薄膜の島状成長により連続膜を形成すること
が難しく、薄膜の粗さを小さくすることが困難であっ
た。従って、得られる反射率は理論値と比較して非常に
低いものとなる。
2. Description of the Related Art An X-ray multilayer mirror is one in which thin films made of materials having different refractive indexes are alternately laminated on a substrate, and X-rays are reflected by utilizing black diffraction by an artificial lattice of the thin films. is there. In particular, the multilayer mirror for hard X-rays and the multilayer mirror for high incidence angles have a very short cycle length of a few nm, which makes it difficult to form a continuous film due to island-shaped growth of a thin film. It was difficult to reduce the roughness of the thin film. Therefore, the obtained reflectance is very low compared to the theoretical value.

【0003】多層膜反射鏡は、通常、アモルファス薄膜
或は多結晶薄膜により構成される。波長0.01nm近
傍の多層膜反射鏡は、屈折率の相異なる材料として、例
えばW/B4 Cを使用して構成され、入射角が0.19
度であっても多層膜の周期長は1.5nmと非常に薄く
なる。この波長領域においては、以上の理由から連続膜
の作製は難しく、また蒸着法では薄膜の密度を上げるこ
とが困難であるため、イオンビームスパッタ法、RFス
パッタ法或はこれらを応用したイオンビームアシスト成
膜法により作製されている。しかし、この様な成膜法を
使用しても連続膜形成は難しく、薄膜の粗さが大きくな
て高反射率の多層膜反射鏡を作製することは困難であっ
た。
The multilayer mirror is usually composed of an amorphous thin film or a polycrystalline thin film. The multilayer-film reflective mirror having a wavelength of about 0.01 nm is formed by using, for example, W / B 4 C as a material having different refractive indexes, and has an incident angle of 0.19.
The cycle length of the multilayer film is as thin as 1.5 nm even in degrees. In this wavelength region, it is difficult to form a continuous film for the above reasons, and it is difficult to increase the density of the thin film by the vapor deposition method. Therefore, the ion beam sputtering method, the RF sputtering method, or the ion beam assist method using these methods is used. It is manufactured by a film forming method. However, even if such a film forming method is used, it is difficult to form a continuous film, and it is difficult to manufacture a multi-layer film reflecting mirror having a high roughness because the thin film has a large roughness.

【0004】また、X線用の多層膜反射鏡は、膜を構成
する物質の光学的な性質に着目してW、Moその他の重
金属元素とB、Cその他の軽元素の組み合わせにより構
成される。しかし、この組み合わせにより金属薄膜を形
成しようとすると、多結晶になり易く、薄膜の粗さの増
加を招来する。また、この金属層と軽元素層の界面にお
いて両者間に反応が起こり、拡散層が形成されて反射率
の低下を来す。拡散は熱的にも促進されるので、X線多
層膜反射鏡の耐久性にも問題があった。
Further, the multilayer mirror for X-rays is composed of a combination of W, Mo and other heavy metal elements and B, C and other light elements, paying attention to the optical properties of the materials constituting the film. . However, if an attempt is made to form a metal thin film by this combination, the metal thin film is likely to become polycrystalline, which causes an increase in the roughness of the thin film. In addition, a reaction occurs between the metal layer and the light element layer at the interface between them, and a diffusion layer is formed to reduce the reflectance. Since the diffusion is also thermally promoted, there is a problem in the durability of the X-ray multilayer mirror.

【0005】[0005]

【発明が解決しようとする課題】この発明は、上述の問
題を解消したX線多層膜反射鏡を提供するものである。
SUMMARY OF THE INVENTION The present invention provides an X-ray multilayer mirror which solves the above problems.

【0006】[0006]

【課題を解決するための手段】Si合金とSiより成る
超格子多層膜である結晶薄膜により構成されるX線多層
膜反射鏡を構成した。そして、Si合金はSi−Ge、
Si−Fe、或はSi−SnであるX線多層膜反射鏡を
構成した。
An X-ray multi-layer film reflecting mirror constituted by a crystal thin film which is a super lattice multi-layer film made of Si alloy and Si was constructed. And Si alloy is Si-Ge,
An X-ray multilayer mirror made of Si-Fe or Si-Sn was constructed.

