JPH09318352A - Apparatus and method for measuring hollow displacement in tunnel - Google Patents

Apparatus and method for measuring hollow displacement in tunnel

Info

Publication number
JPH09318352A
JPH09318352A JP13555096A JP13555096A JPH09318352A JP H09318352 A JPH09318352 A JP H09318352A JP 13555096 A JP13555096 A JP 13555096A JP 13555096 A JP13555096 A JP 13555096A JP H09318352 A JPH09318352 A JP H09318352A
Authority
JP
Japan
Prior art keywords
tunnel
ruled lines
target
displacement
optical axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP13555096A
Other languages
Japanese (ja)
Inventor
Hiroyuki Inoue
博之 井上
Shigeru Hashizume
茂 橋詰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maeda Corp
Original Assignee
Maeda Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maeda Corp filed Critical Maeda Corp
Priority to JP13555096A priority Critical patent/JPH09318352A/en
Publication of JPH09318352A publication Critical patent/JPH09318352A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hollow displacement measuring apparatus and method for tunnels which enables measurement of displacement with limited time and labor without affecting excavation work. SOLUTION: Laser light is irradiated in the direction of advancing of a tunnel 100 from a laser light source 1 mounted in proximity to an unmovable point of the internal wall of the tunnel 100 and a transmission target 2a-k in which a plurality of lateral rulings 3a... and vertical rulings 3b orthogonal to each other as arranged at specified intervals are formed on a surface thereof crossing the optical axis 1a of the laser light is mounted on the internal wall of the tunnel 100. The crossing position of the optical axis 1a on the cross surface at the mounting is used as initial value to specify which of the vertical rulings 3b... and the lateral rulings 3a crosses the optical axis 1a during the measurement and the positional displacement of the transmission target 2a-k is determined on the basis of a specified interval at which the lateral rulings 3a and the vertical rulings 3b are arranged to index the displacement of the internal wall of the tunnel 100.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、トンネル内壁の
経時ずれを測定するトンネル内空変位測定装置およびト
ンネル内空変位測定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a tunnel inner air displacement measuring device and a tunnel inner air displacement measuring method for measuring a temporal displacement of a tunnel inner wall.

【0002】[0002]

【従来の技術】山岳トンネルの建設の際、正確な掘削と
作業の安全を図るために、トンネル内空変位を把握する
必要がある。以下に、こういった内空変位を測定する方
法として従来から用いられているものを説明する。
2. Description of the Related Art When constructing a mountain tunnel, it is necessary to grasp the air displacement inside the tunnel in order to ensure accurate excavation and work safety. Hereinafter, a method that has been conventionally used as a method for measuring such inner air displacement will be described.

【0003】図4は、コンバージェンスメータ(コンバ
ージェンスメジャー)と呼ばれる内空変位測定器を示す
構成図である。このコンバージェンスメータは、トンネ
ル100内における対向する地山(トンネル内壁)10
1a、101bの各々にコンバージェンスボルト102
を打ち込んで用いる。
FIG. 4 is a block diagram showing an inner air displacement measuring device called a convergence meter (convergence measure). This convergence meter is used for the opposing ground (tunnel inner wall) 10 in the tunnel 100.
Convergence bolt 102 on each of 1a and 101b
Type in and use.

【0004】このコンバージェンスボルト102にはボ
ールジョイント103が取り付けられているとともに、
一方(図4に示す例では地山101a側)のボールジョ
イント103には、ダイアルゲージ104を有する引張
力導入部105が取り付けられている。
A ball joint 103 is attached to the convergence bolt 102, and
A tensile force introducing portion 105 having a dial gauge 104 is attached to the ball joint 103 on one side (in the example shown in FIG. 4, the natural ground 101a side).

【0005】この引張力導入部105と他方(地山10
1b側)のボールジョイント103との間に、金属テー
プ106を張る。このとき、金属テープ106の張力を
所定の値に調整し、ダイアルゲージ104によって距離
Aを測定する。このような測定を所定時間毎に繰り返す
ことで、その変化から内空変位が測定できる。
This tensile force introducing portion 105 and the other (ground
A metal tape 106 is stretched between the ball joint 103 and the ball joint 103 (on the 1b side). At this time, the tension of the metal tape 106 is adjusted to a predetermined value, and the distance A is measured by the dial gauge 104. By repeating such measurement every predetermined time, the inner air displacement can be measured from the change.

【0006】図5は、光波測距儀を用いた変位測定器を
示す構成図である。図5において201は光波測距儀で
ある。この光波測距儀201は、鋭いビーム光によっ
て、その設置点から後述するターゲット(測距目標点)
までの相対距離、ならびに相対方位を測定することがで
きる(詳細な図示ならびに説明は省略)。
FIG. 5 is a block diagram showing a displacement measuring device using an optical distance measuring device. In FIG. 5, 201 is a lightwave rangefinder. This light wave distance measuring device 201 is a target (distance measuring target point) described later from its installation point by a sharp beam light.
It is possible to measure the relative distance to and the relative orientation (detailed illustration and description are omitted).

