JPH09316444A - Production of yttrium silicate fluorescent substance - Google Patents

Production of yttrium silicate fluorescent substance

Info

Publication number
JPH09316444A
JPH09316444A JP13304196A JP13304196A JPH09316444A JP H09316444 A JPH09316444 A JP H09316444A JP 13304196 A JP13304196 A JP 13304196A JP 13304196 A JP13304196 A JP 13304196A JP H09316444 A JPH09316444 A JP H09316444A
Authority
JP
Japan
Prior art keywords
phosphor
particle size
rare earth
yttrium silicate
earth oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13304196A
Other languages
Japanese (ja)
Other versions
JP3399231B2 (en
Inventor
Yasunobu Noguchi
泰延 野口
Masahiro Yoneda
昌弘 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP13304196A priority Critical patent/JP3399231B2/en
Publication of JPH09316444A publication Critical patent/JPH09316444A/en
Application granted granted Critical
Publication of JP3399231B2 publication Critical patent/JP3399231B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Luminescent Compositions (AREA)
  • Formation Of Various Coating Films On Cathode Ray Tubes And Lamps (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a production process for a fluorescent substance of yttrium silicate which has good γ-characteristics, temperature characteristics and a long life. SOLUTION: This yttrium silicate fluorescent substance is produced by firing a mixed raw material comprising a rare earth element oxide and silicon dioxide. The rare earth element oxide is a powder of spherical particles with a uniform particle size distribution, satisfies the following conditions, and prepared by firing a raw material mixture without flux at 1,450-1,650 deg.C: D1 /Ds <=1.5, 2.0<=Da <=6.0, 2.7<=Dm <=11.0, 1.0<=Dm /Da <=2.0, 0<=σlog <=0.30; where D1 is the longer axis (μm), Ds is the shorter axis (μm), Da is an average particle size (μm), Dm is a median particle size (μm) and σlog is an index showing an expansion of particle size distribution.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、イットリウムシリケー
ト蛍光体の製造方法に係り、特に、投写管用緑色発光蛍
光体として使用される、γ特性及び温度特性が良好で、
かつ長寿命なイットリウムシリケート蛍光体の製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a yttrium silicate phosphor, and in particular, it is used as a green light emitting phosphor for a projection tube and has good γ characteristics and temperature characteristics,
The present invention also relates to a method for producing a yttrium silicate phosphor having a long life.

【0002】[0002]

【従来の技術】大型画面用のカラーテレビは、青、緑、
赤のモノクロームCRT3個を用いてスクリーン上に拡
大投写し、カラー映像を写し出す投写型ディスプレイが
使用されている。大画面であって、しかも高輝度の映像
を実現するには、モノクロームCRT(投写管)の蛍光
面には高電圧、高電流が印加して使用される。その為に
蛍光面を構成する蛍光体には次のような特性が要求され
る。
2. Description of the Related Art Color televisions for large screens are blue, green,
2. Description of the Related Art A projection display that uses three red monochrome CRTs to project an enlarged image on a screen to project a color image is used. In order to realize a large-screen and high-luminance video, a high voltage and a high current are applied to a fluorescent screen of a monochrome CRT (projection tube). Therefore, the following characteristics are required for the phosphor constituting the phosphor screen.

【0003】(1)投写管の内面に塗布される蛍光体に
は、高電流を流しても輝度が飽和しない輝度−電流特性
(γ特性)の良好な蛍光体が望まれる。これは、大画面
上にしかも高輝度に拡大投写する必要からの条件であ
る。
(1) As a phosphor applied to the inner surface of a projection tube, a phosphor having good luminance-current characteristics (γ characteristics) that does not saturate the luminance even when a high current flows is desired. This is a condition because it is necessary to perform enlarged projection on a large screen with high luminance.

【0004】(2)高温でも安定に高輝度な発光を有す
る蛍光体である。(温度特性)投写管用蛍光体には上述
したように極めて大きな電力が投入される。これは通常
のCRTに比べ、およそ1000倍程度にも達する。そ
の為に、発光に使用されなかったエネルギーは全て熱を
発生する。その結果、投写管内部の蛍光体は100℃以
上にも加熱されることとなり、高温でも輝度低下の起こ
りにくい蛍光体であることが要求される。
(2) A phosphor that emits light with high luminance stably even at high temperatures. (Temperature Characteristics) An extremely large electric power is supplied to the phosphor for the projection tube as described above. This is about 1000 times higher than that of a normal CRT. Therefore, any energy not used for light emission generates heat. As a result, the phosphor inside the projection tube is heated to 100 ° C. or higher, and it is required that the phosphor be hardly reduced in luminance even at a high temperature.

