JPH09318719A - Magnetic sensor circuit - Google Patents

Magnetic sensor circuit

Info

Publication number
JPH09318719A
JPH09318719A JP17275096A JP17275096A JPH09318719A JP H09318719 A JPH09318719 A JP H09318719A JP 17275096 A JP17275096 A JP 17275096A JP 17275096 A JP17275096 A JP 17275096A JP H09318719 A JPH09318719 A JP H09318719A
Authority
JP
Japan
Prior art keywords
magnetic
oscillator
impedance element
magneto
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17275096A
Other languages
Japanese (ja)
Inventor
Yoshinori Miura
由則 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MITEC KK
Original Assignee
MITEC KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MITEC KK filed Critical MITEC KK
Priority to JP17275096A priority Critical patent/JPH09318719A/en
Publication of JPH09318719A publication Critical patent/JPH09318719A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)

Abstract

PROBLEM TO BE SOLVED: To raise sensing performance by comparing the frequency of a Colpitts oscillator using a magnetic impedance element with the frequency of a reference- signal oscillator which has been corrected for external electromagnetic wave noise. SOLUTION: A magnetic impedance element 1 is connected between the collector and the base of transistor Tr. Due to impedance variation of magnetic impedance element 1, the oscillation frequency of Colpitts oscillator 8 varies. By counting this oscillation frequency, external magnetic field can be measured. The frequency of the Colpitts oscillator 8 and the frequency of a reference signal oscillator 6 are compared with a frequency comparator 7. From the variation of the frequency, the variation of external magnetic field can be exactly read. In order to eliminate unnecessary electromagnetic wave noise, an antenna for detecting the electromagnetic noise or a hollow coil is assembled in the reference signal oscillator 6, which corrects the output of the reference signal oscillator 6.

Description

【発明の詳細な説明】 [発明の属する技術分野]本発明は、外部磁界を検知す
る磁気インピーダンス素子を用いた磁気センサ回路、並
びに磁気センサ回路に侵入する不要な電磁波ノイズの遮
蔽に関するものである。
Description: TECHNICAL FIELD The present invention relates to a magnetic sensor circuit using a magneto-impedance element for detecting an external magnetic field, and to shielding unnecessary electromagnetic wave noise that enters the magnetic sensor circuit. .

[従来の技術]現在、計測制御機器、AV機器、コンピ
ュータ等に実用化されている磁気センサは、ホール効果
素子、磁気抵抗効果素子等がある。このうち磁気抵抗効
果素子は、外部印加磁界によって電気抵抗が変化する特
性を用いたものである。現在実用化されている磁気抵抗
効果素子は、外部印加磁界の変化による電気抵抗(MR
値)の変化量は小さく、大きな外部印加磁界の変化が生
じる機器にその用途が限定されていた。又、温度環境に
も弱く、環境条件にもその使用範囲が限定されていた。
これに対し磁性体に高周波電流を流すと、それによる表
皮効果作用によって、磁性体を径方向に励振することが
可能となる。そして高周波電流を流す磁性体の両端から
見た磁性体の透磁率並びに電気抵抗が外部磁界によって
変化する性質を持つ磁気インピーダンス素子(特開平7
−181239)が提案されている。
[Prior Art] Magnetic sensors currently in practical use in measurement control equipment, AV equipment, computers and the like include Hall effect elements, magnetoresistive effect elements, and the like. Among them, the magnetoresistive effect element uses the characteristic that the electric resistance changes according to an externally applied magnetic field. The magnetoresistive effect element that is currently put into practical use has an electrical resistance (MR
The amount of change in (value) is small, and its application was limited to equipment in which a large change in externally applied magnetic field occurs. Further, it is weak against temperature environment and its use range is limited to environmental conditions.
On the other hand, when a high-frequency current is passed through the magnetic body, the skin effect acts to excite the magnetic body in the radial direction. Then, the magneto-impedance element having the property that the magnetic permeability and the electric resistance of the magnetic material as viewed from both ends of the magnetic material through which a high-frequency current flows are changed by an external magnetic field (Japanese Patent Laid-Open No. Hei 7 (1999) -83945).
181239) has been proposed.