【0007】この光波測距儀201には、データケーブ
ル203を介して計算制御器204が接続されている。
この計算制御器204は、演算装置や記憶装置等を有し
ており、光波測距儀201によって測定された複数のタ
ーゲットの各々の相対位置と、別に測定する座標基点と
に基づいて、各ターゲットの絶対位置を算出する。
A calculation controller 204 is connected to the optical distance measuring instrument 201 via a data cable 203.
The calculation controller 204 has an arithmetic device, a storage device, and the like, and based on the relative position of each of the plurality of targets measured by the optical distance measuring instrument 201 and the coordinate base point separately measured, each target. Calculate the absolute position of.

【0008】図5において202はターゲットであり、
この例では一辺がおよそ10mm〜90mmのマイクロ
プリズムが用いられている。このターゲット202は、
光波測距儀201が発する光を、再び光波測距儀201
の方向へ反射させる。
In FIG. 5, 202 is a target,
In this example, a micro prism whose one side is approximately 10 mm to 90 mm is used. This target 202 is
The light emitted by the lightwave distance measuring device 201 is converted into the lightwave distance measuring device 201 again.
Reflect in the direction of.

【0009】図6は、実際のトンネルにおいて光波測距
儀を用いた変位測定方法を示す図である。図6では、ト
ンネル100の内壁に複数のターゲット202(この例
ではターゲット202-1、202-2・・・202-7、20
-8および202-O1、202 -O2)が取り付けられてい
る。この内、ターゲット202-O1と202-O2とは座標
が既知の不動点に取り付けられ、座標基点として用いら
れる。
FIG. 6 shows an optical distance measurement in an actual tunnel.
It is a figure which shows the displacement measuring method using a balance. In Figure 6,
A plurality of targets 202 (in this example
Then target 202-1, 202-2... 202-7, 20
2-8And 202-O1, 202 -O2) Is attached
You. Of these, the target 202-O1And 202-O2Is the coordinates
Is attached to a known fixed point and is used as a coordinate base point.
It is.

【0010】この例では、まず光波測距儀201によっ
て各ターゲット202-O1、202- O2および202-1
202-2・・・202-7、202-8の相対位置を順次測
定する。ここでターゲット202-O1と202-O2とは不
動点に取り付けられた座標基点であるので、計算制御器
204(図5参照)は、この座標基点に基づいて各ター
ゲット202-1〜202-8の絶対位置を算出する。
[0010] In this example, first laser rangefinder 201 by each target 202 -O1, 202 - O2 and 202 -1,
202 -2 ... The relative positions of 202 -7 and 202 -8 are sequentially measured. Since the targets 202 -O1 and 202 -O2 are coordinate base points attached to fixed points, the calculation controller 204 (see FIG. 5) uses the coordinate base points to target the targets 202 -1 to 202 -8. Calculate the absolute position of.

【0011】このように各ターゲット202-1〜202
-8の絶対位置の測定を所定時間毎に繰り返すことによっ
て、その変化から各ターゲット202-1〜202-8にお
ける変位を測定することができる。
As described above, each of the targets 202 -1 to 202
By repeating the measurement of the absolute position of −8 every predetermined time, the displacement of each of the targets 202 −1 to 202 −8 can be measured from the change.

【0012】[0012]

【発明が解決しようとする課題】しかしながら上述した
各方法では、内空変位の測定毎に作業員が測定地点へ出
向き、トンネル内に測定器を設置した上で変位の測定を
しなければならない。ところが、掘削作業中のトンネル
内には工作機械や作業員が往来し、また発破作業等も行
われる。このため、変位測定中は掘削作業を中断せざる
を得ない。
However, in each of the above-mentioned methods, the worker must go to the measurement point every time the inner-air displacement is measured, install the measuring device in the tunnel, and measure the displacement. However, machine tools and workers come and go in the tunnel during excavation work, and blasting work is also performed. Therefore, excavation work must be interrupted during displacement measurement.

【0013】即ち実際には、このような変位測定は、掘
削作業が中断する休憩時間等でなければ行うことができ
なかった。さらに測定個所が多くなると測定時間も長く
なり、大きな問題となっていた。
That is, in reality, such displacement measurement could be performed only during a break time when the excavation work was interrupted. Further, if the number of measurement points increases, the measurement time also increases, which is a big problem.

【0014】この発明は、このような背景の下になされ
たもので、少ない手間で変位の測定が可能で、掘削作業
にも影響を与えることがないトンネル内空変位測定装置
およびトンネル内空変位測定方法を提供することを目的
としている。
The present invention has been made under such a background, and it is possible to measure the displacement with a small amount of labor, and there is no influence on the excavation work. The purpose is to provide a measurement method.