【0007】[0007]

【発明の実施の形態】X線多層膜反射鏡は、通常、アモ
ルファス薄膜或は多結晶薄膜を積層して構成されるので
あるが、この発明は、単結晶基板上にSi合金とSiを
交互にエピタキシャル成長させ、全体として超格子薄膜
を形成し、これをX線多層膜反射鏡として使用するもの
である。
BEST MODE FOR CARRYING OUT THE INVENTION An X-ray multilayer mirror is usually constructed by laminating an amorphous thin film or a polycrystalline thin film, but in the present invention, a Si alloy and Si are alternated on a single crystal substrate. Is epitaxially grown to form a superlattice thin film as a whole, and this is used as an X-ray multilayer mirror.

【0008】[0008]

【実施例】この発明の実施例を図1ないし図5を参照し
て説明する。この発明は、Si合金薄膜とSi薄膜によ
り構成される超格子多層膜をX線多層膜反射鏡として使
用するものである。X線多層膜反射鏡の構成を示す図1
を参照して説明するに、単結晶Ge基板或は単結晶Si
基板1上に、Si合金とSiとをMBE法、CVD法そ
の他の薄膜形成方法により、Siの極めて薄い結晶層2
とSi合金の極めて薄い結晶層3とを交互にエピタキシ
ャル成長させて合計数10層積層することにより超格子
多層膜を形成する。これにより、波長が0.01nm、
入射角が0.19度の多層膜反射鏡が形成される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIGS. This invention uses a superlattice multilayer film composed of a Si alloy thin film and a Si thin film as an X-ray multilayer film reflecting mirror. FIG. 1 showing the structure of an X-ray multilayer mirror
, Single crystal Ge substrate or single crystal Si
An extremely thin crystalline layer 2 of Si is formed on the substrate 1 by a MBE method, a CVD method, or another thin film forming method of Si alloy and Si.
And a very thin crystal layer 3 of Si alloy are alternately epitaxially grown and a total of several tens of layers are laminated to form a superlattice multilayer film. As a result, the wavelength is 0.01 nm,
A multilayer-film reflective mirror having an incident angle of 0.19 degrees is formed.

【0009】図2は、Si基板1上に薄膜の粗さがrm
sで0nmの薄膜で形成したSi0. 5 Ge0.5 /Siを
51層積層したこの発明の多層膜反射鏡の反射率を実線
で示し、W/B4 Cを51層積層した多層膜反射鏡の反
射率を点線で示す。薄膜の粗さがrmsで0nmである
場合、W/B4 C多層膜反射鏡の方がこの発明の多層膜
反射鏡と比較して反射率は高いが、このW/B4 C多層
膜の周期長は1.5nmと非常に薄くなり、連続膜形成
或は平坦膜の形成は困難である。
In FIG. 2, the roughness of the thin film on the Si substrate 1 is rm.
shows the reflectivity of the multilayer mirror of the present invention that Si 0. 5 Ge 0.5 / Si 51 layer laminate was formed by a thin film of 0nm with s by the solid line, W / B 4 multilayer mirror C was 51 layer laminate The reflectance is shown by the dotted line. If the roughness of the thin film is a 0nm in rms, who W / B 4 C multilayer reflector is the reflectance as compared to the multilayer reflector is higher of the present invention, the W / B 4 C multilayer film The period length is as thin as 1.5 nm, which makes it difficult to form a continuous film or a flat film.