【0005】(3)高付加の条件で励起発光されても長
寿命である。さらに、このような大電流が流されて使用
される為に、結晶の破壊の起こり難くい安定した結晶構
造の蛍光体であることが要求される。
(3) It has a long life even when excited and emitted under high load conditions. Further, since such a large current is applied to the phosphor, the phosphor is required to be a phosphor having a stable crystal structure which is unlikely to be broken.

【0006】蛍光体母体或いは付活剤が希土類元素で構
成される希土類蛍光体は、一般的にこれらの(1)〜
(3)の特性に優れているため投写管用に適しており、
投写管用緑色発光蛍光体としてテルビウムで付活された
高温度下での使用に比較的強いシリケート系蛍光体であ
る組成式がY2SiO5:Tbとして表現されるイットリ
ウムシリケート蛍光体が用いらる。
[0006] Rare earth phosphors whose phosphor matrix or activator is composed of a rare earth element are generally (1) to (4)
It is suitable for projection tubes because it has excellent characteristics of (3).
A yttrium silicate phosphor whose composition formula is Y 2 SiO 5 : Tb, which is a silicate-based phosphor that is activated by terbium as a green light-emitting phosphor for a projection tube and is relatively strong when used at high temperatures, is used. .

【0007】[0007]

【発明が解決しようとする課題】Y2SiO5:Tb蛍光
体は上述した(1)〜(3)の特性を満たし、現在投写
管用緑色蛍光体として最も実用的な蛍光体の一つである
が、本発明の課題は、これらの特性を更に改善できるイ
ットリウムシリケート蛍光体を提供することにある。す
なわち、輝度−電流特性(γ特性)、温度特性、寿命特
性が更に良好であるイットリウムシリケート蛍光体を提
供することを目的とする。
The Y 2 SiO 5 : Tb phosphor satisfies the above-mentioned characteristics (1) to (3) and is one of the most practical phosphors currently available as a green phosphor for projection tubes. However, an object of the present invention is to provide an yttrium silicate phosphor that can further improve these characteristics. That is, it is an object of the present invention to provide an yttrium silicate phosphor having even better luminance-current characteristics (γ characteristics), temperature characteristics, and life characteristics.

【0008】[0008]

【課題を解決するための手段】本発明者は、前記課題を
解決するには蛍光体そのものの結晶安定性を改善するこ
とがポイントであると考えた。そして、特に、希土類酸
化物原料の粒子的性質に着目して、これが最終の蛍光体
の上述した発光性能に大きく影響すると考え、多くの希
土類酸化物の粒子について鋭意検討した結果、蛍光体原
料として最適な粒子形状、粒径、粒度分布が存在し、最
適な焼成温度と組み合わせることで、上述した課題を解
決できることを見いだし本発明を完成させるに至った。
Means for Solving the Problems The present inventor considered that the key to solving the above problems was to improve the crystal stability of the phosphor itself. In particular, paying attention to the particle properties of the rare earth oxide raw material, it is thought that this greatly affects the above-described luminescence performance of the final phosphor, and as a result of earnestly examining many rare earth oxide particles, as a phosphor raw material The present inventors have found that there are optimal particle shapes, particle diameters, and particle size distributions, and that the above-mentioned problems can be solved by combining the particles with an optimal firing temperature, and have completed the present invention.

【0009】すなわち、本発明のイットリウムシリケー
ト蛍光体の製造方法は、希土類酸化物と二酸化ケイ素か
らなる混合原料を焼成するイットリウムシリケート蛍光
体の製造方法において、前記希土類酸化物は、次の条件
を満たし、粒子形状が球状で粒のそろった粒度分布を持
ち、前記混合原料を1400℃〜1650℃の範囲でフ
ラックスを添加せずに焼成することを特徴とする。 Dl/Ds≦1.5 2.0≦Da≦6.0 2.0≦Dm≦12.0 1.0≦Dm/Da≦2.0 0≦σlog≦0.30 ここで、Dlは粒子の長径(μm)、Dsは短径(μ
m)、Daは平均粒径(μm)、Dmは中央粒径(μ
m)、σlogは粒度分布の広がりを示す指標である。
That is, the method for producing a yttrium silicate phosphor of the present invention is the method for producing an yttrium silicate phosphor in which a mixed raw material comprising a rare earth oxide and silicon dioxide is fired, wherein the rare earth oxide satisfies the following conditions. The particle shape is spherical and has a uniform particle size distribution, and the mixed raw material is fired in the range of 1400 ° C. to 1650 ° C. without adding a flux. D l / D s ≦ 1.5 2.0 ≦ D a ≦ 6.0 2.0 ≦ D m ≦ 12.0 1.0 ≦ D m / D a ≦ 2.0 0 ≦ σ log ≦ 0.30 Here, D 1 is the major axis (μm) of the particle, and Ds is the minor axis (μm).
m), Da is the average particle size (μm), and Dm is the median particle size (μm).
m) and σ log are indices indicating the spread of the particle size distribution.