[発明が解決しようとする課題]しかし、この磁気イン
ピーダンス素子を用いた磁気センサ回路は、非常に高い
周波数の電流を磁性体に流すため、磁気インピーダンス
素子、接続ケーブル、発振回路部から高周波の電磁波ノ
イズとして空中に放射するという問題がある。又、外部
からの電磁波ノイズの影響を受けやすく、磁気センサと
してのS/N比(信号対雑音比)が悪くなり、磁気検出
感度が低下する問題があった。このため、外部から侵入
するコモンモード電磁波ノイズをキャンセルするため、
複数の磁気インピーダンス素子を差動型に構成したり、
発振回路と磁気インピーダンス素子を一体化して、電磁
波ノイズの影響を受ける部分をできるだけ無くする方法
で設計されていた。また部分的には非磁性材料による電
波遮蔽もおこなわれていた。又、最近の応用面の要求
は、検知磁気信号が小さくなり、更に磁気センサヘッド
が組み込まれる空間スペースも非常に小さくなってきて
いる。そのため回路部と一体化して使用することが難し
くなってきた。すなわち、磁気インピーダンス素子と回
路部を離間させる構成が必要になってきた。このため更
に電磁波ノイズの影響を受けやすくなり、その対策が必
要になってきた。
[Problems to be Solved by the Invention] However, since a magnetic sensor circuit using this magnetic impedance element causes a current of a very high frequency to flow through a magnetic material, a high frequency electromagnetic wave is generated from the magnetic impedance element, the connection cable, and the oscillation circuit section. There is a problem that it radiates in the air as noise. Further, there is a problem that the magnetic sensor is easily affected by electromagnetic noise from the outside, the S / N ratio (signal-to-noise ratio) of the magnetic sensor is deteriorated, and the magnetic detection sensitivity is lowered. Therefore, in order to cancel the common mode electromagnetic wave noise that enters from the outside,
You can configure multiple magneto-impedance elements in a differential type,
It was designed by integrating the oscillator circuit and the magneto-impedance element to eliminate the part affected by electromagnetic noise as much as possible. In addition, radio waves were partially shielded by non-magnetic materials. Further, the recent demands for application have been such that the detected magnetic signal has become smaller, and the space space in which the magnetic sensor head is incorporated has become very small. Therefore, it has become difficult to use the circuit unit integrally with it. That is, it has become necessary to have a structure in which the magneto-impedance element and the circuit section are separated from each other. For this reason, it becomes more susceptible to electromagnetic noise, and countermeasures against it have become necessary.

[課題を解決するための手段]すなわち、本発明による
磁気センサ回路は、外部磁界によって磁性体の透磁率並
びに電気抵抗が変化する磁気インピーダンス素子を、コ
ルピッツ発振器を構成するトランジスタのベース、コレ
クタ間に接続し、その発振周波数を基準信号発振器と比
較した磁気センサ回路を提供することにあり、更に、上
記基準信号発振器内に外部電磁波ノイズを検知し、発振
周波数を補正する構成を持たせたものである。同じく磁
気インピーダンス素子をマルチバイブレータ発振器の出
力回路部とグランド間に接続する構成である。更に、上
記コルピッツ発振回路部及び上記マルチバイブレータ発
振器と磁気インピーダンス素子を離間させ、その接続ケ
ーブルを非磁性材料による電波遮蔽と磁性材料による磁
気遮蔽とを併せ構成したものである。更に、コルピッツ
発振器全体及びマルチバイブレータ発振器全体を、非磁
性材料による電波遮蔽と、磁性材料による磁気遮蔽を、
積層した板材で構成したシールドケースで覆った磁気セ
ンサである。
[Means for Solving the Problem] That is, in the magnetic sensor circuit according to the present invention, a magnetic impedance element whose magnetic permeability and electric resistance are changed by an external magnetic field is provided between a base and a collector of a transistor constituting a Colpitts oscillator. It is to provide a magnetic sensor circuit that is connected and compares its oscillation frequency with a reference signal oscillator. Further, the reference signal oscillator has a configuration for detecting external electromagnetic noise and correcting the oscillation frequency. is there. Similarly, the magneto-impedance element is connected between the output circuit section of the multivibrator oscillator and the ground. Further, the Colpitts oscillator circuit section, the multivibrator oscillator and the magnetic impedance element are separated from each other, and the connection cable thereof is configured to combine radio wave shielding with a non-magnetic material and magnetic shielding with a magnetic material. Furthermore, the entire Colpitts oscillator and the entire multivibrator oscillator are shielded by a non-magnetic material and a magnetic material.
It is a magnetic sensor covered with a shield case composed of laminated plate materials.

