JPH09312902A - Non-contact power supply device - Google Patents

Non-contact power supply device

Info

Publication number
JPH09312902A
JPH09312902A JP8125363A JP12536396A JPH09312902A JP H09312902 A JPH09312902 A JP H09312902A JP 8125363 A JP8125363 A JP 8125363A JP 12536396 A JP12536396 A JP 12536396A JP H09312902 A JPH09312902 A JP H09312902A
Authority
JP
Japan
Prior art keywords
power supply
current
moving body
feeders
lines
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8125363A
Other languages
Japanese (ja)
Inventor
Atsuhiro Yoshizaki
敦浩 吉崎
Hiroshi Fujii
浩 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kiden Kogyo Ltd
Hitachi Ltd
Original Assignee
Hitachi Kiden Kogyo Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kiden Kogyo Ltd, Hitachi Ltd filed Critical Hitachi Kiden Kogyo Ltd
Priority to JP8125363A priority Critical patent/JPH09312902A/en
Publication of JPH09312902A publication Critical patent/JPH09312902A/en
Pending legal-status Critical Current

Links

Landscapes

  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To cancel electromagnetic force appearing in each section in an adjacent section and lessen the emission of electromagnetic noise by partitioning two feeders which are located parallel along a movement path of a moving body into unit sections of a small length and locating a going line and a coming line alternately in the unit sections along the movement path. SOLUTION: In a non-contact power supply device which supplies power to a moving body non-contact, two feeders which are located parallelly along a movement path of the moving body from a high-frequency power supply 11 are partitioned into unit sections of a specified length. And, the unit sections are so connected that going current may flow in the two feeders 12, 13 alternately by a route of going lines 21a, 21c, 21e, 21g,... and coming current may flow in the two feeders 12, 13 alternately by a route of coming lines... 22g, 22e, 22c, and 22a. By this method, the emission of electromagnetic noise appearing in the two feeders can be lessened.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は移動体への非接触式
給電装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-contact type power feeding device for a moving body.

【0002】[0002]

【従来の技術】従来技術は、特開平5−207603号
公報、特開平5−207604号公報、特開平5−20
7605号公報、特開平5−207606号公報のよう
に、1次側電流を環流する一対の給電線を設け、これに
高周波の正弦電流を流して、給電線を中心とする交流磁
界を生じせしめ、移動体に設けたピックアップコイルに
て、該交流磁界より電流を誘起し、移動体に電力を取り
込むシステムがある。
2. Description of the Related Art Prior arts are disclosed in JP-A-5-207603, JP-A-5-207604, and JP-A-5-20.
As in Japanese Patent No. 7605 and Japanese Patent Laid-Open No. 5-207606, a pair of power supply lines that circulate the primary side current are provided, and a high frequency sine current is passed through the power supply lines to generate an AC magnetic field centered on the power supply lines. There is a system in which a pickup coil provided in a moving body induces a current from the alternating magnetic field to take in power to the moving body.

【0003】[0003]

【発明が解決しようとする課題】給電線の全長にわたっ
て印加される高周波電圧、電流は、比較的に大きい電力
が印加される。このため、該給電線より高レベルの電磁
ノイズが放出し、周辺に設置した電子機器に悪影響を与
える、の異常発生の無い方式の開発が望まれる。
Relatively large electric power is applied to the high frequency voltage and current applied over the entire length of the power supply line. Therefore, it is desired to develop a system in which a high level of electromagnetic noise is emitted from the power supply line and adversely affects electronic devices installed in the vicinity, without causing an abnormality.

【0004】具体的に説明すると、図4において、給電
電源1に給電線2と給電線3で往路電流4と復路電流5
を還流させ、1→2→3に流して、給電線2または給電
線3に発生する交流磁界6を生じせしめ、移動体7に設
けたピックアップコイル8により、ピックアップコイル
8の付近の交流磁界6を検出し、ピックアップコイル8
に電力を誘起し、移動体7へ取り込む電磁結合システム
である。
More specifically, referring to FIG. 4, the power supply line 1 and the power supply line 3 of the power supply source 1 are a forward current 4 and a return current 5.
To generate an AC magnetic field 6 generated in the power supply line 2 or the power supply line 3, and a pickup coil 8 provided in the moving body 7 causes the AC magnetic field 6 in the vicinity of the pickup coil 8 to flow. Detected, pickup coil 8
It is an electromagnetic coupling system that induces electric power to the mobile body 7 and takes it into the moving body 7.