【0015】[0015]

【課題を解決するための手段】上述した課題を解決する
ために、請求項1に記載の発明にあっては、トンネル内
の不動点に取り付けられ、前記トンネルの進行方向と平
行にレーザ光を照射するレーザ発振手段と、前記トンネ
ル内面に取り付けられ前記レーザ光の光軸との交差面を
有する標的とを有し、前記標的の前記光軸との交差面に
は、所定間隔で各々前記進行方向と直交する方向に配置
された複数の横罫線と、所定間隔で各々前記進行方向と
前記横罫線とに直交する方向に配置された複数の縦罫線
とが形成されていることを特徴とする。
In order to solve the above-mentioned problems, in the invention described in claim 1, a laser beam is attached to a fixed point in the tunnel, and laser light is emitted in parallel with the traveling direction of the tunnel. It has a laser oscillating means for irradiating and a target attached to the inner surface of the tunnel and having a crossing surface with the optical axis of the laser light, and the crossing surface with the optical axis of the target is respectively advanced at predetermined intervals. A plurality of horizontal ruled lines arranged in a direction orthogonal to the direction and a plurality of vertical ruled lines arranged in a direction orthogonal to the traveling direction and the horizontal ruled line at predetermined intervals are formed. .

【0016】また、請求項2に記載の発明にあっては、
請求項1に記載のトンネル内空変位測定装置では、前記
標的は前記レーザ光を透過させる材質で形成されるとと
もに前記横罫線ならびに前記縦罫線は前記レーザ光を減
衰させないように形成され、当該標的は前記光軸上に所
定間隔で複数取り付けられることを特徴とする。
Further, in the invention according to claim 2,
In the tunnel air displacement measuring apparatus according to claim 1, the target is formed of a material that transmits the laser light, and the horizontal ruled lines and the vertical ruled lines are formed so as not to attenuate the laser light. Is mounted on the optical axis at a predetermined interval.

【0017】また、請求項3に記載の発明にあっては、
(a)トンネル内壁の不動点に近接して取り付けたレー
ザ発振手段から前記トンネルの進行方向と平行にレーザ
光を照射し、(b)前記レーザ光の光軸との交差面に、
各々前記進行方向と直交する方向に所定間隔で配置され
た複数の横罫線と、各々前記進行方向と前記横罫線とに
直交する方向に所定間隔で配置された複数の縦罫線とが
形成された標的を前記トンネル内壁に取り付け、(c)
前記レーザ発振手段と前記標的との取り付け時の前記交
差面における前記光軸の交差位置を初期値とするととも
に、測定時に前記光軸が前記複数配置された前記縦罫線
と前記複数配置された前記横罫線との各々何れと交差す
るかを特定し、(d)前記横罫線と前記縦罫線とが配置
された前記所定間隔に基づいて当該標的の前記初期値に
対する位置変位を求めることで当該標的が取り付けられ
た前記トンネル内壁の変位を求めることを特徴とする。
In the invention according to claim 3,
(A) Laser light is emitted parallel to the traveling direction of the tunnel from a laser oscillating means attached near the fixed point of the inner wall of the tunnel, and (b) on a crossing surface with the optical axis of the laser light,
A plurality of horizontal ruled lines, each of which is arranged at a predetermined interval in a direction orthogonal to the traveling direction, and a plurality of vertical ruled lines, which are arranged at a predetermined interval in a direction orthogonal to the traveling direction and the horizontal ruled line, are formed. Attach the target to the inner wall of the tunnel, (c)
The initial position is the intersecting position of the optical axes in the intersecting surface when the laser oscillation means and the target are attached, and the optical ruled lines where the plurality of optical axes are arranged and the plurality of the optical axes are arranged during measurement. The target is determined by identifying which of the horizontal ruled lines each intersects, and (d) determining the positional displacement of the target with respect to the initial value based on the predetermined interval in which the horizontal ruled line and the vertical ruled line are arranged. The displacement of the inner wall of the tunnel attached with is determined.

【0018】また、請求項4に記載の発明にあっては、
請求項3に記載のトンネル内空変位測定方法では、前記
標的を前記レーザ光が透過する材質で形成するとともに
前記横罫線ならびに前記縦罫線を前記レーザが減衰しな
いように形成し、当該標的を前記光軸上に所定間隔で複
数取り付けることを特徴とする。
Further, in the invention according to claim 4,
In the tunnel air displacement measuring method according to claim 3, the target is formed of a material that allows the laser light to pass therethrough, and the horizontal ruled lines and the vertical ruled lines are formed so as not to be attenuated by the laser. It is characterized in that a plurality of them are attached on the optical axis at predetermined intervals.