[作用]上記本発明の磁気センサ回路では、磁気インピ
ーダンス素子を、高周波電流で励振しても、高周波電流
による電磁波ノイズの放散、或いは、外部から侵入する
電磁波ノイズによる影響を少なくでき、磁気センサとし
ての検知感度を高くすることができる。更に、磁気イン
ピーダンス素子のセンサヘッド部を回路部から離間させ
微少空間スペースの磁界の検出に利用することが可能と
なる。
[Operation] In the magnetic sensor circuit of the present invention, even if the magneto-impedance element is excited by a high-frequency current, it is possible to reduce the influence of the electromagnetic-wave noise dissipated by the high-frequency current or the electromagnetic-wave noise entering from the outside. The detection sensitivity of can be increased. Further, it is possible to separate the sensor head portion of the magneto-impedance element from the circuit portion and use it for detecting a magnetic field in a minute space.

[本発明の実施の形態]以下、本発明による一実施例を
図面を用いて詳細に説明する。図1に本発明の一実施例
の磁気インピーダンス素子1の外観斜視図を示す。磁性
体2は、強磁性特性を示すアモルファス材料で構成さ
れ、線状、管状、或いは短冊状の形状である。本実施例
では、磁性体2には、長さ約5mm、径約30μm¢の
寸法を持つアモルファスワイヤを使用した。上記形状の
磁性体2の両端を、半田固定部4にて基板3に溶接固定
する。基板3上には、半田固定部4と接続するスルーホ
ールの導体ランド(図示せず)があり、基板3の裏面に
導かれている。そして基板3の裏面では、印刷配線パタ
ーンにてピン端子5に導接されている。基板3の大きさ
は、磁性体2が搭載可能な寸法でよいが、本実施例で
は、長さ約10mm、幅約4mm、板厚約0.8mmの
ガラスエポキシ基板を使用した。基板3の材料は、セラ
ミック基板が適しているが、磁性体2に流す高周波電流
の周波数が低ければ、ガラスエポキシ基板でも磁気検知
特性上は影響がない。ピン端子5,5’から数MHz以
上の高い周波数の電流を磁性体2に流し、磁性体2の表
面に表皮磁界を発生させる。磁性体2の軸方向に外部磁
界を印加することによって、磁性体2の透磁率及び電気
抵抗が変化する。すなわちピン端子5,5’間のインピ
ーダンスが外部磁界によって変化する。本発明による磁
気センサ回路の磁界検知方向は、磁性体2に流す電流方
向と同じ長軸心方向である。図2は、磁気インピーダン
ス素子1を、トランジスタTrのコレクタ、ベース間に
接続したコルピッツ発振回路部8である。磁気インピー
ダンス素子1のインピーダンス変化によって、コルピッ
ツ発振器8の発振周波数が変化する。この発振周波数を
カウントすることによって、外部の磁界を測定すること
ができる。本実施例では、発振周波数は8MHzから2
0MHzを発振させた。上記コルピッツ発振器8の周波
数と基準信号発振器6の周波数を周波数比較器7にて比
較する。周波数の変化量から外部磁界の変化量を正確に
読みとることが可能となる。F−V変換器等で電圧に変
換後、更に増幅することで微少磁界を精度良く検知する
ことができる。上記磁気インピーダンス素子1は、不要
な外部の電磁波ノイズも検知するため、高精度な検知性
能を出すためには、その不要な電磁波ノイズを除去する
必要がある。そのため基準信号発振器6内に、不要な外
部の電磁波ノイズを検知するためのアンテナ、或いは空
心状のコイルを組み込み、磁気インピーダンス素子1の
検知方向の不要な電磁波ノイズだけを検知し、基準信号
発振器6の出力を補正する機能を持たせている。この機
能により磁気インピーダンス素子1及び基準信号発振器
6にコモンモードノイズとして侵入する不要な外部の電
磁波ノイズをキャンセルすることが可能となる。この磁
気インピーダンス素子1に高周波の電流を流し、高い周
波数にて磁性体2を励振するので、非常に高い周波数ま
で外部磁界を検知することが可能となる。しかし一方、
高い周波数の外部磁界は磁気インピーダンス素子1以
外、接続ケーブルや回路部にも侵入する、これを防ぐた
めに図3のセンサー構成のブロック図に示すごとく、回
路部から離間させた磁気インピーダンス素子1と回路部
11との接続ケーブル9に、薄銅板又は薄アルミ板とパ
ーマロイ薄板の積層した帯板を半重ねした接続ケーブル
シールド13をらせん状に巻き付けている。回路部は図
4に示すごとく、銅板とパーマロイの薄板の積層した薄
板でシールドケース10を形成し、回路部11全体を覆
い遮蔽している。センサ回路からの出力信号は、出力端
子14から出力される。本実施例ではF−V変換器にて
出力電圧として取り出した。図5に本実施例での測定結
果を示す。磁気インピーダンス素子1に周波数10MH
z の高周波電流を流し、磁気インピーダンス素子1を
東西方向に設置し、ソレノイドコイルにて外部印加磁界
を加え、出力端子14にて出力電圧を測定した。印加磁
界に対する出力電圧、出力電圧の直線性も良いデータが
得られている。また印加磁界を加えずに、上記接続ケー
ブル9並びに回路部11ににシールド対策を施した場合
と、施さない場合のノイズレベルを比較測定した。図5
のA点がシールド対策を施さない場合のノイズレベルで
ある。同じくB点がシールド対策を施した場合のノイズ
レベルであり、A点のレベルの1/5から1/10に小
さくなっている。すなわち検知性能が向上したことにな
る。一方、磁気インピーダンス素子1を回路部11から
離間させる距離には限界があり、本実施例では約10c
mが限界であった、これ以上離間させると検知外部磁界
による出力信号も急激に低下しS/N比が悪くなる。図
6は、集積回路にて構成したマルチバイブレータ発振器
15の出力部分に、磁気インピーダンス素子1を接続し
た回路図であり、立ち上がりの早い矩形波を発振し、磁
気インピーダンス素子1に加わる外部磁界によって、そ
の矩形波の尖頭値が変化するものである。このマルチバ
イブレータ発振器における接続ケーブルのシールド、回
路全体を覆うシールドケースは、前記したコルピッツ発