【0005】このように給電線2,3に往路電流と復路
電流を別々に流すため、例えば、図4の地点9より見る
と、地点9より異なる距離にある給電線2と給電線3に
往電流4と復電流5が互いに逆方向で流れている。この
時、地点9における、往電流4と復電流5により誘起す
る各々の電界、磁界は、地点9と往電流4、復電流5ま
での距離の2乗の逆数に比例するため、往電流4、復電
流5の方向が逆向きでも、打ち消し合わず、差が生じ、
この分が、地点9における誘起ノイズとして見える。
In this way, since the forward current and the backward current are separately supplied to the power supply lines 2 and 3, when viewed from the point 9 in FIG. 4, for example, the power is transferred to the power supply line 2 and the power supply line 3 at different distances from the point 9. The current 4 and the return current 5 flow in opposite directions. At this time, the electric field and magnetic field induced by the forward current 4 and the returning current 5 at the point 9 are proportional to the reciprocal of the square of the distance between the point 9 and the returning current 4 and the returning current 5, and therefore the forward current 4 , Even if the directions of the return currents 5 are opposite, they do not cancel each other and a difference occurs,
This portion appears as induced noise at the point 9.

【0006】本発明は、電磁ノイズの放出の少ない給電
装置を提供することにある。
An object of the present invention is to provide a power supply device which emits less electromagnetic noise.

【0007】[0007]

【課題を解決するための手段】本発明は、移動路に沿っ
て2列に配置した給電線であって、各列の前記給電線は
往線と復線とを交互に移動路の長手方向に沿って配置す
ること、を特徴とする。
DISCLOSURE OF THE INVENTION The present invention is a feeder line arranged in two rows along a moving path, wherein the feeding lines in each row alternate forward and backward lines in the longitudinal direction of the moving path. It is characterized by arranging along.

【0008】往線と復線とを交互に配置しているので、
給電線は小さな長さ単位で区分されることになり、各区
分において発生する電磁力は隣り合った区分において打
ち消し、ノイズを小さくできるものである。
Since the forward line and the backward line are alternately arranged,
The feeder line is divided into small length units, and the electromagnetic force generated in each section is canceled in the adjacent sections, so that noise can be reduced.

【0009】[0009]

【発明の実施の形態】本発明の一実施例を図1により説
明する。実質的に、移動体7の移動方向に沿って従来と
同様に2列の給電線12,13がある。高周波電源11
に接続する一方の電線を往線21とし、他方の電線を復
線22とすると、一方の列の給電線12は21a,22
c,21e,22g……から構成される。他方の列の給
電線13は22a,21c,22e,21g……から構
成される。各列の給電線12,13の往線21,復線2
2の間は往線21b,21d,21f,21g……、復
線22b,22d,22f,22g……によって接続さ
れている。往線21,復線22を図示のごとく曲げて配
置することによって構成できる。往線21a,21c,
21e……、復線22a,22c,22e……のそれぞ
れの長さは所定長さであり、比較的短い。つまり、給電
線12,13は往線21,復線22によって所定長さに
分断(すなわち、区分)されている。一方の列の往線は
他方の列の前記往線であり、前記一方の列の復線は他方
の列の前記復線になっている。それぞれの分断位置の間
隔は小さくしている。一方の列の前記分断の位置と他方
の列の前記分断の位置とは移動体の移動方向において実
質的に同一位置である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described with reference to FIG. Substantially, there are two rows of feeder lines 12 and 13 along the moving direction of the moving body 7 as in the conventional case. High frequency power supply 11
If one electric wire connected to is a forward wire 21 and the other electric wire is a return wire 22, the power supply wires 12 of one row are 21a and 22a.
c, 21e, 22g ... The power supply line 13 in the other row is composed of 22a, 21c, 22e, 21g .... Forward line 21 and return line 2 of power supply lines 12 and 13 in each row
The two lines are connected by forward lines 21b, 21d, 21f, 21g ... And return lines 22b, 22d, 22f, 22g. It can be configured by bending and arranging the outgoing line 21 and the returning line 22 as shown. Forward lines 21a, 21c,
21e ..., The return lines 22a, 22c, 22e ... are predetermined lengths and are relatively short. That is, the power supply lines 12 and 13 are divided (that is, divided) into a predetermined length by the forward line 21 and the backward line 22. The forward line of one row is the forward line of the other row, and the return line of the one row is the return line of the other row. The intervals between the respective dividing positions are made small. The dividing position of one row and the dividing position of the other row are substantially the same position in the moving direction of the moving body.