【0010】特に、前記希土類酸化物は、イットリウム
(Y)と、テルビウム(Tb)、またはCe(セリウ
ム)から選ばれる少なくとも1種の共沈酸化物である場
合、Tb付活のイットリウムシリケート(Y2SiO5
Tb蛍光体)、Ce付活イットリウムシリケート蛍光体
(Y2SiO5:Ce蛍光体)とすることができる。
Particularly, when the rare earth oxide is yttrium (Y) and at least one coprecipitated oxide selected from terbium (Tb) or Ce (cerium), yttrium silicate (Y) activated by Tb is used. 2 SiO 5 :
Tb phosphor) and Ce-activated yttrium silicate phosphor (Y 2 SiO 5 : Ce phosphor).

【0011】[0011]

【発明の実施の形態】本発明において使用する希土類酸
化物の粒子の特徴は、粒子形状が球形であり、粒子の大
きさが2.0〜6.0μm程度であり、粒のそろった粒
度分布を持つことが特徴である。このような粒子の特徴
を持つ希土類酸化物は、特開平3−271117号、特
開平3−271118号、及び特開平8−59233号
公報に開示される方法により得ることができる。
BEST MODE FOR CARRYING OUT THE INVENTION The characteristics of the rare earth oxide particles used in the present invention are that the particles are spherical, the size of the particles is about 2.0 to 6.0 μm, and the particle size distribution is uniform. The feature is to have. Rare earth oxides having such particle characteristics can be obtained by the methods disclosed in JP-A-3-271117, JP-A-3-271118, and JP-A-8-59233.

【0012】例えば、特開平8−59233号公報に
は、希土類イオンと蓚酸イオンとの反応において、反応
開始から濾別、水洗までの間、−5℃以上20℃以下に
保つとともに有機塩基の共存下に希土類蓚酸塩を沈殿さ
せ、濾別水洗後−5℃以上20℃以下の水蒸気未飽和の
空気流中におくこと、または、−20℃以上20℃以下
での真空乾燥あるいは凍結真空乾燥によって付着水を除
去した後、焼成する方法が開示されている。本発明にお
いて、これらの方法により得られる球状希土類酸化物を
そのまま利用することはできるが、この方法に限るもの
ではない。また、この酸化物を分級することによりさら
に粒度分布のシャープな希土類酸化物粒子を得ることが
できる。
For example, in Japanese Unexamined Patent Publication (Kokai) No. 8-59233, in the reaction of a rare earth ion and an oxalate ion, the temperature is kept at -5 ° C. or higher and 20 ° C. or lower and the coexistence of an organic base is maintained from the start of the reaction to the filtration and washing with water. By precipitating the rare earth oxalate below, washing by filtration and washing, and placing it in an air flow of -5 ° C or higher and 20 ° C or lower that is not saturated with water vapor, or by vacuum drying at -20 ° C or higher and 20 ° C or lower, or freeze-vacuum drying. A method of firing after removing the attached water is disclosed. In the present invention, the spherical rare earth oxide obtained by these methods can be used as it is, but is not limited to this method. Further, by classifying this oxide, rare earth oxide particles having a sharper particle size distribution can be obtained.

【0013】このような方法で得られる希土類酸化物を
シリカと化学量論比で混合し、フラックス(融剤)を使
用せず、1400℃〜1650℃の高温で、電気炉、坩
堝、或いは焼成量等の条件にもよるが、2〜10時間焼
成することで、本発明の蛍光体を得ることができる。
The rare earth oxide obtained by such a method is mixed with silica in a stoichiometric ratio, and without using a flux (fluxing agent), at a high temperature of 1400 ° C. to 1650 ° C., an electric furnace, a crucible, or firing. The phosphor of the present invention can be obtained by firing for 2 to 10 hours, depending on conditions such as the amount.

【0014】<粒子の形状>粒子の形状が球状であるこ
とにより、焼成時のSiO2(シリカ)との反応が均一
となり、イットリウムシリケート蛍光体の異常成長が起
こり難く、高温度であるに関わらずフラックスを使用せ
ずに均質な製品を焼成することができる。また、球状で
あるためにSiO2との乾式混合が均一に行われ、その
結果、焼成品の組成のばらつきが小さくなる。球状であ
ることは、粒子を顕微鏡でみると分かるが、形状を客観
的な指標で評価するには、希土類酸化物粒子の顕微鏡写
真の代表的な複数個の粒子の長径Dlと、短径Dsを測定
して、Dl/Dsの値を計算し、Dl/Ds≦1.5の関係
を満たす範囲であることが球状の範囲であり、焼成反応
に良好に作用する。
<Shape of particles> Since the shape of the particles is spherical, the reaction with SiO 2 (silica) at the time of firing becomes uniform, and abnormal growth of the yttrium silicate phosphor hardly occurs. Homogeneous products can be fired without the use of flux. Further, since it is spherical, the dry mixing with SiO 2 is uniformly performed, and as a result, the variation in the composition of the fired product is reduced. It can be seen from a microscope that the particles are spherical, but in order to evaluate the shape by an objective index, the major axis D 1 and the minor axis of a plurality of typical rare earth oxide particle micrographs are used. D s is measured, the value of D 1 / D s is calculated, and the range satisfying the relationship of D 1 / D s ≦ 1.5 is the spherical range, which favorably affects the firing reaction.