振器の構成と同じ方法である。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below with reference to the drawings. FIG. 1 shows an external perspective view of a magneto-impedance element 1 according to an embodiment of the present invention. The magnetic body 2 is made of an amorphous material exhibiting ferromagnetic properties, and has a linear shape, a tubular shape, or a strip shape. In this example, the magnetic body 2 was an amorphous wire having a length of about 5 mm and a diameter of about 30 μm. Both ends of the magnetic body 2 having the above-described shape are welded and fixed to the substrate 3 by the solder fixing portions 4. A conductor land (not shown) of a through hole connected to the solder fixing portion 4 is provided on the board 3, and is guided to the back surface of the board 3. Then, on the back surface of the substrate 3, the printed wiring pattern is connected to the pin terminals 5. The size of the substrate 3 may be such that the magnetic body 2 can be mounted, but in this embodiment, a glass epoxy substrate having a length of about 10 mm, a width of about 4 mm and a plate thickness of about 0.8 mm was used. A ceramic substrate is suitable as the material of the substrate 3, but if the frequency of the high-frequency current flowing through the magnetic body 2 is low, the glass epoxy substrate will not affect the magnetic detection characteristics. A high-frequency current of several MHz or more is applied to the magnetic body 2 from the pin terminals 5 and 5'to generate a skin magnetic field on the surface of the magnetic body 2. By applying an external magnetic field in the axial direction of the magnetic body 2, the magnetic permeability and electric resistance of the magnetic body 2 change. That is, the impedance between the pin terminals 5 and 5'changes due to the external magnetic field. The magnetic field detection direction of the magnetic sensor circuit according to the present invention is the same as the major axis direction of the current flowing through the magnetic body 2. FIG. 2 shows a Colpitts oscillation circuit section 8 in which the magneto-impedance element 1 is connected between the collector and the base of the transistor Tr. The oscillation frequency of the Colpitts oscillator 8 changes due to the impedance change of the magneto-impedance element 1. The external magnetic field can be measured by counting the oscillation frequency. In this embodiment, the oscillation frequency is from 8 MHz to 2
0 MHz was oscillated. A frequency comparator 7 compares the frequency of the Colpitts oscillator 8 with the frequency of the reference signal oscillator 6. The amount of change in the external magnetic field can be accurately read from the amount of change in frequency. A minute magnetic field can be accurately detected by converting the voltage into a voltage by an FV converter or the like and further amplifying the voltage. Since the magneto-impedance element 1 also detects unnecessary external electromagnetic wave noise, it is necessary to remove the unnecessary electromagnetic wave noise in order to obtain highly accurate detection performance. Therefore, an antenna or an air-core coil for detecting unnecessary external electromagnetic wave noise is incorporated in the reference signal oscillator 6, and only unnecessary electromagnetic wave noise in the detection direction of the magneto-impedance element 1 is detected. It has a function to correct the output of. With this function, it is possible to cancel unnecessary external electromagnetic wave noise that enters the magneto-impedance element 1 and the reference signal oscillator 6 as common mode noise. Since a high-frequency current is passed through the magneto-impedance element 1 to excite the magnetic body 2 at a high frequency, it is possible to detect an external magnetic field up to a very high frequency. But on the other hand,