【0010】図3は波長0.01nm、入射角0.19
度用に形成したX線多層膜反射鏡の反射率を示す図であ
り、点線は薄膜の粗さがrmsで 0.5nmのW/B
4 Cを51層積層したものの理論反射率を示し、実線は
薄膜の粗さがrmsで0nmのSi0.5 Ge0.5 /Si
を51層積層したものの理論反射率を示す。W/B4
多層膜の薄膜の粗さがrmsで0.5nmになると反射
率は大きく低下する。これに対して、Si0.5 Ge0.5
/Si多層膜は薄膜の粗さを十分に小さくすることがで
きるので、逆に反射率はW/B4 C多層膜と比較してよ
り高くなる。
FIG. 3 shows a wavelength of 0.01 nm and an incident angle of 0.19.
It is a figure which shows the reflectance of the X-ray multilayer-film reflective mirror formed for the purpose, and the dotted line is W / B of 0.5 nm in roughness of a thin film at rms.
The theoretical reflectance of 51 layers of 4 C is shown. The solid line shows the thin film roughness rms of 0 nm Si 0.5 Ge 0.5 / Si.
The theoretical reflectance of a stack of 51 layers is shown. W / B 4 C
When the roughness of the thin film of the multilayer film is 0.5 nm in rms, the reflectance is significantly reduced. On the other hand, Si 0.5 Ge 0.5
Since the / Si multilayer film can sufficiently reduce the roughness of the thin film, the reflectance is higher than that of the W / B 4 C multilayer film.

【0011】単結晶基板上のヘテロエピタキシーは材料
の種類に制限があって、様々な材料の組み合わせの多層
膜形成は不可能であるが、Si−Ge合金薄膜は、Si
基板或はGe基板に対してヘテロエピタキシーを実現す
ることができる。また、Si−Ge薄膜はGeの組成比
に起因してエピタキシャルの臨界膜厚に制限があるが、
X線多層膜反射鏡は周期長が数nm程度であるのでエピ
タキシーに対する問題は殆どない。一般に、Geの組成
比が小さい程エピタキシーは容易であるが、Geの組成
比を変えても、この波長の反射率には殆ど差は生じない
ことは図4に示される通りである。Si−Geの状態図
を図5に示すが、これは完全固溶の物質であるのでGe
の組成比を或る程度自由に変えることができ、従って、
容易に多層膜反射鏡を作製することができる。
Heteroepitaxy on a single crystal substrate is limited in the kinds of materials, and it is impossible to form a multilayer film of a combination of various materials. However, a Si-Ge alloy thin film is made of Si.
Heteroepitaxy can be realized on a substrate or a Ge substrate. Further, the Si-Ge thin film has a limit on the epitaxial critical film thickness due to the composition ratio of Ge,
Since the X-ray multilayer mirror has a period length of about several nm, there is almost no problem with epitaxy. In general, the smaller the composition ratio of Ge, the easier the epitaxy. However, even if the composition ratio of Ge is changed, there is almost no difference in the reflectance at this wavelength, as shown in FIG. The phase diagram of Si-Ge is shown in Fig. 5. Since this is a completely solid solution substance, Ge
The composition ratio of can be changed to some extent freely, and
A multilayer-film reflective mirror can be easily manufactured.

【0012】以上の説明においては、Si合金としてS
i−Geが採用されているが、Si−Fe、Si−Sn
もSi基板或はGe基板に対するヘテロエピタキシーを
実現することができる。結晶薄膜とすることにより得ら
れる多層薄膜の密度もバルクの密度と同等であり、原子
間の結合もアモルファス、多結晶よりも強固であること
から層間の拡散は起こり難く、熱的にも安定である。従
って、従来から使用されている重金属元素と軽元素とを
交互に積層形成した多層膜反射鏡と比較して耐久性も向
上する。
In the above description, S is used as the Si alloy.
i-Ge is adopted, but Si-Fe, Si-Sn
Can also realize heteroepitaxy for a Si substrate or a Ge substrate. The density of the multilayer thin film obtained by using a crystalline thin film is equivalent to that of the bulk, and the bonds between atoms are stronger than amorphous and polycrystalline, so that diffusion between layers is unlikely to occur and it is thermally stable. is there. Therefore, the durability is also improved as compared with the conventional multi-layer film reflecting mirror in which the heavy metal element and the light element are alternately laminated.