【0015】図1にDl/Dsと、輝度−電流特性(相対
γ特性)の関係をプロットする。ここで、相対γ特性と
は次のように定義する。測定サンプル蛍光面をデマンタ
ブル装置に装着し、0.05μA/cm2の電流密度の
電子線で蛍光面を走査したときの基準蛍光体に対する相
対発光輝度L0.05を測定し、50μA/cm2の電流密
度の電子線で蛍光面を走査したときの基準蛍光体に対す
る相対発光輝度L50を測定した場合、γ=L50/L0.05
×100%を相対γ特性として定義する。図1より、D
l/Dsの値が1に近づくに従い、すなわち真球に近づく
ほどγ特性が向上していることが分かる。Dl/Dsの値
は1.5以下で相対γ特性は101%を越えて効果が確
認できるようになる。
FIG. 1 plots the relationship between D 1 / D s and the luminance-current characteristic (relative γ characteristic). Here, the relative γ characteristic is defined as follows. The measurement sample fluorescent screen mounted on Demantaburu device, a phosphor screen to determine the relative emission luminance L0.05 respect to the reference phosphor when scanned by an electron beam current density of 0.05 A / cm 2, of 50 .mu.A / cm 2 when measuring the relative emission brightness L 50 with respect to the reference phosphor when scanning the phosphor screen with the electron beam current density, γ = L 50 / L 0.05
× 100% is defined as a relative γ characteristic. From FIG. 1, D
It can be seen that the γ characteristic is improved as the value of l / D s approaches 1, that is, as it approaches a true sphere. When the value of D 1 / D s is 1.5 or less, the relative γ characteristic exceeds 101%, and the effect can be confirmed.

【0016】<粒子の大きさ>希土類酸化物の粒子径
は、蛍光体の目標粒径に依存する。蛍光体を大きくする
場合は希土類酸化物の粒径を大きくすることで可能とな
る。希土類酸化物の粒径は下式の範囲が適当である。 2.0≦Da≦6.0 2.0≦Dm≦12.0 ここでDaは空気透過法であるFisher Sub−S
ieve Sizerを用いて測定される平均径であ
り、Daは酸化物の比表面積から測定され、顕微鏡写真
でみる大小関係に近い粒子径に相当し、基本粒径という
ことができる。これに対しDmは電気抵抗法の粒度分布
測定装置であるELZONE80xyを用いて測定され
る中央粒径である。これは測定原理から分散状態にある
か凝集状態にあるかの知見を含んだ粒径ということがで
きる。
<Particle Size> The particle size of the rare earth oxide depends on the target particle size of the phosphor. The size of the phosphor can be increased by increasing the particle size of the rare earth oxide. The particle size of the rare earth oxide is suitably in the range of the following formula. 2.0 ≦ D a ≦ 6.0 2.0 ≦ D m ≦ 12.0 where Da is an air permeation method Fisher Sub-S
It is an average diameter measured using an item sizer, and Da is measured from the specific surface area of the oxide, corresponds to a particle diameter close to a size relationship seen in a micrograph, and can be said to be a basic particle diameter. On the other hand, Dm is a median particle size measured using ELZONE80xy which is a particle size distribution measuring device of an electric resistance method. This can be said to be a particle size that includes a knowledge of whether it is in a dispersed state or an aggregated state from the measurement principle.

【0017】<粒子の分散性>通常、DmはDaより大き
くなり、このことは凝集傾向にあることを示している。
それで、Dm/Daの値は1に近いほど高い分散状態にあ
ることを意味する。希土類酸化物はSiO2と理想的に
混合される為には分散性が高い方が望ましい。凝集すれ
ば、SiO2との均一な混合は行われない。Dm/Da
値はγ特性にも影響を与えるが、特に温度特性を改善す
るのに効果がある。
<Dispersibility of Particles> Normally, D m is larger than D a, which means that the particles tend to aggregate.
Therefore, the closer the value of D m / D a is to 1, the higher the dispersion state is. Since the rare earth oxide is ideally mixed with SiO 2 , it is desirable that it has high dispersibility. If agglomerated, uniform mixing with SiO 2 is not performed. Although the value of D m / D a affects the γ characteristics, it is particularly effective in improving the temperature characteristics.