In order to prevent the high frequency external magnetic field from penetrating not only the magneto-impedance element 1 but also the connection cable and the circuit section, as shown in the block diagram of the sensor configuration of FIG. 3, the magneto-impedance element 1 and the circuit separated from the circuit section are provided. A connection cable shield 13 in which a strip of a thin copper plate or a thin aluminum plate and a permalloy thin plate is half-overlapped is spirally wound around the connection cable 9 with the portion 11. As shown in FIG. 4, the circuit portion is formed by laminating a copper plate and a thin plate of permalloy to form a shield case 10, which covers and shields the entire circuit portion 11. The output signal from the sensor circuit is output from the output terminal 14. In this embodiment, the output voltage is taken out by the FV converter. FIG. 5 shows the measurement results of this example. Frequency of 10 MH for magneto-impedance element 1
A high-frequency current of z 1 was passed, the magneto-impedance element 1 was installed in the east-west direction, an externally applied magnetic field was applied with a solenoid coil, and the output voltage was measured at the output terminal 14. Good data are also obtained on the output voltage with respect to the applied magnetic field and the linearity of the output voltage. Further, the noise levels were measured by comparing the connection cable 9 and the circuit section 11 with and without the application of a magnetic field applied with a shield measure. FIG.
The point A is the noise level when no shield measure is taken. Similarly, the point B is the noise level when the shield measure is taken, and is reduced from 1/5 to 1/10 of the level of the point A. That is, the detection performance is improved. On the other hand, there is a limit to the distance for separating the magneto-impedance element 1 from the circuit section 11, and in this embodiment, it is about 10c.
When m is the limit, the output signal due to the detected external magnetic field sharply decreases and the S / N ratio deteriorates when the distance is further increased. FIG. 6 is a circuit diagram in which the magneto-impedance element 1 is connected to the output part of the multi-vibrator oscillator 15 configured by an integrated circuit. The magneto-impedance element 1 oscillates a rectangular wave having a fast rising edge, and an external magnetic field applied to the magneto-impedance element 1 The peak value of the rectangular wave changes. The shield of the connection cable and the shield case that covers the entire circuit in this multivibrator oscillator have the same method as that of the Colpitts oscillator described above.