【0013】[0013]

【発明の効果】以上の通りであって、この発明は、単結
晶基板上にSi合金とSiを交互にエピタキシャル成長
させ、全体として超格子薄膜を形成し、これをX線多層
膜反射鏡とするものであり、数nm以下の薄膜でも連続
膜形成することができる。従って、薄膜の粗さを極力小
さくすることができ、これは多層膜の反射率の向上につ
ながる。
As described above, according to the present invention, Si alloys and Si are alternately epitaxially grown on a single crystal substrate to form a superlattice thin film as a whole, which is used as an X-ray multilayer mirror. However, a continuous film can be formed even with a thin film having a thickness of several nm or less. Therefore, the roughness of the thin film can be made as small as possible, which leads to the improvement of the reflectance of the multilayer film.

【0014】そして、多層膜をエピタキシャル成長せし
めることにより薄膜の密度を高くすることができ、これ
はX線の反射率の向上につながる。また、極薄領域で連
続膜の作製をすることができることにより、硬X線、高
入射角用の多層膜反射鏡の作製をすることができること
となる。更に、結晶薄膜により多層膜を構成することに
より多層膜が化学的に安定になるので、多層膜界面の拡
散、熱的な拡散を抑制することができこととなり、これ
は多層膜の耐久性の向上につながる。
The density of the thin film can be increased by epitaxially growing the multi-layer film, which leads to improvement of the X-ray reflectance. Moreover, since a continuous film can be manufactured in an extremely thin region, a multilayer film reflecting mirror for hard X-rays and high incident angles can be manufactured. Furthermore, since the multilayer film is chemically stable by forming the multilayer film with the crystalline thin film, it is possible to suppress the diffusion and thermal diffusion at the interface of the multilayer film. Leads to improvement.

【図面の簡単な説明】[Brief description of drawings]

【図1】X線多層膜反射鏡の構成を示す図である。FIG. 1 is a diagram showing a configuration of an X-ray multilayer mirror.

【図2】X線多層膜反射鏡の反射率を示す図であり、点
線は薄膜の粗さがrmsで0nmのW/B4 Cを51層
積層したものの理論反射率を示し、実線は薄膜の粗さが
rmsで0nmのSi0.5 Ge0.5 /Siを51層積層
したものの理論反射率を示す。
FIG. 2 is a diagram showing the reflectance of an X-ray multilayer mirror, where the dotted line shows the theoretical reflectance of 51 layers of 0 / nm W / B 4 C having a roughness of rms, and the solid line shows the thin film. Shows the theoretical reflectance of 51 layers of Si 0.5 Ge 0.5 / Si having a roughness of rms of 0 nm.

【図3】X線多層膜反射鏡の反射率を示す図であり、点
線は薄膜の粗さがrmsで 0.5nmのW/B4 Cを
51層積層したものの理論反射率を示し、実線は薄膜の
粗さがrmsで0nmのSi0.5 Ge0.5 /Siを51
層積層したものの理論反射率を示す。
FIG. 3 is a diagram showing a reflectance of an X-ray multilayer film reflecting mirror, and a dotted line shows a theoretical reflectance of 51 layers of W / B 4 C having a roughness of rms of 0.5 nm and 0.5 nm, and a solid line. Is a thin film with a roughness of rms of 0 nm of Si 0.5 Ge 0.5 / Si 51
The theoretical reflectance of the layered product is shown.

【図4】X線多層膜反射鏡の反射率を示す図であり、点
線は薄膜の粗さがrmsで0nmのSi0.5 Ge0.5
Siを51層積層したものの理論反射率を示し、実線は
薄膜の粗さがrmsで0nmのSi0.2 Ge0.8 /Si
を51層積層したものの理論反射率を示す。
FIG. 4 is a graph showing the reflectivity of an X-ray multilayer mirror, where the dotted line shows Si 0.5 Ge 0.5 / 0 when the thin film has a roughness of rms of 0 nm.
The theoretical reflectance of a stack of 51 layers of Si is shown. The solid line is the Si 0.2 Ge 0.8 / Si film whose roughness is 0 nm in rms.
The theoretical reflectance of a stack of 51 layers is shown.