【0018】図2にDm/Daと、温度特性の関係をプロ
ットする。ここで、温度特性は常温での発光輝度に対す
る、110℃の温度下の相対発光輝度であり、測定セル
を加熱しながら輝度を測定する。図2はこれを各Dm
aの値に対し測定した。図2より、Dm/Daの値が1
に近づくに従い、すなわち分散性が良いほど温度特性が
向上していることが分かる。Dm/Daの値は温度特性が
95%以上となる範囲、すなわち、1.0≦Dm/Da
2.0の範囲であることが好ましい。
FIG. 2 plots the relationship between D m / D a and temperature characteristics. Here, the temperature characteristic is a relative light emission luminance at a temperature of 110 ° C. with respect to the light emission luminance at room temperature, and the luminance is measured while heating the measurement cell. Figure 2 shows this as D m /
It was measured with respect to the value of D a . From FIG. 2, the value of D m / D a is 1
It can be seen that the temperature characteristics are improved as the value approaches, that is, the better the dispersibility is. The value of D m / D a is in the range where the temperature characteristic is 95% or more, that is, 1.0 ≦ D m / D a
It is preferably in the range of 2.0.

【0019】<粒度分布>希土類酸化物の粒子の重要な
要件の一つに粒度分布がシャープであることがある。す
なわち、希土類酸化物の粒子の粒がそろっていることが
重要である。そのことでSiO2との均一な混合が成さ
れ、焼成されるイットリウムシリケートの発光性能を向
上することができる。粒度分布がシャープであることを
示す指標としてσlogを用いて表現することができる。
ここで、σlogは次式で定義された値である。
<Particle size distribution> One of the important requirements for rare earth oxide particles is that the particle size distribution is sharp. That is, it is important that the particles of the rare earth oxides are uniform. As a result, uniform mixing with SiO 2 is achieved, and the light emission performance of the yttrium silicate to be baked can be improved. It can be expressed using σ log as an index indicating that the particle size distribution is sharp.
Here, σ log is a value defined by the following equation.

【0020】 σlog=[Σ{Pi(logDi−logDG2}]1/2 但し、logDG=ΣPilogDi、ここで、Diは階級
値、Piは相対頻度、logはeを底とする自然対数で
ある。
Σ log = [Σ {P i (logD i −logD G ) 2 }] 1/2 where logD G = ΣP i logD i , where D i is a class value, P i is a relative frequency, log Is the natural logarithm with base e.

【0021】実際のσlogの値は、希土類酸化物を水懸
濁液として、電気抵抗式の粒度分布測定装置であるEL
ZONE80xyを用いて希土類酸化物の重量基準分布
を測定して、コンピューターにより上記式を計算して求
める。
The actual value of σ log is EL, which is an electric resistance type particle size distribution measuring device, in which a rare earth oxide is used as a water suspension.
The weight-based distribution of the rare earth oxide is measured using ZONE80xy, and the above formula is calculated and obtained by a computer.

【0022】この値の物理的な意味は、測定粒径の対数
値の標準偏差値であり、これが小さいほど粒度分布はシ
ャープである。本発明において、希土類酸化物粒子のσ
logの値は上述した発光性能の全てにおいて向上するこ
とができるが、特に温度特性の向上に効果がある。
The physical meaning of this value is the standard deviation of the logarithmic values of the measured particle size, and the smaller this is, the sharper the particle size distribution is. In the present invention, σ of rare earth oxide particles
Although the value of log can be improved in all of the above-mentioned light emission performance, it is particularly effective in improving temperature characteristics.

【0023】図3にσlogと、温度特性の関係をプロッ
トする。Dm/Daの値が1に近づくに従い、すなわち粒
度分布がシャープなほど分散性が良いほど温度特性が向
上している。σlogの値は温度特性が90%以上の値を
示す範囲、すなわち、0≦σl og≦0.3の範囲である
ことが好ましい。
FIG. 3 plots the relationship between σ log and temperature characteristics. Gets closer to the value of D m / D a is 1, i.e. the particle size distribution is improved temperature characteristics as good dispersibility as sharp. The value of σ log is preferably in a range where the temperature characteristic shows a value of 90% or more, that is, in a range of 0 ≦ σ l og ≦ 0.3.

【0024】本発明において、イットリウムシリケート
蛍光体は、1400℃〜1650℃の高温度で焼成しす
る。しかも焼成時にフラックス(融剤)を一切使用しな
い。もし、多量のフラックスを使用する蛍光体の場合、
反応が比較的均質に起こり、しかも、もっと低温で焼成
できるが、この蛍光体では、フラックス成分の残留が蛍
光体の発光性能を低下することからフラックスを使用し
ない。それで、特に蛍光体原料混合物が高度に均一に混
合されたものでなければ異常反応が起こりやすくなる。
この異常反応を防ぐには、希土類酸化物はより均一に混
合され易いことが重要である。そのことで、発光性能の
優れたイットリウムシリケート蛍光体を得ることができ
る。
In the present invention, the yttrium silicate phosphor is fired at a high temperature of 1400 ° C to 1650 ° C. Moreover, no flux is used during firing. If the phosphor uses a large amount of flux,
Although the reaction takes place relatively homogeneously and can be fired at a lower temperature, the flux is not used in this phosphor because the residual flux component deteriorates the luminous performance of the phosphor. Therefore, an abnormal reaction is likely to occur unless the phosphor raw material mixture is highly uniformly mixed.
In order to prevent this abnormal reaction, it is important that the rare earth oxide is easily mixed more uniformly. As a result, an yttrium silicate phosphor having excellent light emitting performance can be obtained.