[発明の効果]以上のように、本発明によれば、磁気イ
ンピーダンス素子を利用したコルピッツ発振器の周波数
を、外部電磁波ノイズを補正した基準信号発振器の周波
数と比較すること、並びに接続ケーブル、及び回路部の
電波、磁気遮蔽を施すことによって高性能な検知性能が
得られる。又、磁気インピーダンス素子と回路部を離間
させることによって磁気センサヘッドが小型化でき用途
が広がる。
[Advantages of the Invention] As described above, according to the present invention, the frequency of a Colpitts oscillator using a magneto-impedance element is compared with the frequency of a reference signal oscillator in which external electromagnetic noise is corrected, and a connection cable and a circuit. High-performance detection performance can be obtained by providing radio wave and magnetic shielding of the part. Further, by separating the magnetic impedance element and the circuit portion from each other, the magnetic sensor head can be downsized and its application is expanded.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における磁気インピーダンス
素子の外観斜視図。
FIG. 1 is an external perspective view of a magneto-impedance element according to an embodiment of the present invention.

【図2】図1の磁気インピーダンス素子を利用し構成し
たコルピッツ発振器の回路図
FIG. 2 is a circuit diagram of a Colpitts oscillator configured by using the magneto-impedance element of FIG.

【図3】本発明の一実施例における磁気センサ回路のブ
ロック図。
FIG. 3 is a block diagram of a magnetic sensor circuit according to an embodiment of the present invention.

【図4】本発明の一実施例における回路部の外観斜視
図。(一部内部を破断して示す。)
FIG. 4 is an external perspective view of a circuit unit according to an embodiment of the present invention. (Part of the inside is shown broken.)

【図5】本発明の一実施例における磁気インピーダンス
素子に印加した外部磁界と出力電圧の特性相関図。
FIG. 5 is a characteristic correlation diagram of an external magnetic field applied to a magneto-impedance element and an output voltage according to an embodiment of the present invention.

【図6】図1の磁気インピーダンス素子を利用したマル
チバイブレータ発振器の回路図。
6 is a circuit diagram of a multivibrator oscillator using the magneto-impedance element of FIG.

【符号の説明】[Explanation of symbols]

1 磁気インピーダンス素子 2 磁性体 3 基板 4 半田固定部 5 ピン端子 6 基準信号発振器 7 周波数比較器 8 コルピッツ発振器 9 接続ケーブル 10 シールドケース 11 回路部 12 シールドケースの基台 13 接続ケーブルシールド 14 出力端子 15 マルチバイブレータ発振器 1 Magneto-impedance element 2 Magnetic material 3 Board 4 Solder fixing part 5 Pin terminal 6 Reference signal oscillator 7 Frequency comparator 8 Colpitts oscillator 9 Connection cable 10 Shield case 11 Circuit part 12 Shield case base 13 Connection cable shield 14 Output terminal 15 Multivibrator oscillator