【0010】かかる構成によれば、往電線36は、21
a→21c→21e→21g……と分割毎に、列12と
列13とを交互に流れる。同様に復電線37も……22
g→22e→22c→22a……と分割毎に、列12と
列13とを交互に流れる。
According to this structure, the outgoing wire 36 is
For example, a → 21c → 21e → 21g ... Alternately flows in the rows 12 and 13 for each division. Similarly, return wire 37 ... 22
g → 22e → 22c → 22a ... Alternately flows through the columns 12 and 13 for each division.

【0011】このように構成すると、地点38で見る
と、この地点38に発生する電界や、磁界は、前途のよ
うな往電流と復電流が隣り合って順次流れているので、
給電線により誘起するノイズ成分を打ち消し合い、給電
線周辺の電子機器への影響を防ぐことができる。たとえ
ば、電磁影響を1/100以下に抑制することができ
る。このため、給電線に印加する交流電流をより高周波
にすることができ、給電効率のより高いシステムにする
ことができるものである。
According to this structure, when viewed at the point 38, the electric field and the magnetic field generated at the point 38 have a forward current and a backward current, which are adjacent to each other, which flow in the order.
It is possible to cancel out the noise components induced by the power supply line and prevent the influence on electronic devices around the power supply line. For example, the electromagnetic effect can be suppressed to 1/100 or less. Therefore, the alternating current applied to the power supply line can have a higher frequency, and a system with higher power supply efficiency can be obtained.

【0012】上記実施例では一方の列の前記分断の位置
と他方の列の前記分断の位置とは移動体の移動方向に対
して実質的に同一位置であったが、大きく異ならせても
よい。
In the above embodiment, the dividing position of one row and the dividing position of the other row are substantially the same in the moving direction of the moving body, but they may be greatly different. .

【0013】なお、この給電線12,13を図4に示し
た電磁結合システムへ適用する場合は給電線12,13
の末端39を閉路する。
When the power supply lines 12 and 13 are applied to the electromagnetic coupling system shown in FIG. 4, the power supply lines 12 and 13 are used.
Closing the end 39 of the.

【0014】下記の静電結合システムへ適用する場合は
端末39を開路する。図2(a)において、移動体7
に、給電線12および13と所定の間隔を保って、集電
電極45と46を設ける。このようにして12と45の
間および13と46の間で静電容量48と49のインピ
ーダンスを通し電気的に結合する。固定電極45と固定
電極46間に、静電容量48と49の容量に共振する誘
導負荷47を接続し、47と48と49の直列共振で低
インピーダンス化し、電流を流れ易くし、より多くの電
力を給電する方式とする。このようにして固定電極45
と46間に集電した電力を、移動体7に内蔵した電源回
路および制御回路50へ供給する。
When applied to the electrostatic coupling system described below, the terminal 39 is opened. In FIG. 2A, the moving body 7
In addition, collecting electrodes 45 and 46 are provided at a predetermined distance from the feeder lines 12 and 13. In this way, the impedances of the capacitances 48 and 49 are electrically coupled between 12 and 45 and between 13 and 46. An inductive load 47 that resonates with the capacitances of the capacitances 48 and 49 is connected between the fixed electrode 45 and the fixed electrode 46, and the series resonance of 47, 48, and 49 reduces the impedance to facilitate the flow of current, and A method of supplying electric power will be used. In this way, the fixed electrode 45
The electric power collected between the power supply circuit 46 and the power supply circuit 46 is supplied to the power supply circuit and the control circuit 50 built in the moving body 7.

【0015】つまり、高周波電源11から供給される電
流は、静電容量48を経て電流となり、移動体7へ取り
込み、その帰路は静電容量49を経て電流となり、高周
波電源11への戻り電流となる。制御回路50に取り込
んだ電力は、移動体7を移動するための駆動モーター5
1の電源または移動体7の中の機構部52の駆動電力お
よび制御回路50の操作電源に用いる。
That is, the current supplied from the high frequency power supply 11 becomes a current via the electrostatic capacity 48 and is taken into the moving body 7, and its return path becomes a current via the electrostatic capacity 49, and becomes a return current to the high frequency power supply 11. Become. The electric power taken into the control circuit 50 is used by the drive motor 5 for moving the moving body 7.
It is used as a power source for driving the mechanical unit 52 in the moving body 7 and an operating power source for the control circuit 50.