【0019】この発明によれば、不動点に取り付けたレ
ーザ発振手段が照射するレーザ光の光軸と標的の交差面
との交差位置が、標的の取り付け時を基準としてどの方
向にどの程度ずれたかによって、この標的が取り付けら
れた地山の変位を求める。また、この標的を透明な材質
で形成し、レーザ光の光軸上に複数配置することで、複
数地点の変位を同時に知ることができる。
According to the present invention, the crossing position of the optical axis of the laser beam emitted by the laser oscillating means attached to the fixed point and the crossing plane of the target is deviated in what direction and how much with respect to the time of attachment of the target. Then, the displacement of the ground to which this target is attached is obtained. Further, by forming this target with a transparent material and arranging a plurality of the targets on the optical axis of the laser light, it is possible to know the displacement at a plurality of points at the same time.

【0020】[0020]

【発明の実施の形態】以下に、本発明のトンネル内空変
位測定装置について説明する。図1は、本発明の一実施
の形態にかかるトンネル内空変位測定装置を示す構成図
である。なお本実施の形態では、水準面に対して水平な
トンネル100の天端(天井)の変位を測定する場合の
みを詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The tunnel air displacement measuring apparatus of the present invention will be described below. FIG. 1 is a configuration diagram showing a tunnel air displacement measuring apparatus according to an embodiment of the present invention. In the present embodiment, only the case of measuring the displacement of the ceiling (ceiling) of the tunnel 100 horizontal to the level plane will be described in detail.

【0021】図1において1はレーザ光源であり、トン
ネル100内部の天端付近の不動点に取り付けられてい
る。このレーザ光源1が出力する光軸1aは、トンネル
100の進行方向に向けられている。
In FIG. 1, reference numeral 1 denotes a laser light source, which is mounted inside the tunnel 100 at a fixed point near the top end. The optical axis 1a output from the laser light source 1 is directed in the traveling direction of the tunnel 100.

【0022】2a-1、2a-2・・・2a-n(以降、必要
に応じて2a-kと称する)は透過ターゲットである。こ
れら透過ターゲット2a-1、2a-2〜2a-nは、初期状
態において各々光軸1a上に位置するように取り付けら
れる。なお本実施の形態では、これら透過ターゲット2
-1、2a-2〜2a-nは光軸1a方向(図1におけるY
軸方向)におよそ10m毎に取り付けられる。
2a -1 , 2a -2 ... 2a -n (hereinafter referred to as 2a -k as necessary) are transmission targets. These transmissive targets 2a- 1 , 2a- 2 to 2a - n are attached so as to be located on the optical axis 1a in the initial state. In the present embodiment, these transmission targets 2
a −1 , 2a −2 to 2a −n are in the optical axis 1a direction (Y in FIG. 1).
It is attached about every 10 m in the axial direction).

【0023】図2は透過ターゲット2a-kの詳細な構成
を示す平面図である。この透過ターゲット2a-kは透明
なアクリル板等、レーザ光源1の出力光を透過する材質
により形成されている。
FIG. 2 is a plan view showing the detailed structure of the transmission targets 2a -k . The transmission targets 2a- k are made of a material such as a transparent acrylic plate that transmits the output light of the laser light source 1.

【0024】また透過ターゲット2a-kには、横罫3
a、3a・・・と、これに直交する縦罫3b、3b・・
・から構成されるグリッド3が形成されている。このグ
リッド3を構成する横罫3a、3a・・・および縦罫3
b、3b・・・は、レーザ光源1の出力光を容易に減衰
させない材質あるいは加工法、ならびに幅で各々等間隔
で罫書かれている。なお本実施の形態では、透過ターゲ
ット2a-kの一辺はおよそ50mm、またグリッド3は
2mm間隔で形成されている。
The transmissive targets 2a- k have horizontal ruled lines 3
a and 3a ... and vertical ruled lines 3b, 3b ...
The grid 3 is formed. Horizontal ruled lines 3a, 3a ... And vertical ruled lines 3 that constitute this grid 3
B, 3b ... Are marked at regular intervals with a material or a processing method that does not easily attenuate the output light of the laser light source 1 and a width. In this embodiment, one side of the transmissive target 2a- k is approximately 50 mm, and the grid 3 is formed at 2 mm intervals.

【0025】本実施の形態のようにトンネル100の天
端の変位を測定する場合には、各透過ターゲット2a-k
の横罫3a、3a・・・を図1に示すX軸方向(即ち水
平方向)、また縦罫3b、3b・・・をZ軸(即ち垂直
方向)方向として取り付ける。さらにこのとき、光軸1
aが図2に示す点3o(初期位置)を通過するように各
透過ターゲット2a-kを取り付ける。トンネル内空変位
測定の際には、これら各透過ターゲット2a-kを目視す
ることによって各点の変位を測定する。
When measuring the displacement of the top of the tunnel 100 as in the present embodiment, each transmission target 2a -k is measured.
The horizontal ruled lines 3a, 3a ... Are attached as the X-axis direction (that is, the horizontal direction) shown in FIG. 1, and the vertical ruled lines 3b, 3b ,. At this time, the optical axis 1
Each transmission target 2a- k is attached so that a passes through the point 3o (initial position) shown in FIG. When measuring the air displacement inside the tunnel, the displacement of each point is measured by visually observing each of the transmission targets 2a -k .