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】外部磁界の印加によって透磁率並びに電気
抵抗が変化する磁気インピーダンス素子を利用した磁気
センサ回路において、該磁気インピーダンス素子をコル
ピッツ発振器を構成するトランジスタのベース、コレク
タ間に接続し、該コルピッツ発振器の発振周波数を基準
信号発振器と比較することを特徴とした磁気センサ回
路。
1. A magnetic sensor circuit using a magneto-impedance element whose magnetic permeability and electric resistance change by the application of an external magnetic field, wherein the magneto-impedance element is connected between the base and collector of a transistor constituting a Colpitts oscillator, A magnetic sensor circuit characterized by comparing the oscillation frequency of a Colpitts oscillator with a reference signal oscillator.
【請求項2】磁気インピーダンス素子をマルチバイブレ
ータ発振器の出力とグランド間に接続したことを特徴と
する磁気センサ回路。
2. A magnetic sensor circuit in which a magnetic impedance element is connected between the output of the multivibrator oscillator and the ground.
【請求項3】請求項1の基準信号発振器に外部電磁波ノ
イズを検知し、該基準信号発振器の発振周波数を補正す
る回路を構成したことを特徴とする磁気センサ回路。
3. A magnetic sensor circuit, wherein the reference signal oscillator according to claim 1 is provided with a circuit for detecting an external electromagnetic wave noise and correcting the oscillation frequency of the reference signal oscillator.
【請求項4】磁気インピーダンス素子と請求項1記載の
コルピッツ発振器を、同じく磁気インピーダンス素子と
請求項2記載のマルチバイブレータ発振器を離間させ、
その接続部分の接続ケーブルを、非磁性材料による薄帯
板と、磁性材料による薄帯板の積層板を、らせん状に重
ね巻きして遮蔽したことを特徴とする請求項1及び請求
項2記載の磁気センサ回路。
4. The magneto-impedance element and the Colpitts oscillator according to claim 1, and the magneto-impedance element and the multivibrator oscillator according to claim 2, which are separated from each other,
The connection cable of the connecting portion is shielded by spirally winding a thin strip of non-magnetic material and a laminated strip of thin strips of magnetic material in a spiral shape. Magnetic sensor circuit.
【請求項5】前記コルピッツ発振器及び前記マルチバイ
ブレータ発振器を、非磁性材料と磁性材料を積層した板
材により形成したシールドケースで覆い、電波遮蔽と磁
気遮蔽を施した請求項1及び請求項2記載の磁気センサ
回路。
5. The radio wave shield and the magnetic shield according to claim 1, wherein the Colpitts oscillator and the multivibrator oscillator are covered with a shield case formed of a plate material in which a non-magnetic material and a magnetic material are laminated to provide radio wave shielding and magnetic shielding. Magnetic sensor circuit.
JP17275096A 1996-05-28 1996-05-28 Magnetic sensor circuit Pending JPH09318719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17275096A JPH09318719A (en) 1996-05-28 1996-05-28 Magnetic sensor circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17275096A JPH09318719A (en) 1996-05-28 1996-05-28 Magnetic sensor circuit

Publications (1)

Publication Number Publication Date
JPH09318719A true JPH09318719A (en) 1997-12-12

Family

ID=15947639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17275096A Pending JPH09318719A (en) 1996-05-28 1996-05-28 Magnetic sensor circuit

Country Status (1)

Country Link
JP (1) JPH09318719A (en)

Similar Documents

Publication Publication Date Title
FI73320C (en) NMR SPOLARRANGEMANG.
JP3096413B2 (en) Magnetic sensing element, magnetic sensor, geomagnetic detection type azimuth sensor, and attitude control sensor
US7595650B2 (en) Magnetic field probe apparatus and a method for measuring magnetic field
JP4247821B2 (en) Current sensor
US20040201373A1 (en) Current probe
JP2002131342A (en) Current sensor
EP1048958A2 (en) Magnetic sensor and manufacturing method thereof
US6861838B2 (en) Magnetic detection element utilizing magneto-impedance effect, production method of the element, and portable equipment using the element
US4924184A (en) Magnetic resonance apparatus
EP0183521B1 (en) Automobile antenna system
JPH10232259A (en) Current leakage sensor
US20230290563A1 (en) Radio frequency weak magnetic field detection sensor and method of manufacturing the same
US7148679B2 (en) Transformer probe
JPH09318719A (en) Magnetic sensor circuit
KR20000071407A (en) High frequency current detector
CN115667966A (en) Magnetic field detection device and magnetic field detection device array
KR102656037B1 (en) Magnetic-field detecting apparatus
JP5139822B2 (en) Magnetic field probe
JP5006511B2 (en) Current sensor and current detection unit using the same
CN116666036B (en) Demagnetizing module and current sensor
US5777470A (en) Broadband probe for detecting the magnetic field component of an electromagnetic field
GB2319621A (en) Magnetic sensor
JP2003177167A (en) Magnetic sensor
US6590740B2 (en) Shielded magnetic head and magnetic reproducing apparatus
JP5290598B2 (en) Nuclear magnetic resonance apparatus and signal extraction method thereof