【0016】図2(a)において、静電容量48,49
のインピーダンスをC1とし、誘導負荷47のインピー
ダンスをL1とし、この高周波回路部から制御回路50
を見たインピーダンスをZ1とすると、この等価回路
は、図3(b)のようになる。ここで、C1−L1−C1
間を共振条件とすることにより、L1、C1に大きい共振
電流IR1が流れ、L1両端に高い電圧を得ることができ
る。この値を、インピーダンスに取り込み、制御回路5
0にて内部へ給電する。
In FIG. 2A, electrostatic capacitances 48, 49
The impedance and C 1, the impedance of the inductive load 47 and L 1, the control circuit 50 from the high frequency circuit
If the impedance seen is Z 1 , then the equivalent circuit is as shown in FIG. Where C 1 -L 1 -C 1
By setting a resonance condition between them, a large resonance current IR 1 flows through L 1 and C 1 , and a high voltage can be obtained across L 1 . This value is taken into the impedance and the control circuit 5
Power is supplied to the inside at 0.

【0017】これによれば、移動体7の集電電極45,
46に集中的に電流を流す方式であり、そのため、給電
電流と移動体取り込み電流は、ほぼ1:1であり、移動
体への取り込み電流を定所量にて比較すると、電源より
の給電電流は、1/50程度の小さい値で実現できる。
この分、各部の電流容量が大幅に低減され、小形化およ
び低損失のシステムとできる。また、構成部品の電流定
格を大幅に小さくできるので、構成部品の小形化や、発
熱への放熱処理等が省略化でき、経済的システムとでき
る。
According to this, the collector electrode 45 of the moving body 7,
This is a method in which a current is concentratedly supplied to 46, and therefore, the feeding current and the moving body uptake current are approximately 1: 1. Comparing the uptake current into the moving body with a fixed amount, the feeding current from the power source is Can be realized with a small value of about 1/50.
As a result, the current capacity of each part is significantly reduced, and the system can be made compact and low loss. In addition, since the current rating of the component can be significantly reduced, the component can be downsized and the heat radiation process for heat generation can be omitted, resulting in an economical system.

【0018】図3(a)に同様に示す構成では、図2の
誘導負荷47を集電電極45,46間に接続したが、誘
導負荷47に相当する誘導インピーダンスL1を直列に
接続し、等価回路を図3(b)のようにし、C2−L2
2を同様に共振条件とすることにより、それらのイン
ピーダンスを打消し、高周波電源11の出力端電圧を、
そのままインピーダンスZ2に取り込み、制御回路50
に給電する。この方式では、インピーダンスZ2に高周
波電源11の出力電圧をそのまま得ることができる。
In the structure shown in FIG. 3A, the inductive load 47 shown in FIG. 2 is connected between the collector electrodes 45 and 46, but the inductive impedance L 1 corresponding to the inductive load 47 is connected in series. The equivalent circuit is as shown in FIG. 3B, and C 2 −L 2
By making C 2 a resonance condition similarly, those impedances are canceled out, and the output terminal voltage of the high frequency power supply 11 is
It is taken into impedance Z 2 as it is, and the control circuit 50
Power. In this method, the output voltage of the high frequency power supply 11 can be directly obtained as the impedance Z 2 .

【0019】[0019]

【発明の効果】本発明によれば、給電線によって発生す
るノイズを小さくできるものである。
According to the present invention, the noise generated by the power supply line can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の給電線の構成図である。FIG. 1 is a configuration diagram of a power supply line according to an embodiment of the present invention.

【図2】本発明の一実施例の給電システムの構成図であ
る。
FIG. 2 is a configuration diagram of a power supply system according to an embodiment of the present invention.

【図3】本発明の他の実施例の給電システムの構成図で
ある。
FIG. 3 is a configuration diagram of a power supply system according to another embodiment of the present invention.

【図4】従来の電磁結合式の非接触給電システムの構成
図である。
FIG. 4 is a configuration diagram of a conventional electromagnetic coupling type non-contact power feeding system.

【符号の説明】[Explanation of symbols]

11…高周波電源、12,13…給電電源、21,21
a〜21g…往線、22,22a〜22g…復線。
11 ... High frequency power source, 12, 13 ... Power supply power source 21, 21
a to 21 g ... Forward line, 22, 22a to 22 g ... Return line.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】移動路に沿って2列に配置した給電線であ
って、各列の前記給電線は往線と復線とを交互に移動路
の長手方向に沿って配置していること、を特徴とする非
接触式給電装置
1. A feeder line arranged in two rows along a moving path, wherein the feeding lines in each row have forward lines and backward lines alternately arranged along a longitudinal direction of the moving path. Non-contact type power supply device characterized by
JP8125363A 1996-05-21 1996-05-21 Non-contact power supply device Pending JPH09312902A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8125363A JPH09312902A (en) 1996-05-21 1996-05-21 Non-contact power supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8125363A JPH09312902A (en) 1996-05-21 1996-05-21 Non-contact power supply device

Publications (1)

Publication Number Publication Date
JPH09312902A true JPH09312902A (en) 1997-12-02