【図5】Si−Geの状態図である。FIG. 5 is a state diagram of Si-Ge.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Si合金とSiより成る超格子多層膜で
ある結晶薄膜により構成されることを特徴とするX線多
層膜反射鏡。
1. An X-ray multilayer mirror comprising a crystalline thin film which is a superlattice multilayer film made of Si alloy and Si.
【請求項2】 請求項1に記載されるX線多層膜反射鏡
において、 Si合金はSi−Ge、Si−Fe、或はSi−Snで
あることを特徴とするX線多層膜反射鏡。
2. The X-ray multilayer film reflecting mirror according to claim 1, wherein the Si alloy is Si—Ge, Si—Fe, or Si—Sn.
JP8133161A 1996-05-28 1996-05-28 Multilayer film mirror for x-ray Pending JPH09318800A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8133161A JPH09318800A (en) 1996-05-28 1996-05-28 Multilayer film mirror for x-ray

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8133161A JPH09318800A (en) 1996-05-28 1996-05-28 Multilayer film mirror for x-ray

Publications (1)

Publication Number Publication Date
JPH09318800A true JPH09318800A (en) 1997-12-12

Family

ID=15098126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8133161A Pending JPH09318800A (en) 1996-05-28 1996-05-28 Multilayer film mirror for x-ray

Country Status (1)

Country Link
JP (1) JPH09318800A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000003400A1 (en) * 1998-07-08 2000-01-20 Carl Zeiss SiO2 COATED MIRROR SUBSTRATE FOR EUV

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000003400A1 (en) * 1998-07-08 2000-01-20 Carl Zeiss SiO2 COATED MIRROR SUBSTRATE FOR EUV

Similar Documents

Publication Publication Date Title
US7342715B2 (en) Multilayer film reflector for soft X-rays and manufacturing method thereof
US4637953A (en) Magnetooptical recording medium with laminated anti-reflection film
WO2003060924A1 (en) Protective layer for multilayers exposed to hard x-rays
JP2015207017A (en) Substrate transferred monocrystalline bragg mirror
Admassu et al. Effect of interface grading on the optical performance of distributed Bragg reflector multilayers in Fabry-Pérot optical filters
JPH09318800A (en) Multilayer film mirror for x-ray
Zhang et al. Interface Engineering and Epitaxial Growth of Single‐Crystalline Aluminum Films on Semiconductors
Yamane et al. Polar Kerr effect and perpendicular magnetic anisotropy in Fabry–Pérot cavity containing CoPt/AZO magneto-optical interference layer
Jankowski et al. Subnanometer multilayers for x‐ray mirrors: Amorphous crystals
JP2995371B2 (en) X-ray reflector material
JPH02242201A (en) Multilayered film reflecting mirror for soft x-ray and vacuum ultraviolet ray
Franke et al. Strain engineered high reflectivity DBRs in the deep UV
JPH06174897A (en) Multilayer x-ray mirror and multilayer x-ray optical system
FR2701167A1 (en) Component having a magnetoresistive effect
JPH05346496A (en) Multilayer film reflecting mirror
JP2005070156A (en) Infrared reflecting material, stacked infrared reflecting material, and heat insulating material using these
JP2003101126A (en) Semiconductor laser device and method of manufacturing the same
Awasthi et al. Enhancement of omnidirectional high-reflection wavelength range in one-dimensional ternary periodic structures: a comparative study
JP3741692B2 (en) Anti-reflection coating
Park et al. Double-layer antireflection coating design for semi-infinite one-dimensional photonic crystals
JP3634227B2 (en) X-ray spectrometer
JP2814595B2 (en) Multilayer reflector
CA3150123A1 (en) Substrate-transferred stacked optical coatings
Evans et al. The soft X-ray to EUV performance of plane and concave Pt-Si multilayer mirrors
Evans et al. Soft x-ray platinum-carbon multilayer mirrors

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041019

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050405