【0025】寿命特性はデマンタブル装置に測定試料を
装着し、30kvの電圧、8.6μA/cm2の電流密
度の電子線で250時間走査した場合の輝度維持率
(%)で定義する。
The life characteristics are defined as the luminance retention rate (%) when a measurement sample is mounted on a demantable apparatus and an electron beam having a voltage of 30 kv and a current density of 8.6 μA / cm 2 is scanned for 250 hours.

【0026】本発明は、母体組成がイットリウムシリケ
ートである蛍光体ならば、効果があり、例えば、付活剤
がTbであるY2SiO5:Tb蛍光体だけでなく、付活
剤がCeであるY2SiO5:Ce蛍光体の発光性能を向
上することができる。Tb、Ce以外の付活剤であって
も同様である。
The present invention is effective when the phosphor has a matrix composition of yttrium silicate. For example, not only the Y 2 SiO 5 : Tb phosphor whose activator is Tb but also the activator is Ce. It is possible to improve the light emission performance of a certain Y 2 SiO 5 : Ce phosphor. The same applies to activators other than Tb and Ce.

【0027】[0027]

【実施例】【Example】

[実施例1](Y1.84Tb0.1423の組成で、次の粒
子特性を持つ希土類酸化物を100gに対し、 Dl/Ds=1.1 Da=3.4 Dm=5.7 Dm/Da=1.68 σlog=0.244 SiO2(シリカ)(Da=0.5、Dm=0.8)を2
7gをボールミルにより混合して、坩堝に詰め、還元雰
囲気で1580℃で4時間焼成した。得られた蛍光体を
通常行う分散、水洗、乾燥し、篩いを通して、Y1.84
0.14SiO5蛍光体を得た。電流特性、温度特性、寿
命特性を測定し結果を表1にまとめる。
[Example 1] With respect to 100 g of a rare earth oxide having the composition of (Y 1.84 Tb 0.14 ) 2 O 3 and having the following particle characteristics, D 1 / D s = 1.1 Da = 3.4 D m = 5.7 D m / D a = 1.68 σ log = 0.244 SiO2 (silica) (D a = 0.5, D m = 0.8)
7 g was mixed by a ball mill, packed in a crucible, and baked in a reducing atmosphere at 1580 ° C. for 4 hours. The obtained phosphor is usually dispersed, washed with water, dried, and passed through a sieve to obtain Y 1.84 T.
b 0.14 SiO 5 phosphor was obtained. The current characteristics, temperature characteristics, and life characteristics were measured, and the results are summarized in Table 1.

【0028】[実施例2](Y1.84Tb0.1423の組
成で、次の粒子特性を持つ希土類酸化物を、 Dl/Ds=1.1 Da=2.3 Dm=4.2 Dm/Da=1.83 σlog=0.271 とすること以外、実施例1と同様にしてイットリウムシ
リケート蛍光体を得た。電流特性、温度特性、寿命特性
を測定し結果を表1にまとめる。
Example 2 A rare earth oxide having a composition of (Y 1.84 Tb 0.14 ) 2 O 3 and having the following particle characteristics was used: D 1 / D s = 1.1 Da = 2.3 D m = An yttrium silicate phosphor was obtained in the same manner as in Example 1 except that 4.2 D m / D a = 1.83 σ log = 0.271. The current characteristics, temperature characteristics, and life characteristics were measured, and the results are summarized in Table 1.

【0029】[実施例3](Y1.84Tb0.1423の組
成で、次の粒子特性を持つ希土類酸化物を、 Dl/Ds=1.1 Da=5.4 Dm=8.4 Dm/Da=1.75 σlog=0.250 とすること以外、実施例1と同様にしてイットリウムシ
リケート蛍光体を得た。電流特性、温度特性、寿命特性
を測定し結果を表1にまとめる。
[Example 3] A rare earth oxide having the composition of (Y 1.84 Tb 0.14 ) 2 O 3 and having the following particle characteristics was used: D l / D s = 1.1 Da = 5.4 D m = An yttrium silicate phosphor was obtained in the same manner as in Example 1 except that 8.4 D m / D a = 1.75 σ log = 0.250. The current characteristics, temperature characteristics, and life characteristics were measured, and the results are summarized in Table 1.