【0026】図3は、変位測定時における透過ターゲッ
ト2a-kを通過する光軸1aの測定点3pの一例を示す
図である。この例では、この透過ターゲット2a-kが取
り付けられた地山(測定点)は、図1に示した−Z方向
に8mm、X方向に6mm変位していることになる。
FIG. 3 is a diagram showing an example of measurement points 3p of the optical axis 1a passing through the transmission targets 2a -k during displacement measurement. In this example, the natural ground (measurement point) to which this transmission target 2a -k is attached is displaced by 8 mm in the -Z direction and 6 mm in the X direction shown in FIG.

【0027】また上述のように、各透過ターゲット2a
-kに罫書かれた横罫3a、3a・・・および縦罫3b、
3b・・・は、レーザ光源1の出力光を容易に減衰させ
ない構成である。このため、図1に示すように同時に複
数の透過ターゲット2a-kに光軸1aを通過させ、各点
の変位を測定することができる。
Further, as described above, each transmission target 2a
horizontal ruled lines 3a, 3a ... and vertical ruled lines 3b, which are marked on -k ,
3b ... is a configuration in which the output light of the laser light source 1 is not easily attenuated. Therefore, as shown in FIG. 1, it is possible to simultaneously pass a plurality of transmission targets 2a -k through the optical axis 1a and measure the displacement at each point.

【0028】このように本実施の形態によれば、トンネ
ル内を往来する工作機械や作業員の影響を受けることな
く、トンネル内の複数点における変位を連続して測定す
ることができる。即ち、レーザ光源1や各透過ターゲッ
ト2a-kは固定したまま掘削作業を進めることができる
ので、変位測定作業が大幅に省力化される。
As described above, according to the present embodiment, it is possible to continuously measure the displacements at a plurality of points in the tunnel without being affected by the machine tool or the worker who moves in and out of the tunnel. That is, since the excavation work can be performed while the laser light source 1 and the transmission targets 2a- k are fixed, the displacement measurement work is significantly saved.

【0029】なお、上述の実施の形態ではトンネルの天
端の変位を測定する場合を例に挙げて説明したが、例え
ば図1に示す各透過ターゲット2b-kや各透過ターゲッ
ト2c-kを用いることで、トンネルの側端の変位を測定
することもできる。
In the above embodiment, the case where the displacement of the top of the tunnel is measured has been described as an example. However, for example, each transmission target 2b -k or each transmission target 2c -k shown in FIG. 1 is used. Therefore, the displacement of the side edge of the tunnel can be measured.

【0030】また、図1に示すトンネル100は直線で
あるが、トンネルの半径が数km以下であれば、レーザ
光源1からの距離が概ね200〜300m程度までの透
過ターゲットで同時に変位測定が可能である。また本発
明は、水準面に対して水平トンネルにあっても垂直トン
ネル(垂直坑)や斜坑にあっても適用可能であることは
言うまでもない。
Further, although the tunnel 100 shown in FIG. 1 is a straight line, if the radius of the tunnel is several km or less, displacement measurement can be performed simultaneously with a transmission target whose distance from the laser light source 1 is about 200 to 300 m. Is. Further, it goes without saying that the present invention can be applied to a horizontal tunnel, a vertical tunnel (vertical pit), or an inclined shaft with respect to the level surface.

【0031】さらに、透過ターゲット2a-kに罫書く横
罫3a、3a・・・および縦罫3b、3b・・・を受光
材料(入射した光量に応じて電気的特性の変化する材
料、例えばCDS等)で形成し、各横罫3a、3a・・
・3b、3b・・・の各々の電気的特性をセンサでピッ
クアップし、コンピュータ等で処理する構成とすること
もできる。こうすることにより、作業員が透過ターゲッ
トの近傍に出向くことなく、変位の自動測定が可能にな
る。
Further, horizontal ruled lines 3a, 3a ... And vertical ruled lines 3b, 3b ... Are drawn on the transmissive target 2a- k as a light receiving material (a material whose electrical characteristics change according to the amount of incident light, for example, CDS. Etc.) and each horizontal ruled line 3a, 3a ...
The electric characteristics of 3b, 3b, ... Can be picked up by a sensor and processed by a computer or the like. This allows the operator to automatically measure the displacement without having to go near the transmission target.