Family

ID=14908287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8125363A Pending JPH09312902A (en) 1996-05-21 1996-05-21 Non-contact power supply device

Country Status (1)

Country Link
JP (1) JPH09312902A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011223703A (en) * 2010-04-07 2011-11-04 Showa Aircraft Ind Co Ltd Portable type non-contact power supply device
WO2011152678A2 (en) * 2010-06-03 2011-12-08 한국과학기술원 Space-division multiple power feeding and collecting apparatus
JP2014053984A (en) * 2012-09-05 2014-03-20 Showa Aircraft Ind Co Ltd Movable feed type non-contact power supply apparatus
CN103931079A (en) * 2011-09-26 2014-07-16 韩国科学技术院 Power supply and pickup system capable of maintaining stability of transmission efficiency despite changes in resonant frequency
JP2014521304A (en) * 2011-07-19 2014-08-25 オークランド ユニサービシズ リミテッド Multi-conductor single-phase induction feed truck
CN106208420A (en) * 2016-09-14 2016-12-07 东南大学 A kind of reception power low fluctuation electric automobile segmentation dynamic radio electric power system
CN106314187B (en) * 2016-09-14 2018-11-06 东南大学 A kind of control method of the short segmentation dynamic radio power supply system of electric vehicle

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011223703A (en) * 2010-04-07 2011-11-04 Showa Aircraft Ind Co Ltd Portable type non-contact power supply device
EP2375533A3 (en) * 2010-04-07 2014-07-30 Showa Aircraft Industry Co., Ltd. Mobile type non-contact power feeding device
WO2011152678A2 (en) * 2010-06-03 2011-12-08 한국과학기술원 Space-division multiple power feeding and collecting apparatus
WO2011152678A3 (en) * 2010-06-03 2012-02-23 한국과학기술원 Space-division multiple power feeding and collecting apparatus
KR101221486B1 (en) * 2010-06-03 2013-01-14 한국과학기술원 Space division multiplexed power supply and collector device
JP2014521304A (en) * 2011-07-19 2014-08-25 オークランド ユニサービシズ リミテッド Multi-conductor single-phase induction feed truck
CN103931079A (en) * 2011-09-26 2014-07-16 韩国科学技术院 Power supply and pickup system capable of maintaining stability of transmission efficiency despite changes in resonant frequency
JP2014535254A (en) * 2011-09-26 2014-12-25 コリア・アドバンスト・インスティテュート・オブ・サイエンス・アンド・テクノロジー A power collection system that maintains the stability of transmission efficiency even when the resonance frequency changes
JP2014053984A (en) * 2012-09-05 2014-03-20 Showa Aircraft Ind Co Ltd Movable feed type non-contact power supply apparatus
CN106208420A (en) * 2016-09-14 2016-12-07 东南大学 A kind of reception power low fluctuation electric automobile segmentation dynamic radio electric power system
CN106314187B (en) * 2016-09-14 2018-11-06 东南大学 A kind of control method of the short segmentation dynamic radio power supply system of electric vehicle

Similar Documents

Publication Publication Date Title
JP6230776B2 (en) Inductive power transmission device
CN102076518B (en) Traveling vehicle system
US10979014B2 (en) Voltage filter and power conversion device
JPH09312942A (en) Noncontact collection method and its device
JP6676144B2 (en) Electric power steering device
JPH09312902A (en) Non-contact power supply device
JP2021078233A (en) Electric power conversion system
JP2563917B2 (en) Cathode ray tube device
EP2793356B1 (en) Combination with a linear motor device and a contactless electric power supply device
US10836266B2 (en) Inductively transferring electric energy to a vehicle using consecutive segments which are operated at the same time
EP1953767A2 (en) Assembly for transmitting multiphase current
JPH1075200A (en) Antenna unit for communication and communication system for moving object
CN110572049A (en) Reducing package parasitic inductance in power modules
EP1542247A2 (en) Non-contact means for energising a moving electrical load
JP6123136B2 (en) Contactless power supply system
TW201340532A (en) Contactless power supply system and contactless power supply method
JP2000184625A (en) Non-contact feeding method for transport cars in transporting system
JP7075776B2 (en) Automated guided vehicle
US5317220A (en) Linear DC motor
CN111211407A (en) Antenna assembly and wireless charging device including the same
JP4122713B2 (en) Contactless power supply
KR101563317B1 (en) Adding up type pick up apparatus
CN219789912U (en) Non-contact power supply system
JP2002354710A (en) Power feeder device for noncontacting feed
TWI842887B (en) Ion generating devices and electrical equipment