【0030】[比較例1](Y1.84Tb0.1423の組
成で、次の粒子特性を持つ希土類酸化物を、 Dl/Ds=1.8 Da=3.4 Dm=11.1 Dm/Da=3.26 σlog=0.386 とすること以外、実施例1と同様にしてイットリウムシ
リケート蛍光体を得た。電流特性、温度特性、寿命特性
を測定し結果を表1にまとめる。
[Comparative Example 1] A rare earth oxide having a composition of (Y 1.84 Tb 0.14 ) 2 O 3 and having the following particle characteristics was used: D 1 / D s = 1.8 Da = 3.4 D m = An yttrium silicate phosphor was obtained in the same manner as in Example 1 except that 11.1 D m / D a = 3.26 σ log = 0.386. The current characteristics, temperature characteristics, and life characteristics were measured, and the results are summarized in Table 1.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【発明の効果】本発明の蛍光体の製造方法に従えば、蛍
光体の結晶の結晶性を向上することで、高電流を流して
も輝度飽和の少ないγ特性の良好な、高温でも輝度低下
の起こりにくい、温度特性が良好で高付加の条件で励起
発光されても長寿命であるイットリウムシリケート蛍光
体が得られる。
According to the method for producing a phosphor of the present invention, by improving the crystallinity of the crystal of the phosphor, the brightness is low even when a high current is applied, the γ characteristic is good, and the brightness is reduced even at high temperatures. The yttrium silicate phosphor has good temperature characteristics, has a good temperature characteristic, and has a long life even when excited and emitted under high load conditions.

【0033】この蛍光体を投写管の内面の蛍光膜、ある
いはそれ以外の高電流密度で使用される用途の蛍光膜に
用いられた場合、高性能な陰極線管を提供することがで
きる。
When this phosphor is used for the phosphor film on the inner surface of the projection tube or for other uses for high current density, a high-performance cathode ray tube can be provided.

【0034】特に、希土類酸化物としてYとTbの共沈
酸化物である場合、投写管用に適したY2SiO5:Tb
蛍光体を得ることができる。
Particularly, when the rare earth oxide is a coprecipitated oxide of Y and Tb, Y 2 SiO 5 : Tb suitable for a projection tube is used.
A phosphor can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】Dl/Dsの値と相対γ特性の関係を示す特性
図。
FIG. 1 is a characteristic diagram showing a relationship between a value of D l / D s and a relative γ characteristic.

【図2】Dm/Daの値と温度特性の関係を示す特性図。FIG. 2 is a characteristic diagram showing a relationship between a value of D m / D a and a temperature characteristic.

【図3】σlogの値と温度特性の関係を示す特性図。FIG. 3 is a characteristic diagram showing a relationship between a value of σ log and a temperature characteristic.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 希土類酸化物と二酸化ケイ素からなる混
合原料を焼成するイットリウムシリケート蛍光体の製造
方法において、前記希土類酸化物は、次の条件を満た
し、粒子形状が球状で粒のそろった粒度分布を持ち、前
記混合原料を1400℃〜1650℃の範囲でフラック
スを添加せずに焼成することを特徴とするイットリウム
シリケート蛍光体の製造方法。 Dl/Ds≦1.5 2.0≦Da≦6.0 2.0≦Dm≦12.0 1.0≦Dm/Da≦2.0 0≦σlog≦0.30 ここで、Dlは粒子の長径(μm)、Dsは短径(μ
m)、Daは平均粒径(μm)、Dmは中央粒径(μ
m)、σlogは粒度分布の広がりを示す指標である。
1. A method for producing a yttrium silicate phosphor, which comprises firing a mixed raw material comprising a rare earth oxide and silicon dioxide, wherein the rare earth oxide satisfies the following conditions and has a spherical particle shape and a uniform particle size distribution. And a method for producing an yttrium silicate phosphor, which comprises firing the mixed raw material in the range of 1400 ° C. to 1650 ° C. without adding a flux. D l / D s ≦ 1.5 2.0 ≦ D a ≦ 6.0 2.0 ≦ D m ≦ 12.0 1.0 ≦ D m / D a ≦ 2.0 0 ≦ σ log ≦ 0.30 Here, Dl is the major axis (μm) of the particle, and D s is the minor axis (μm).
m), D a is the average particle diameter (μm), D m is the median particle size (mu
m) and σ log are indices indicating the spread of the particle size distribution.
【請求項2】 前記希土類酸化物は、イットリウム
(Y)と、テルビウム(Tb)、またはCe(セリウ
ム)から選ばれる少なくとも1種の共沈酸化物であるこ
とを特徴とする請求項1に記載のイットリウムシリケー
ト蛍光体の製造方法。
2. The rare earth oxide is yttrium (Y) and at least one coprecipitated oxide selected from terbium (Tb) and Ce (cerium). 1. A method for producing a yttrium silicate phosphor.
JP13304196A 1996-05-28 1996-05-28 Method for producing yttrium silicate phosphor Expired - Fee Related JP3399231B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13304196A JP3399231B2 (en) 1996-05-28 1996-05-28 Method for producing yttrium silicate phosphor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13304196A JP3399231B2 (en) 1996-05-28 1996-05-28 Method for producing yttrium silicate phosphor