【0032】[0032]

【発明の効果】以上説明したように、この発明によれ
ば、トンネル内壁の不動点に近接して取り付けたレーザ
発振手段からトンネルの進行方向と平行にレーザ光を照
射し、レーザ光の光軸との交差面に、各々進行方向と直
交する方向に所定間隔で配置された複数の横罫線と各々
進行方向と横罫線とに直交する方向に所定間隔で配置さ
れた複数の縦罫線とが形成された標的をトンネル内壁に
取り付け、レーザ発振手段と標的との取り付け時の交差
面における光軸の交差位置を初期値とするとともに、測
定時に光軸が複数配置された縦罫線と複数配置された横
罫線との各々何れと交差するかを特定し、横罫線と縦罫
線とが配置された所定間隔に基づいて当該標的の初期値
に対する位置変位を求めることで当該標的が取り付けら
れたトンネル内壁の変位を求めるので掘削作業に影響を
与えることがなく、また、標的をレーザ光が透過する材
質で形成するとともに横罫線ならびに縦罫線をレーザが
減衰しないように形成し、当該標的を光軸上に所定間隔
で複数取り付けるので、少ない手間で変位の測定ができ
るトンネル内空変位測定装置およびトンネル内空変位測
定方法が実現可能であるという効果が得られる。
As described above, according to the present invention, the laser beam is emitted from the laser oscillating means mounted near the fixed point of the inner wall of the tunnel in parallel with the traveling direction of the tunnel, and the optical axis of the laser beam is emitted. A plurality of horizontal ruled lines arranged at predetermined intervals in the direction orthogonal to the traveling direction and a plurality of vertical ruled lines arranged at predetermined intervals in the direction orthogonal to the traveling direction and the horizontal ruled lines are formed on the intersecting surface of The target was attached to the inner wall of the tunnel, and the initial position was the crossing position of the optical axis at the crossing surface when the laser oscillation means and the target were attached, and a plurality of vertical ruled lines and multiple optical axes were arranged during measurement. It is specified which of the horizontal ruled lines intersects each other, and the positional displacement with respect to the initial value of the target is calculated based on a predetermined interval in which the horizontal ruled lines and the vertical ruled lines are arranged. Since the position is calculated, it does not affect the excavation work, and the target is made of a material that allows laser light to pass through, and the horizontal and vertical ruled lines are formed so that the laser does not attenuate it, and the target is placed on the optical axis. Since a plurality of devices are attached at predetermined intervals, it is possible to obtain an effect that a tunnel inner air displacement measuring device and a tunnel inner air displacement measuring method capable of measuring displacement with less labor can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施の形態にかかるトンネル内空変
位測定装置を示す構成図である。
FIG. 1 is a configuration diagram showing an in-tunnel air displacement measuring apparatus according to an embodiment of the present invention.

【図2】同実施の形態における透過ターゲット2a-k
詳細な構成を示す平面図である。
FIG. 2 is a plan view showing a detailed configuration of a transmission target 2a -k according to the same embodiment.

【図3】同実施の形態による変位測定時における透過タ
ーゲット2a-kを通過する光軸1aの測定点3pの一例
を示す図である。
FIG. 3 is a diagram showing an example of measurement points 3p of an optical axis 1a passing through a transmission target 2a -k during displacement measurement according to the same embodiment.

【図4】従来技術にかかるコンバージェンスメータの構
成図である。
FIG. 4 is a configuration diagram of a conventional convergence meter.

【図5】従来技術にかかる光波測距儀を用いた変位測定
器を示す構成図である。
FIG. 5 is a configuration diagram showing a displacement measuring device using a lightwave distance measuring device according to a conventional technique.

【図6】従来技術にかかる光波測距儀を用いた変位測定
方法を示す図である。
FIG. 6 is a diagram showing a displacement measuring method using a lightwave rangefinder according to a conventional technique.

【符号の説明】[Explanation of symbols]

1 レーザ光源(レーザ発振手段) 1a 光軸 2a-1、2a-2・・・2a-n 透過ターゲット(標的) 2a-k、2b-k、2c-k 透過ターゲット(標的) 3a 横罫(横罫線) 3b 縦罫(縦罫線) 100 トンネル1 Laser Light Source (Laser Oscillating Means) 1a Optical Axis 2a -1 , 2a -2 ... 2a -n Transmission Target (Target) 2a -k , 2b -k , 2c -k Transmission Target (Target) 3a Horizontal Rule (Horizontal) Ruled line 3b Vertical ruled line (vertical ruled line) 100 Tunnel

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 トンネル(100)内の不動点に取り付
けられ、前記トンネルの進行方向と平行にレーザ光を照
射するレーザ発振手段(1)と、 前記トンネル内面に取り付けられ前記レーザ光の光軸
(1a)との交差面を有する標的(2a-k)とを有し、
前記標的の前記光軸との交差面には、 所定間隔で各々前記進行方向と直交する方向に配置され
た複数の横罫線(3a)と、 所定間隔で各々前記進行方向と前記横罫線とに直交する
方向に配置された複数の縦罫線(3b)とが形成されて
いることを特徴とするトンネル内空変位測定装置。
1. A laser oscillating means (1) attached to a fixed point in a tunnel (100) for irradiating a laser beam parallel to a traveling direction of the tunnel, and an optical axis of the laser beam attached to an inner surface of the tunnel. A target (2a -k ) having an intersection with (1a),
A plurality of horizontal ruled lines (3a) arranged at a predetermined interval in a direction orthogonal to the traveling direction at an intersecting surface of the target with the optical axis, and at a predetermined interval respectively in the traveling direction and the horizontal ruled line. An in-tunnel air displacement measuring device characterized in that a plurality of vertical ruled lines (3b) arranged in orthogonal directions are formed.
【請求項2】 前記標的は前記レーザ光を透過させる材
質で形成されるとともに前記横罫線ならびに前記縦罫線
は前記レーザ光を減衰させないように形成され、 当該標的は前記光軸上に所定間隔で複数取り付けられる
ことを特徴とする請求項1に記載のトンネル内空変位測
定装置。
2. The target is formed of a material that transmits the laser light, the horizontal ruled lines and the vertical ruled lines are formed so as not to attenuate the laser light, and the target is arranged at predetermined intervals on the optical axis. The in-tunnel air displacement measuring device according to claim 1, wherein a plurality of devices are attached.
【請求項3】 (a)トンネル内壁の不動点に近接して
取り付けたレーザ発振手段から前記トンネルの進行方向
と平行にレーザ光を照射し、 (b)前記レーザ光の光軸との交差面に、各々前記進行
方向と直交する方向に所定間隔で配置された複数の横罫
線と、各々前記進行方向と前記横罫線とに直交する方向
に所定間隔で配置された複数の縦罫線とが形成された標
的を前記トンネル内壁に取り付け、 (c)前記レーザ発振手段と前記標的との取り付け時の
前記交差面における前記光軸の交差位置を初期値とする
とともに、測定時に前記光軸が前記複数配置された前記
縦罫線と前記複数配置された前記横罫線との各々何れと
交差するかを特定し、 (d)前記横罫線と前記縦罫線とが配置された前記所定
間隔に基づいて当該標的の前記初期値に対する位置変位
を求めることで当該標的が取り付けられた前記トンネル
内壁の変位を求めることを特徴とするトンネル内空変位
測定方法。
3. A laser beam is emitted from a laser oscillating means mounted in the vicinity of a fixed point on the inner wall of the tunnel in parallel with the traveling direction of the tunnel, and a crossing surface with the optical axis of the laser beam is provided. A plurality of horizontal ruled lines arranged at predetermined intervals in a direction orthogonal to the traveling direction, and a plurality of vertical ruled lines arranged at predetermined intervals in a direction orthogonal to the traveling direction and the horizontal ruled lines. The target is attached to the inner wall of the tunnel; It specifies which of the arranged vertical ruled lines and the plurality of arranged horizontal ruled lines intersects each other, and (d) the target based on the predetermined interval in which the horizontal ruled lines and the vertical ruled lines are arranged. To the initial value of A method for measuring an air displacement inside a tunnel, wherein the displacement of the inner wall of the tunnel to which the target is attached is obtained by obtaining the position displacement.
【請求項4】 前記標的を前記レーザ光が透過する材質
で形成するとともに前記横罫線ならびに前記縦罫線を前
記レーザが減衰しないように形成し、当該標的を前記光
軸上に所定間隔で複数取り付けることを特徴とする請求
項3に記載のトンネル内空変位測定方法。
4. The target is formed of a material that allows the laser light to pass therethrough, and the horizontal ruled lines and the vertical ruled lines are formed so as not to be attenuated by the laser, and a plurality of the targets are attached at predetermined intervals on the optical axis. The method for measuring air displacement in a tunnel according to claim 3, wherein:
JP13555096A 1996-05-29 1996-05-29 Apparatus and method for measuring hollow displacement in tunnel Withdrawn JPH09318352A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13555096A JPH09318352A (en) 1996-05-29 1996-05-29 Apparatus and method for measuring hollow displacement in tunnel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13555096A JPH09318352A (en) 1996-05-29 1996-05-29 Apparatus and method for measuring hollow displacement in tunnel

Publications (1)

Publication Number Publication Date
JPH09318352A true JPH09318352A (en) 1997-12-12

Family

ID=15154417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13555096A Withdrawn JPH09318352A (en) 1996-05-29 1996-05-29 Apparatus and method for measuring hollow displacement in tunnel

Country Status (1)

Country Link
JP (1) JPH09318352A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100457244B1 (en) * 2002-04-11 2004-11-16 에스케이건설 주식회사 A method for forecasting soft ground may be fit face ahead in case of tunneling
CN104373129A (en) * 2014-10-24 2015-02-25 合肥工业大学 Shield tunnel vault crown settlement monitoring device
CN104533521A (en) * 2014-12-19 2015-04-22 上海大学 Subway tunnel duct piece dislocation detecting system and detecting method
CN106097316A (en) * 2016-06-03 2016-11-09 长春光华微电子设备工程中心有限公司 The substrate position identifying processing method of laser scribing means image identification system
KR101713257B1 (en) * 2016-09-28 2017-03-07 윤영덕 Tunnel internal under break grasp apparatus
KR20180060235A (en) * 2016-11-28 2018-06-07 광주대학교산학협력단 The apparatus and system for detecting displacement of structure
CN108986489A (en) * 2018-08-01 2018-12-11 中铁十七局集团第五工程有限公司 A kind of tunnel T shape crosses section traffic light control system and its control method
CN112268797A (en) * 2020-10-09 2021-01-26 武汉威思顿环境系统有限公司 All-round comprehensive detector in tunnel
CN112504333A (en) * 2020-11-13 2021-03-16 贵州大学 Tunnel vertical settlement and arch wall compressive stress monitor and cloud monitoring and early warning system
KR102557003B1 (en) * 2022-11-25 2023-07-25 한국건설계측검교정센터 주식회사 Smart embedded type automatic measurement device using internal displacement of tunnel

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100457244B1 (en) * 2002-04-11 2004-11-16 에스케이건설 주식회사 A method for forecasting soft ground may be fit face ahead in case of tunneling
CN104373129A (en) * 2014-10-24 2015-02-25 合肥工业大学 Shield tunnel vault crown settlement monitoring device
CN104533521A (en) * 2014-12-19 2015-04-22 上海大学 Subway tunnel duct piece dislocation detecting system and detecting method
CN106097316A (en) * 2016-06-03 2016-11-09 长春光华微电子设备工程中心有限公司 The substrate position identifying processing method of laser scribing means image identification system
KR101713257B1 (en) * 2016-09-28 2017-03-07 윤영덕 Tunnel internal under break grasp apparatus
KR20180060235A (en) * 2016-11-28 2018-06-07 광주대학교산학협력단 The apparatus and system for detecting displacement of structure
CN108986489A (en) * 2018-08-01 2018-12-11 中铁十七局集团第五工程有限公司 A kind of tunnel T shape crosses section traffic light control system and its control method
CN112268797A (en) * 2020-10-09 2021-01-26 武汉威思顿环境系统有限公司 All-round comprehensive detector in tunnel
CN112268797B (en) * 2020-10-09 2022-07-19 武汉威思顿环境系统有限公司 All-round comprehensive detector in tunnel
CN112504333A (en) * 2020-11-13 2021-03-16 贵州大学 Tunnel vertical settlement and arch wall compressive stress monitor and cloud monitoring and early warning system
KR102557003B1 (en) * 2022-11-25 2023-07-25 한국건설계측검교정센터 주식회사 Smart embedded type automatic measurement device using internal displacement of tunnel

Similar Documents

Publication Publication Date Title
CN105756711B (en) Constructing tunnel based on 3 D laser scanning, which just props up, invades limit monitoring analysis and early warning method
JPH09318352A (en) Apparatus and method for measuring hollow displacement in tunnel
GB2154387A (en) Locating mobile cutting means
US7461463B1 (en) Eccentricity gauge for wire and cable and method for measuring concentricity
JPS5825207B2 (en) Device for setting each point and straight line
JP2640766B2 (en) Method and apparatus for detecting relative angle in two-dimensional measurement by laser displacement meter
JPH1089957A (en) Three-dimensional measuring method for structure member
CN104132627B (en) Numerical control machine tool guide rail molded surface rapid detection device and method
EP2159534A1 (en) Eccentricity gauge for wire and cable and method for measuring concentricity
JPH11287651A (en) Indoor positioning device
KR100258405B1 (en) Measuring method of blast position for tunneling work and apparatus thereof
JP3031140B2 (en) Non-contact length measuring device
JPH0829165A (en) Method and device for detecting position of underground boring machine
SU1406308A1 (en) Method of determining coordinates of dragline bucket
JP2955784B2 (en) 3D tunnel survey method
JPH0212561Y2 (en)
JP3031832U (en) Cylindrical target
CN206189865U (en) Concrete positioner that vibrates based on laser three -dimensional location
JP2000009438A (en) Method for laying optical fiber sensors for measuring circumferential distortion on tunnel wall surface
JP2012132844A (en) Method for specifying inspection work result on internal surface of container surrounded by faces and working position, and information management method
JPH1137753A (en) Apparatus and method for measuring geologically discontinuous surface
JPH09329438A (en) Measuring method and device for geological discontinuous plane
JPH0754254B2 (en) Horizontal displacement measuring device for underground excavator
JP2002181239A (en) Method for service business of measuring laid precision for pipe of small aperture
CN103575215A (en) Device for monitoring laser position

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030805