Publications (2)

Publication Number Publication Date
JPH09316444A true JPH09316444A (en) 1997-12-09
JP3399231B2 JP3399231B2 (en) 2003-04-21

Family

ID=15095437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13304196A Expired - Fee Related JP3399231B2 (en) 1996-05-28 1996-05-28 Method for producing yttrium silicate phosphor

Country Status (1)

Country Link
JP (1) JP3399231B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000345148A (en) * 1999-06-08 2000-12-12 Matsushita Electric Ind Co Ltd Plasma display panel, fluorescent material, fluorescent film and production of fluorescent material
JP2004002512A (en) * 2002-05-31 2004-01-08 Sumitomo Chem Co Ltd Method for producing silicate phosphor
US6884367B2 (en) 2001-12-19 2005-04-26 Sumitomo Chemical Company Limited Method for producing silicate phosphor
KR100496046B1 (en) * 2002-08-27 2005-06-16 한국화학연구원 Silicate phosphor and a preparation method thereof
US7161287B2 (en) 2003-11-12 2007-01-09 Nichia Corporation Green emitting yttrium silicate phosphor and cathode-ray tube using the same
JP2017120268A (en) * 2011-10-03 2017-07-06 株式会社東芝 Intensifying screen for x-ray detector, x-ray detector, and x-ray inspection device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000345148A (en) * 1999-06-08 2000-12-12 Matsushita Electric Ind Co Ltd Plasma display panel, fluorescent material, fluorescent film and production of fluorescent material
US6884367B2 (en) 2001-12-19 2005-04-26 Sumitomo Chemical Company Limited Method for producing silicate phosphor
JP2004002512A (en) * 2002-05-31 2004-01-08 Sumitomo Chem Co Ltd Method for producing silicate phosphor
KR100496046B1 (en) * 2002-08-27 2005-06-16 한국화학연구원 Silicate phosphor and a preparation method thereof
US7161287B2 (en) 2003-11-12 2007-01-09 Nichia Corporation Green emitting yttrium silicate phosphor and cathode-ray tube using the same
JP2017120268A (en) * 2011-10-03 2017-07-06 株式会社東芝 Intensifying screen for x-ray detector, x-ray detector, and x-ray inspection device

Also Published As

Publication number Publication date
JP3399231B2 (en) 2003-04-21

Similar Documents

Publication Publication Date Title
JP2000319649A (en) Green-emitting phosphor composition and cathode ray tube provided with fluorescent film produced therefrom
JP3785689B2 (en) Method for producing rare earth aluminate phosphor
JP3399231B2 (en) Method for producing yttrium silicate phosphor
JPS61174291A (en) Phosphor emitting blue light
JP3399245B2 (en) Manufacturing method of rare earth oxide phosphor
JP2002080847A (en) Rare earth silicate phosphor and luminescent screen using the same
US5115306A (en) Projection crt with a green emitting terbium activated lanthanum oxychloride phosphor exhibiting nearly constant light-output of elevated temperatures
JP2003055657A (en) Phosphor for low-speed electron beam
JP2607316B2 (en) Mixed type green light emitting phosphor and cathode ray tube using this green light emitting phosphor
JP2004217796A (en) Spherical rare earth oxide-based phosphor and method for producing the same
JP2004123786A (en) Phosphor for display device, its production method, and color display device using the same
JPH0629421B2 (en) Blue light emitting phosphor and blue light emitting cathode ray tube for color projection type image device using the same
JP2594325B2 (en) Mixed-length afterglow red-emitting phosphor and phosphor film
KR100315226B1 (en) A blue phosphor with high brightness for low-voltage applications
JPH06248263A (en) Green emitting phosphor mixture and cathode ray tube made by using it
JP4131139B2 (en) Electron beam excited display and red light emitting phosphor used therefor
JP2003231881A (en) Phosphor, method for producing phosphor and cathode- ray tube
JP2004051931A (en) Rare earth silicate phosphor
JP2978241B2 (en) Green light-emitting phosphor for projection tubes
WO2005080528A1 (en) Green light-emitting phosphor for displays and field-emission display using same
JPH0522750B2 (en)
JP3906075B2 (en) Monochrome phosphor for FED
JPH10140149A (en) Short-afterglow phosphor
TWI261613B (en) Phosphor formulations for low voltage and manufacturing methods thereof
JP2005008704A (en) Spherical phosphor of yttrium silicate and cathode-ray tube

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090221

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100221

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100221

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20110221

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110221

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20120221

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20120221

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130221

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130221

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees