JPH09312518A - Dual reflection mirror antenna system - Google Patents

Dual reflection mirror antenna system

Info

Publication number
JPH09312518A
JPH09312518A JP12588396A JP12588396A JPH09312518A JP H09312518 A JPH09312518 A JP H09312518A JP 12588396 A JP12588396 A JP 12588396A JP 12588396 A JP12588396 A JP 12588396A JP H09312518 A JPH09312518 A JP H09312518A
Authority
JP
Japan
Prior art keywords
reflecting mirror
antenna device
support
mirror
double
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12588396A
Other languages
Japanese (ja)
Other versions
JP3763428B2 (en
Inventor
Hiroyuki Deguchi
博之 出口
Shigeru Makino
滋 牧野
Takashi Kataki
孝至 片木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP12588396A priority Critical patent/JP3763428B2/en
Publication of JPH09312518A publication Critical patent/JPH09312518A/en
Application granted granted Critical
Publication of JP3763428B2 publication Critical patent/JP3763428B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Waveguide Aerials (AREA)
  • Details Of Aerials (AREA)
  • Support Of Aerials (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce deterioration in electric characteristics by providing supports with a shape to reduce its area of shutting a ray of the dual reflection mirror antenna system (equipment) and with an arrangement, as a 1st support with a strength withstanding a load in the case of use of the system in the space and a 2nd support with a strength withstanding a load in the case of transportation of the system into the space and discharging the 2nd support into the space. SOLUTION: A support 4 used to support a sub reflecting mirror 2 at a prescribed position is arranged with a shape having a smaller right receiving area for a spherical wave reflected from the sub reflecting mirror 2 or a plane wave reflected from the main reflecting mirror and is made up of a 1st support 4a with a strength withstanding a load in the case of use of the system in the spade and a 2nd support 4b with a strength withstanding a load in the case of transportation of the system into the space. The 2nd support 4b withstands vibration or the like caused in the case of launching a rocket. Furthermore, the system has a mechanism 6 which disconnects them from the system in the space.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、例えばロケット
によって打ち上げられ、宇宙空間へ運搬されて使用され
る宇宙用の複反射鏡アンテナ装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a space double reflector antenna device which is launched by, for example, a rocket and is transported to outer space for use.

【0002】[0002]

【従来の技術】従来、この種の装置として、図10に示
すようなものがあった。この図は電子情報通信学会偏、
アンテナ工学ハンドブック、p.300,昭55年10
月30日、オーム社に示されたもので、図において、1
は回転放物面からなる主反射鏡、2は回転双曲面からな
る副反射鏡、3は副反射鏡2の一方の焦点にその位相中
心を配置したホーンからなる一次放射器、4は副反射鏡
2を保持する支持体、5は衛星構体である。上記従来の
カセグレンアンテナにおいて送信の場合、一次放射器3
より放射される球面波は、副反射鏡2により反射された
後、主反射鏡1の焦点を曲率中心とする球面波に変換さ
れ主反射鏡1に向けて伝搬し、主反射鏡1により反射さ
れて平面波に変換され、鏡軸方向(図示のz軸方向)に
向けて放射される。
2. Description of the Related Art Conventionally, as this type of device, there has been one as shown in FIG. This figure is the Institute of Electronics, Information and Communication Engineers,
Antenna Engineering Handbook, p. 300, 10 years of 1980
Shown by Ohmsha on March 30, 1 in the figure
Is a main reflecting mirror consisting of a paraboloid of revolution, 2 is a sub-reflecting mirror consisting of a rotating hyperboloid, 3 is a primary radiator consisting of a horn whose phase center is located at one focus of the sub-reflecting mirror 2, 4 is a sub-reflector Supports 5 for holding the mirror 2 are satellite structures. In the case of transmitting with the conventional Cassegrain antenna, the primary radiator 3
The radiated spherical wave is reflected by the sub-reflecting mirror 2, is converted into a spherical wave having the focus of the main reflecting mirror 1 as the center of curvature, propagates toward the main reflecting mirror 1, and is reflected by the main reflecting mirror 1. It is converted into a plane wave and is radiated in the mirror axis direction (z-axis direction in the drawing).

【0003】[0003]

【発明が解決しようとする課題】従来の複反射鏡アンテ
ナ装置は以上のように構成されているので、副反射鏡を
保持する支持体によりブロッキング、反射波、及び回折
波が生じて電気的性能が劣化する。宇宙用アンテナで
は、副反射鏡を保持する支持体がロケットの打ち上げ時
の振動や衝撃に対し耐えられるように構成されるので、
地上用のアンテナに比べて支持体が大形となる。そのた
め、支持体によるブロッキング、反射波、及び回折波の
影響がさらに大きくなり、利得低下、主ビーム形状の変
化、及びサイドローブレベルの上昇など、電気的性能の
劣化が大きくなるという問題点があった。
Since the conventional double-reflecting mirror antenna device is constructed as described above, blocking, reflected waves, and diffracted waves are generated by the support holding the sub-reflecting mirror, so that the electrical performance is improved. Deteriorates. In the space antenna, the support that holds the sub-reflector is configured to withstand the vibrations and shocks at launch of the rocket,
The support is larger than the ground antenna. Therefore, there is a problem in that the effects of blocking by the support, reflected waves, and diffracted waves are further increased, and the electrical performance is greatly deteriorated, such as gain reduction, main beam shape change, and sidelobe level increase. It was

【0004】この発明は上記のような問題点を解決する
ためになされたもので、副反射鏡を保持する支持体によ
る電気的性能の劣化を軽減することのできる複反射鏡ア
ンテナ装置を得ることを目的とする。
The present invention has been made to solve the above problems, and provides a double-reflecting mirror antenna device capable of reducing the deterioration of the electrical performance due to the support for holding the sub-reflecting mirror. With the goal.

【0005】[0005]

【課題を解決するための手段】請求項1の複反射鏡アン
テナ装置は、主反射鏡、副反射鏡、一次放射器、及び上
記副反射鏡を保持する支持体を備えてなる複反射鏡アン
テナ装置において、上記支持体を少なくとも、上記複反
射鏡アンテナ装置の幾何光学的な光線を遮る面積を低減
させた形状と配置で設置され、上記複反射鏡アンテナ装
置の宇宙空間での使用時の負荷に耐えられれば足る強度
の第1の支持体と、上記複反射鏡アンテナ装置の宇宙空
間への運搬時の負荷に耐える強度の第2の支持体とに分
けて構成し、少なくとも上記第2の支持体を宇宙空間に
おける上記複反射鏡アンテナ装置使用時に、上記複反射
鏡アンテナ装置の電波の経路外へ排除する切り離し機構
を備えたものである。
A multi-reflecting mirror antenna device according to claim 1 comprises a main reflecting mirror, a sub-reflecting mirror, a primary radiator, and a support for holding the sub-reflecting mirror. In the device, at least the support is installed in a shape and an arrangement in which the area for blocking the geometrical optical rays of the double reflector antenna device is reduced, and the load when the double reflector antenna device is used in outer space. A first support having sufficient strength to withstand the above, and a second support having sufficient strength to withstand the load of the double-reflecting mirror antenna device when it is transported to outer space. When the support is used in the space, the double-reflecting mirror antenna device is provided with a disconnecting mechanism that removes it from the radio wave path of the double-reflecting mirror antenna device.

【0006】また、請求項2の複反射鏡アンテナ装置
は、請求項1記載の複反射鏡アンテナ装置において、上
記第2の支持体と独立に又は上記第2の支持体と共に設
置され、宇宙空間における上記複反射鏡アンテナ装置使
用時に展開配置され、上記主反射鏡に照射する不都合な
太陽光を遮る遮へい部材と、上記遮へい部材を展開し、
上記複反射鏡アンテナ装置の電波の経路外の上記主反射
鏡に照射する不都合な太陽光を遮る位置に駆動して設置
する遮へい部材展開機構とを備えたものである。
The double reflector antenna device according to claim 2 is the double reflector antenna device according to claim 1, wherein the double reflector antenna device is installed independently of the second support or together with the second support. Deployed when using the multi-reflecting mirror antenna device in, to deploy a shielding member for shielding the inconvenient sunlight irradiating the main reflecting mirror, the shielding member,
And a shield member deploying mechanism that is driven and installed at a position that shields inconvenient sunlight irradiating the main reflector outside the radio wave path of the multi-reflector antenna device.

【0007】また、請求項3の複反射鏡アンテナ装置
は、主反射鏡、副反射鏡、一次放射器、及び上記副反射
鏡を保持する支持体を備えてなる複反射鏡アンテナ装置
において、上記支持体を少なくとも、上記複反射鏡アン
テナ装置の幾何光学的な光線を遮る面積を低減させた形
状と配置で設置され、上記複反射鏡アンテナ装置の宇宙
空間での使用時の負荷に耐えられれば足る強度の第1の
支持体と、上記複反射鏡アンテナ装置の宇宙空間への運
搬時の負荷に耐える強度で、上記主反射鏡と上記副反射
鏡との間に設けられ、上記主反射鏡と異なる鏡面定数の
曲面形状を有する複数個の鏡面部材からなる第2の支持
体とに分けて構成し、宇宙空間における上記複反射鏡ア
ンテナ装置使用時に、上記複数個の鏡面部材を、上記副
反射鏡への接続支持を解除して上記主反射鏡の開口の外
周のスピルオーバする電波を反射させる位置に展開する
鏡面部材展開機構を備えたものである。
Further, a double-reflecting mirror antenna device according to a third aspect of the present invention is a double-reflecting mirror antenna device comprising a main reflecting mirror, a sub-reflecting mirror, a primary radiator, and a support for holding the sub-reflecting mirror. If the support is installed at least in a shape and arrangement in which the area for blocking the geometrical optical rays of the double-reflecting mirror antenna device is reduced, and if it can withstand the load when the double-reflecting mirror antenna device is used in outer space. The first support having sufficient strength, and the strength sufficient to withstand the load of the double-reflecting mirror antenna device when it is transported to outer space, provided between the main reflecting mirror and the sub-reflecting mirror. And a second support composed of a plurality of mirror surface members having a curved surface shape with a mirror surface constant different from that of the above-mentioned sub-mirror member when the double reflector antenna device is used in outer space. Supports connection to reflector Released to those having a mirror member deployment mechanism to deploy at a position for reflecting the radio waves spillover of the outer periphery of the opening of the main reflector.

【0008】また、請求項4の複反射鏡アンテナ装置
は、主反射鏡、副反射鏡、一次放射器、及び上記副反射
鏡を保持する支持体を備えてなる複反射鏡アンテナ装置
において、上記支持体を少なくとも、上記複反射鏡アン
テナ装置の幾何光学的な光線を遮る面積を低減させた形
状と配置で設置され、上記複反射鏡アンテナ装置の宇宙
空間での使用時の負荷に耐えられれば足る強度の第1の
支持体と、上記複反射鏡アンテナ装置の宇宙空間への運
搬時の負荷に耐える強度で、上記主反射鏡と上記副反射
鏡との間に設けられ、上記主反射鏡と同一の鏡面定数の
曲面形状を有する複数個の鏡面部材からなる第2の支持
体とに分けて構成し、宇宙空間における上記複反射鏡ア
ンテナ装置使用時に、上記複数個の鏡面部材を、上記副
反射鏡への接続支持を解除して上記主反射鏡の開口の外
周のスピルオーバする電波を反射させる位置に展開する
鏡面部材展開機構を備えたものである。
Further, a double-reflection mirror antenna device according to a fourth aspect of the present invention is a double-reflection mirror antenna device comprising a main reflection mirror, a sub-reflection mirror, a primary radiator, and a support for holding the sub-reflection mirror. If the support is installed at least in a shape and arrangement in which the area for blocking the geometrical optical rays of the double-reflecting mirror antenna device is reduced, and if it can withstand the load when the double-reflecting mirror antenna device is used in outer space. The first support having sufficient strength, and the strength sufficient to withstand the load of the double-reflecting mirror antenna device when it is transported to outer space, provided between the main reflecting mirror and the sub-reflecting mirror. And a second support composed of a plurality of mirror surface members having a curved surface shape with the same mirror surface constant, and the plurality of mirror surface members are used when the double reflector antenna device is used in outer space. Supports connection to sub-reflector Released to those having a mirror member deployment mechanism to deploy at a position for reflecting the radio waves spillover of the outer periphery of the opening of the main reflector.

【0009】また、請求項5の複反射鏡アンテナ装置
は、請求項3又は請求項4記載の複反射鏡アンテナ装置
において、主反射鏡の開口形状を、その一部あるいは全
部に直線部を有する形状とし、宇宙空間における上記複
反射鏡アンテナ装置使用時に、展開された上記複数個の
鏡面部材を、上記主反射鏡の上記直線部を介して上記主
反射鏡に電気的に連続に接続したものである。
Further, a double-reflecting mirror antenna device according to a fifth aspect is the double-reflecting mirror antenna device according to the third or fourth aspect, in which the opening shape of the main reflecting mirror has a linear portion in part or all thereof. Shaped, when the above-mentioned double-reflecting mirror antenna device is used in outer space, the plurality of developed mirror surface members are electrically continuously connected to the main reflecting mirror through the straight line portion of the main reflecting mirror. Is.

【0010】また、請求項6の複反射鏡アンテナ装置
は、請求項3、4又は5記載の複反射鏡アンテナ装置に
おいて、上記複数個の鏡面部材が宇宙空間で上記主反射
鏡の開口の外周に展開された時に、上記複数個の鏡面部
材間に伸張され、スピルオーバする電波を反射させる金
属メッシュを備えたものである。
[0012] According to a sixth aspect of the present invention, there is provided a double reflector antenna device according to the third, fourth, or fifth aspect, wherein the plurality of mirror surface members are outer space of an opening of the main reflector in outer space. And a metal mesh that is stretched between the plurality of mirror surface members and that reflects a spillover electric wave when deployed.

【0011】また、請求項7の複反射鏡アンテナ装置
は、請求項5記載の複反射鏡アンテナ装置において、上
記主反射鏡と上記複数個の鏡面部材の形状を、上記複数
個の鏡面部材が宇宙空間で上記主反射鏡の開口の外周に
展開された時に、上記主反射鏡と上記複数個の鏡面部材
とによって得られる開口が円あるいは楕円の形状を有す
るように形成したものである。
According to a seventh aspect of the present invention, there is provided a double-reflecting mirror antenna device according to the fifth aspect, wherein the main reflecting mirror and the plurality of mirror surface members are formed in the same shape. When the outer periphery of the opening of the main reflecting mirror is developed in outer space, the opening obtained by the main reflecting mirror and the plurality of mirror surface members has a circular or elliptical shape.

【0012】また、請求項8の複反射鏡アンテナ装置
は、請求項1〜7のいずれか1項に記載の複反射鏡アン
テナ装置において、第1の支持体が、上記複反射鏡アン
テナ装置の宇宙空間への運搬時に、上記副反射鏡を上記
主反射鏡へ接近させた位置で保持し、上記複反射鏡アン
テナ装置の宇宙空間での使用時に、上記副反射鏡を上記
主反射鏡に対する所定の位置へ駆動させて保持する副反
射鏡駆動機構を備えたものである。
[0012] According to an eighth aspect of the present invention, there is provided a double reflector antenna device according to any one of the first to seventh aspects, wherein the first support is the double reflector antenna device. The sub-reflecting mirror is held at a position close to the main reflecting mirror during transportation to outer space, and the sub-reflecting mirror is fixed to the main reflecting mirror when the multi-reflecting mirror antenna device is used in space. It is provided with a sub-reflecting mirror drive mechanism for driving and holding the sub-reflecting mirror.

【0013】[0013]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

実施の形態1.図1は本発明の実施の形態1を表す構成
図であり、同図(a)は宇宙空間への運搬のためのロケ
ット打ち上げ時、同図(b)は宇宙空間でのアンテナ使
用時を示す。1、2、3、5は図10に示した従来装置
相当のものであり、従来装置と同様の動作をする。同図
において、複反射鏡アンテナの一種であるカセグレンア
ンテナで送信する場合を例に説明する。4は副反射鏡2
を所定の位置に保持させる支持体であり、副反射鏡2よ
り反射される球面波あるいは主反射鏡1より反射される
平面波による幾何光学的な光線が照射される面積の小さ
な形状と配置で設置され、複反射鏡アンテナ装置の宇宙
空間での使用時の負荷に耐えられれば足る強度の第1の
支持体である支柱4aと、この幾何光学的な光線が照射
される面積の大きな形状を有し、複反射鏡アンテナ装置
の宇宙空間への運搬時の負荷に耐える強度の第2の支持
体である部材4bとから構成され、同図(a)に示すよ
うに部材4bを設けることによりロケット打ち上げ時の
振動や衝撃に対して耐え得る強度を得る。6は部材4b
を宇宙空間において複反射鏡アンテナ装置から切り離す
ための部材切り離し機構であり、同図(b)に示すよう
に、宇宙空間でのアンテナ使用時には部材4bを幾何光
学的な光線が照射されない領域に移動させる。支柱4a
は、同図(b)に示すように、無重力状態において副反
射鏡2を保持すればよいため十分小さい形状により構成
できる。よって、宇宙空間でのアンテナ使用時において
は、幾何光学的な光線が照射される領域に支柱4aのみ
が存在するだけであるから、支持体4によるブロッキン
グ、反射波、及び回折波の影響を小さくでき、電気的性
能の劣化を抑えることができる。
Embodiment 1. 1 is a configuration diagram showing a first embodiment of the present invention. FIG. 1A shows a rocket launched for transportation to outer space, and FIG. 1B shows an antenna used in outer space. . Reference numerals 1, 2, 3, and 5 correspond to the conventional device shown in FIG. 10, and operate similarly to the conventional device. In the figure, a case of transmitting with a Cassegrain antenna, which is a type of double reflector antenna, will be described as an example. 4 is a sub-reflecting mirror 2
Is a support body for holding in a predetermined position, and is installed in a shape and arrangement having a small area where a geometrical-optical beam of spherical waves reflected by the sub-reflecting mirror 2 or plane waves reflected by the main reflecting mirror 1 is irradiated. In addition, the pillar 4a, which is the first support having a strength sufficient to withstand the load of the double-reflecting mirror antenna device when it is used in outer space, and the shape having a large area to which the geometrical optical beam is applied are provided. And a member 4b, which is a second support having a strength that can withstand the load when the double reflector antenna device is transported to outer space, and by providing the member 4b as shown in FIG. Obtain strength to withstand vibrations and impacts at launch. 6 is a member 4b
Is a member detaching mechanism for detaching from the double-reflecting mirror antenna device in outer space. As shown in FIG. 7B, when the antenna is used in outer space, the member 4b is moved to a region where geometrical optical rays are not irradiated. Let Prop 4a
As shown in FIG. 2B, since the sub-reflecting mirror 2 may be held in a weightless state, the sub-reflecting mirror 2 can have a sufficiently small shape. Therefore, when the antenna is used in outer space, only the columns 4a are present in the region where the geometrical optical rays are irradiated, so that the influence of blocking by the support 4, reflected waves, and diffracted waves is small. It is possible to suppress deterioration of electrical performance.

【0014】実施の形態2.図2は本発明の実施の形態
2を表す構成図であり、同図(a)はロケット打ち上げ
時、同図(b)は宇宙空間でのアンテナ使用時を示す。
1、2、3、5は図10に示した従来装置相当のもので
あり、従来装置と同様の動作をする。同図における支持
体4は、図1の支持体4の主反射鏡1に対する取り付け
位置を変え、また3本ずつで構成したものであり、発明
の実施の形態1と同様の効果を得る。
Embodiment 2 FIG. 2A and 2B are configuration diagrams showing Embodiment 2 of the present invention. FIG. 2A shows a rocket launched, and FIG. 2B shows an antenna used in outer space.
Reference numerals 1, 2, 3, and 5 correspond to the conventional device shown in FIG. 10, and operate similarly to the conventional device. The supporting body 4 in the figure is configured by changing the mounting position of the supporting body 4 of FIG. 1 with respect to the main reflecting mirror 1 and is configured by three pieces, and the same effect as that of the first embodiment of the invention is obtained.

【0015】実施の形態3.図3は本発明の実施の形態
3を表す構成図であり、同図(a)はロケット打ち上げ
時、同図(b)は宇宙空間でのアンテナ使用時を示す。
図において、1、2、3、5は図10に示した従来装置
相当のものであり、従来装置と同様の動作をする。4は
副反射鏡2を所定の位置に保持させる支持体であり、副
反射鏡2より反射される球面波あるいは主反射鏡1より
反射される平面波による幾何光学的な光線が照射される
面積の小さな形状を有する支柱4aと、この幾何光学的
な光線が照射される面積の大きな形状を有する部材4
b、及び遮へい部材4cとから構成され、同図(a)に
示すように部材4bを設けることによりロケット打ち上
げ時の振動や衝撃に対して耐え得る強度を得る。なお、
上記の例は、第2の支持体である部材4bと遮へい部材
4cとが接続されて共に設置されている場合を示す。6
は上記部材4bを宇宙空間において複反射鏡アンテナ装
置から切り離すための部材切り離し機構、7は主反射鏡
1の後方の太陽から主反射鏡1への直接光を遮断する遮
へい板、8は遮へい部材4cを主反射鏡1と太陽との間
に移動させて設置する遮へい部材展開機構である。同図
(b)に示すように宇宙空間でのアンテナ使用時には部
材4bを幾何光学的な光線が照射されない領域に移動さ
せ、遮へい部材展開機構8が遮へい部材4cを主反射鏡
1と太陽との間に駆動して展開し、宇宙空間でのアンテ
ナ使用時において遮へい板7とともに太陽から主反射鏡
1への直接光を遮断する。よって、遮へい部材4c及び
遮へい板7が太陽を遮断して主反射鏡1の温度上昇によ
る熱変形を抑え、電気的性能の劣化を抑えることができ
る。また、支柱4aは無重力状態において副反射鏡2を
保持すればよいため十分小さい形状により構成でき、支
持体4によるブロッキング、反射波、及び回折波の影響
を小さくして、電気的性能の劣化を抑えることができ
る。
Embodiment 3 3A and 3B are configuration diagrams showing Embodiment 3 of the present invention. FIG. 3A shows a rocket launched, and FIG. 3B shows an antenna used in outer space.
In the figure, reference numerals 1, 2, 3, 5 correspond to the conventional device shown in FIG. 10, and operate similarly to the conventional device. Reference numeral 4 denotes a support for holding the sub-reflecting mirror 2 at a predetermined position, which has an area for irradiating a geometrical optical ray by a spherical wave reflected by the sub-reflecting mirror 2 or a plane wave reflected by the main reflecting mirror 1. A pillar 4a having a small shape and a member 4 having a shape having a large area irradiated with the geometrical optical ray.
b and a shielding member 4c. By providing the member 4b as shown in FIG. 4 (a), it is possible to obtain a strength capable of withstanding vibrations and impacts when the rocket is launched. In addition,
The above example shows the case where the member 4b which is the second support and the shield member 4c are connected and installed together. 6
Is a member separating mechanism for separating the member 4b from the double-reflecting mirror antenna device in outer space, 7 is a shield plate for blocking direct light from the sun behind the main reflecting mirror 1 to the main reflecting mirror 1, and 8 is a shield member 4c is a shield member deploying mechanism that is installed by moving 4c between the main reflecting mirror 1 and the sun. As shown in FIG. 2B, when the antenna is used in outer space, the member 4b is moved to a region where geometrical optical rays are not irradiated, and the shielding member expansion mechanism 8 moves the shielding member 4c between the main reflecting mirror 1 and the sun. It is driven and deployed in between, and when the antenna is used in outer space, it shields direct light from the sun to the main reflecting mirror 1 together with the shield plate 7. Therefore, the shielding member 4c and the shielding plate 7 shield the sun and suppress the thermal deformation of the main reflecting mirror 1 due to the temperature rise, so that the deterioration of the electrical performance can be suppressed. Further, since the support column 4a only needs to hold the sub-reflecting mirror 2 in a weightless state, it can be configured to have a sufficiently small shape, and the influence of blocking by the support body 4, reflected waves, and diffracted waves can be reduced, thereby deteriorating the electrical performance. Can be suppressed.

【0016】実施の形態4.図4は本発明の実施の形態
4を表す構成図であり、同図(a)はロケット打ち上げ
時、同図(b)は宇宙空間でのアンテナ使用時を示す。
同図において、1、2、3、5は図10に示した従来装
置相当のものであり、従来装置と同様の動作をする。4
は副反射鏡2を所定の位置に保持させる支持体であり、
副反射鏡2より反射される球面波あるいは主反射鏡1よ
り反射される平面波による幾何光学的な光線が照射され
る面積の小さな形状を有する支柱4aと、この幾何光学
的な光線が照射される面積の大きな形状を有しかつ主反
射鏡1と異なる鏡面定数の曲面形状を有する鏡面部材4
dとから構成され、鏡面部材4dによりロケット打ち上
げ時の振動や衝撃に対して耐え得る強度を得る。9は宇
宙空間において鏡面部材4dを主反射鏡1の開口の外周
の幾何光学的な光線が存在する空間へ駆動し保持する鏡
面部材展開機構である。同図(b)に示すように宇宙空
間でのアンテナ使用時において、副反射鏡2より反射さ
れる球面波の一部は、鏡面部材4dにより反射してスピ
ルオーバを低減でき、また、鏡面部材4dは主反射鏡1
と異なる鏡面定数の曲面形状を有するため、鏡面部材4
dでの反射は主ビーム方向以外の方向に放射され、主反
射鏡1による放射パターンと逆相で加わることによりサ
イドローブレベルを低下させる。また、支柱4aを十分
小さい形状により構成できるから、支持体4によるブロ
ッキング、反射波、及び回折波の影響を小さくでき、電
気的性能の劣化を抑えることができる。
Embodiment 4 4A and 4B are configuration diagrams showing Embodiment 4 of the present invention. FIG. 4A shows a rocket launched, and FIG. 4B shows an antenna used in outer space.
In the figure, reference numerals 1, 2, 3 and 5 correspond to the conventional device shown in FIG. 10, and operate in the same manner as the conventional device. Four
Is a support for holding the sub-reflecting mirror 2 in a predetermined position,
A pillar 4a having a shape with a small area to which a geometrical-optical ray of a spherical wave reflected by the sub-reflecting mirror 2 or a plane wave reflected by the main-reflecting mirror 1 is irradiated, and this geometrical-optical ray is irradiated. A mirror member 4 having a large area and a curved surface having a mirror constant different from that of the main reflecting mirror 1.
The mirror surface member 4d provides sufficient strength to withstand vibrations and impacts when the rocket is launched. Reference numeral 9 denotes a mirror surface member deploying mechanism that drives and holds the mirror surface member 4d in the outer space of the outer periphery of the opening of the main reflecting mirror 1 in a space where geometrical optical rays exist. As shown in FIG. 2B, when the antenna is used in outer space, a part of the spherical wave reflected by the sub-reflecting mirror 2 is reflected by the mirror surface member 4d to reduce the spillover. Is the main reflector 1
Since it has a curved surface shape with a mirror surface constant different from
The reflection at d is radiated in a direction other than the main beam direction and is added in a phase opposite to the radiation pattern by the main reflecting mirror 1 to reduce the side lobe level. Further, since the support column 4a can be configured to have a sufficiently small shape, it is possible to reduce the influence of blocking by the support body 4, reflected waves, and diffracted waves, and suppress deterioration of electrical performance.

【0017】実施の形態5.図5は本発明の実施の形態
5を表す構成図であり、同図(a)はロケット打ち上げ
時、同図(b)は宇宙空間でのアンテナ使用時を示す。
同図において、1、2、3、5は図10に示した従来装
置相当のものであり、従来装置と同様の動作をする。4
は副反射鏡2を所定の位置に保持させる支持体であり、
副反射鏡2より反射される球面波あるいは主反射鏡1よ
り反射される平面波による幾何光学的な光線が照射され
る面積の小さな形状を有する支柱4aと、この幾何光学
的な光線が照射される面積の大きな形状を有しかつ主反
射鏡1と同じ鏡面定数の曲面形状を有する鏡面部材4e
とから構成され、鏡面部材4eによりロケット打ち上げ
時の振動や衝撃に対して耐え得る強度を得る。10は宇
宙空間において鏡面部材4eを主反射鏡1の開口の外周
の幾何光学的な光線が存在する空間へ駆動し保持する鏡
面部材展開機構であり、鏡面部材4eが主反射鏡1と同
じ鏡面定数を有するので、副反射鏡2より反射される球
面波は鏡面部材4eにより反射してスピルオーバを低減
でき、鏡軸方向に平面波として放射され、利得を増加さ
せることができる。また、支柱4aを十分小さい形状に
より構成できるから、支持体4による、ブロッキング、
反射波、及び回折波の影響を小さくでき、電気的性能の
劣化を抑えることができる。
Embodiment 5 5A and 5B are configuration diagrams showing a fifth embodiment of the present invention. FIG. 5A shows a rocket launched, and FIG. 5B shows an antenna used in outer space.
In the figure, reference numerals 1, 2, 3 and 5 correspond to the conventional device shown in FIG. 10, and operate in the same manner as the conventional device. Four
Is a support for holding the sub-reflecting mirror 2 in a predetermined position,
A pillar 4a having a shape with a small area to which a geometrical-optical ray of a spherical wave reflected by the sub-reflecting mirror 2 or a plane wave reflected by the main-reflecting mirror 1 is irradiated, and this geometrical-optical ray is irradiated. A mirror surface member 4e having a large area and a curved surface having the same mirror surface constant as the main reflecting mirror 1.
The mirror surface member 4e provides sufficient strength to withstand vibrations and impacts when the rocket is launched. Reference numeral 10 denotes a mirror surface member deploying mechanism that drives and holds the mirror surface member 4e in a space where geometrical optical rays on the outer circumference of the opening of the main reflecting mirror 1 exist in the space. The mirror surface member 4e has the same mirror surface as the main reflecting mirror 1. Since it has a constant, the spherical wave reflected from the sub-reflecting mirror 2 can be reflected by the mirror surface member 4e to reduce spillover, and can be radiated as a plane wave in the mirror axis direction to increase the gain. In addition, since the support column 4a can be configured with a sufficiently small shape, blocking by the support body 4,
The influence of reflected waves and diffracted waves can be reduced, and deterioration of electrical performance can be suppressed.

【0018】実施の形態6.図6は本発明の実施の形態
6を表す構成図であり、同図(a)はロケット打ち上げ
時、同図(b)は宇宙空間でのアンテナ使用時を示す。
2、3は図10に示した従来装置相当のものであり、従
来装置と同様の動作をする。また、4a、10は図5に
示した発明の実施の形態と同様のものである。4fは、
開口形状の一部あるいは全部が直線や折れ線あるいは多
角形からなる主反射鏡1と電気的に連続的に接続された
鏡面部材であり、主反射鏡1と鏡面部材4fを連続的に
接続させることにより、開口エッジ近傍における電流分
布の乱れによる開口分布の劣化を抑えることができ、か
つ、鏡面部材4fが主反射鏡1と同じ鏡面定数を有する
ので、副反射鏡2より反射される球面波は鏡面部材4f
により反射してスピルオーバを低減でき、鏡軸方向に平
面波として放射され、利得を増加させることができる。
また、支柱4aを十分小さい形状により構成できるか
ら、支持体4によるブロッキング、反射波、及び回折波
の影響を小さくでき、電気的性能の劣化を抑えることが
できる。
Embodiment 6 FIG. 6A and 6B are configuration diagrams showing a sixth embodiment of the present invention. FIG. 6A shows a rocket launched, and FIG. 6B shows an antenna used in outer space.
Reference numerals 2 and 3 are equivalent to the conventional device shown in FIG. 10, and operate similarly to the conventional device. Further, 4a and 10 are the same as those of the embodiment of the invention shown in FIG. 4f is
A part or all of the opening shape is a mirror surface member that is electrically and continuously connected to the main reflecting mirror 1 that is a straight line, a polygonal line, or a polygon, and the main reflecting mirror 1 and the mirror surface member 4f are continuously connected. As a result, the deterioration of the aperture distribution due to the disturbance of the current distribution in the vicinity of the aperture edge can be suppressed, and since the mirror surface member 4f has the same mirror surface constant as the main reflecting mirror 1, the spherical wave reflected by the sub reflecting mirror 2 is Mirror surface member 4f
It is possible to reduce the spillover by being reflected by, and radiate as a plane wave in the direction of the mirror axis to increase the gain.
Further, since the support column 4a can be configured to have a sufficiently small shape, it is possible to reduce the influence of blocking by the support body 4, reflected waves, and diffracted waves, and suppress deterioration of electrical performance.

【0019】実施の形態7.図7は本発明の実施の形態
7を表す構成図であり、同図(a)はロケット打ち上げ
時、同図(b)は宇宙空間でのアンテナ使用時を示す。
2、3は図10に示した従来装置相当のものであり、従
来装置と同様の動作をする。また、1、4a、4f、1
0は図6に示した発明の実施の形態と同様のものであ
る。11は宇宙空間で鏡面部材4fに電気的に接続され
スピルオーバする空間に張られ電波を反射させる金属メ
ッシュ、12は鏡面部材4fと金属メッシュ11をつな
げる金属メッシュ接合部である。同図(b)に示すよう
に宇宙空間でのアンテナ使用時には、鏡面部材4fの展
開にともなって金属メッシュ11が開き、アンテナ開口
をより大きくできるので高能率となり、支持体4による
ブロッキング、反射波、及び回折波の影響を小さくした
状態で、スピルオーバを低減でき、電気的性能の劣化を
抑えることができる。
Embodiment 7. 7A and 7B are configuration diagrams showing a seventh embodiment of the present invention. FIG. 7A shows a rocket launched, and FIG. 7B shows an antenna used in outer space.
Reference numerals 2 and 3 are equivalent to the conventional device shown in FIG. 10, and operate similarly to the conventional device. Also, 1, 4a, 4f, 1
0 is the same as the embodiment of the invention shown in FIG. Reference numeral 11 denotes a metal mesh that is electrically connected to the mirror surface member 4f in the outer space and is stretched in a space that spills over to reflect radio waves. Reference numeral 12 denotes a metal mesh joint portion that connects the mirror surface member 4f and the metal mesh 11. As shown in FIG. 2B, when the antenna is used in outer space, the metal mesh 11 opens with the expansion of the mirror member 4f, and the antenna opening can be made larger, resulting in higher efficiency, blocking by the support 4 and reflected waves. , And spillover can be reduced while suppressing the influence of diffracted waves, and deterioration of electrical performance can be suppressed.

【0020】実施の形態8.図8は本発明の実施の形態
8を表す構成図であり、同図(a)はロケット打ち上げ
時、同図(b)は宇宙空間でのアンテナ使用時を示す。
なお、この発明の実施の形態8では、主反射鏡と複数個
の鏡面部材の形状を、上記複数個の鏡面部材が宇宙空間
で上記主反射鏡の開口の外周に展開された時に、上記主
反射鏡と上記複数個の鏡面部材とによって得られる開口
が楕円の形状を有するように形成した場合を例として示
す。図において、13は開口形状Am の主反射鏡、14
は開口形状As の副反射鏡、15は開口形状Ah の一次
放射器、4は開口形状As の副反射鏡14を保持する支
持体、4gはロケット打ち上げ時の振動や衝撃に対して
開口形状As の副反射鏡14を保持し、宇宙空間でのア
ンテナ使用時には開口形状As の副反射鏡14より反射
される球面波を反射して平面波に変換し、開口形状Am
の主反射鏡13の主ビーム方向に放射する開口形状Aの
鏡面部材、10は開口形状Am の主反射鏡13の鏡面定
数で決まる鏡面位置に開口形状Aの鏡面部材4gを駆動
し固定する鏡面部材展開機構である。同図(b)に示す
ように宇宙空間でのアンテナ使用時には、開口形状As
の副反射鏡14で反射された幾何光学的な光線は、全て
開口形状Am の主反射鏡13あるいは開口形状Aの鏡面
部材4gにより反射され同一方向に伝搬する平面波に変
換され放射される。宇宙空間でのアンテナ使用時には、
簡略な構成でアンテナ開口をより大きくできるので高能
率となり、支持体4によるブロッキング、反射波、及び
回折波の影響を小さくした状態で、スピルオーバを低減
でき、電気的性能を向上させることができる。
Embodiment 8. 8A and 8B are configuration diagrams showing an eighth embodiment of the present invention. FIG. 8A shows a rocket launched, and FIG. 8B shows an antenna used in outer space.
In the eighth embodiment of the present invention, the shapes of the main reflecting mirror and the plurality of mirror surface members are changed to the above-mentioned main surfaces when the plurality of mirror surface members are deployed on the outer circumference of the opening of the main reflecting mirror in outer space. An example is shown in which the opening obtained by the reflecting mirror and the plurality of mirror surface members is formed to have an elliptical shape. In the drawing, 13 is a main reflecting mirror having an aperture shape A m , and 14
Is a sub-reflecting mirror with an aperture shape A s , 15 is a primary radiator with an aperture shape A h , 4 is a support for holding the sub-reflecting mirror 14 with an aperture shape A s , and 4 g is against rocket launching vibrations and impacts. holding the secondary reflecting mirror 14 of the opening shape a s, at the time the antenna used in space to reflect the spherical wave reflected from the auxiliary reflecting mirror 14 of the opening shape a s is converted into a plane wave, the opening shape a m
Mirror member opening shape A for emitting the main beam direction of the main reflecting mirror 13, and 10 drives the mirror member 4g of the opening shape A fixed mirror position determined by the mirror constants of the main reflecting mirror 13 of the opening shape A m It is a mirror surface member deployment mechanism. As shown in Fig. 2 (b), when using the antenna in outer space, the aperture shape A s
The geometric optical beam reflected by the secondary reflecting mirror 14 is converted into a plane wave propagating in the same direction is reflected by the mirror member 4g of the main reflecting mirror 13 or the opening shape A of all opening shape A m radiation. When using the antenna in outer space,
Since the antenna aperture can be made larger with a simple configuration, the efficiency is increased, and spillover can be reduced and electrical performance can be improved while the influence of blocking by the support 4, reflected waves, and diffracted waves is reduced.

【0021】実施の形態9.図9は本発明の実施の形態
9を表す構成図であり、同図(a)はロケット打ち上げ
時、同図(b)は宇宙空間でのアンテナ使用時を示す。
1、2、3、5は図10に示した従来装置相当のもので
あり、従来装置と同様の動作をする。4は副反射鏡2を
所定の位置に保持させる支持体であり、副反射鏡2より
反射される球面波あるいは主反射鏡1より反射される平
面波による幾何光学的な光線が照射される面積の小さな
形状を有しかつ副反射鏡2を主反射鏡1の鏡軸方向に駆
動する副反射鏡駆動機構4hを備えた第1の支持体と、
この幾何光学的な光線が照射される面積の大きな形状を
有する部材4bからなる第2の支持体とから構成され
る。同図(a)に示すように部材4bを設けることによ
りロケット打ち上げ時の振動や衝撃に対して耐え得る強
度を得られ、さらに、副反射鏡駆動機構4hを備えてい
るので、ロケット打ち上げ時には副反射鏡2を主反射鏡
1近傍に配置できるので、部材4bをコンパクトにでき
る。6は部材4bを宇宙空間において複反射鏡アンテナ
装置から切り離すための部材切り離し機構であり、同図
(b)に示すように、宇宙空間でのアンテナ使用時には
部材4bを幾何光学的な光線が照射されない領域に移動
させ、副反射鏡駆動機構4hが副反射鏡2を所定の位置
に移動させ設定する。よって、宇宙空間でのアンテナ使
用時においては、幾何光学的な光線が照射される領域に
副反射鏡駆動機構4hを有する支柱4aのみが存在する
だけであるから、支持体4によるブロッキング、反射
波、及び回折波の影響を小さくでき、電気的性能の劣化
を抑えることができる。
Ninth Embodiment 9A and 9B are configuration diagrams showing Embodiment 9 of the present invention. FIG. 9A shows a rocket launched, and FIG. 9B shows an antenna used in outer space.
Reference numerals 1, 2, 3, and 5 correspond to the conventional device shown in FIG. 10, and operate similarly to the conventional device. Reference numeral 4 denotes a support for holding the sub-reflecting mirror 2 at a predetermined position, which has an area for irradiating a geometrical optical ray by a spherical wave reflected by the sub-reflecting mirror 2 or a plane wave reflected by the main reflecting mirror 1. A first support having a sub-reflecting mirror driving mechanism 4h having a small shape and driving the sub-reflecting mirror 2 in the mirror axis direction of the main reflecting mirror 1;
The second support is composed of a member 4b having a shape having a large area irradiated with the geometrical optical ray. By providing the member 4b as shown in FIG. 7A, it is possible to obtain strength enough to withstand vibration and impact at the time of launching the rocket, and further, since the sub-reflector drive mechanism 4h is provided, it is a sub-device at the time of launching the rocket. Since the reflecting mirror 2 can be arranged near the main reflecting mirror 1, the member 4b can be made compact. Reference numeral 6 denotes a member separating mechanism for separating the member 4b from the double-reflecting mirror antenna device in outer space. As shown in FIG. 6B, when the antenna is used in outer space, the member 4b is irradiated with geometrical optical rays. Then, the sub-reflecting mirror drive mechanism 4h moves and sets the sub-reflecting mirror 2 to a predetermined position. Therefore, when the antenna is used in outer space, only the pillar 4a having the sub-reflecting mirror drive mechanism 4h exists in the area irradiated with the geometrical optical beam, so that the blocking by the support 4 and the reflected wave. , And the influence of diffracted waves can be reduced, and deterioration of electrical performance can be suppressed.

【0022】なお、以上に示した発明の実施の形態にお
いて、送信の場合を例にとり説明したが、受信の場合に
対しても可逆的に作用し、この発明の目的に対して同等
に有効である。また、一次放射器として円錐ホーンを用
いたが、コルゲートホーンあるいは複モードホーンやそ
の他の形状のホーンであっても、上記発明の実施の形態
と同等の効果を有する。また、複反射鏡アンテナ装置と
してカセグレンアンテナの場合を示したが、グレゴリア
ンアンテナやその他の放射系の形式の場合であっても、
上記それぞれの発明の実施の形態と同様の効果を有す
る。
In the embodiment of the present invention described above, the case of transmission is described as an example, but it acts reversibly also in the case of reception, and is equally effective for the purpose of the present invention. is there. Further, although the conical horn is used as the primary radiator, a corrugated horn, a multi-mode horn, or a horn having another shape has the same effect as that of the embodiment of the invention. In addition, although the case of the Cassegrain antenna is shown as the double reflector antenna device, even in the case of the Gregorian antenna and other types of radiation systems,
It has the same effects as those of the respective embodiments of the invention.

【0023】[0023]

【発明の効果】この発明は、以上説明したように構成さ
れているので、以下に記載されるような効果が得られ
る。
Since the present invention is configured as described above, the following effects can be obtained.

【0024】請求項1の発明によれば、副反射鏡を保持
する支持体を少なくとも、複反射鏡アンテナ装置の幾何
光学的な光線を遮る面積を低減させた形状と配置で設置
され、複反射鏡アンテナ装置の宇宙空間での使用時の負
荷に耐えられれば足る強度の第1の支持体と、複反射鏡
アンテナ装置の宇宙空間への運搬時の負荷に耐える強度
の第2の支持体とに分けて構成し、少なくとも上記第2
の支持体を宇宙空間における上記複反射鏡アンテナ装置
使用時に、上記複反射鏡アンテナ装置の電波の経路外へ
排除する切り離し機構を備えたので、宇宙空間で使用す
る複反射鏡アンテナ装置の副反射鏡の支持体によるブロ
ッキング、反射波、及び回折波の影響を小さくでき、電
気的性能の劣化を抑えることができる。
According to the first aspect of the present invention, the support for holding the sub-reflecting mirror is installed at least in a shape and arrangement in which the area of the multi-reflecting mirror antenna device that blocks the geometrical optical rays is reduced, and the double-reflecting mirror is installed. A first support that is strong enough to withstand the load of the mirror antenna device when it is used in outer space, and a second support that is strong enough to withstand the load of the double-reflection mirror antenna device when it is transported to outer space. Divided into at least the above second
When the above-mentioned double-reflecting mirror antenna device is used in outer space, since a detachment mechanism is provided to remove the radio wave of the above-mentioned double-reflecting mirror antenna device out of the path, the secondary reflection of the double-reflecting mirror antenna device used in outer space The influence of blocking, reflected waves, and diffracted waves by the support of the mirror can be reduced, and deterioration of electrical performance can be suppressed.

【0025】また、請求項2の発明によれば、宇宙空間
で使用する複反射鏡アンテナ装置において、主反射鏡に
照射する不都合な太陽光を遮る遮へい部材と、上記遮へ
い部材を展開し、上記複反射鏡アンテナ装置の電波の経
路外の上記主反射鏡に照射する不都合な太陽光を遮る位
置に駆動して設置する遮へい部材展開機構とを備えたの
で、主反射鏡の温度上昇による熱変形を抑えることがで
き、かつ上記遮へい部材によるブロッキング、反射波、
及び回折波の影響を小さくでき、電気的性能の劣化を抑
えることができる。
Further, according to the invention of claim 2, in the double-reflecting mirror antenna device used in outer space, the shielding member for shielding inconvenient sunlight irradiating the main reflecting mirror and the shielding member are developed, and Since it is equipped with a shield member expansion mechanism that is installed by driving it to a position that shields the inconvenient sunlight irradiating the main reflector outside the radio wave path of the double reflector antenna device, thermal deformation due to temperature rise of the main reflector Can be suppressed, and blocking by the shielding member, reflected waves,
Also, the influence of diffracted waves can be reduced, and deterioration of electrical performance can be suppressed.

【0026】また、請求項3の発明によれば、宇宙空間
での複反射鏡アンテナ装置使用時に、第2の支持体を主
反射鏡と異なる鏡面定数の曲面形状を有する複数個の鏡
面部材で構成し、鏡面部材展開機構が上記複数個の鏡面
部材を上記主反射鏡の開口の外周のスピルオーバする電
波を反射させる位置に展開するので、上記鏡面部材での
反射は主ビーム方向以外の方向に放射され、主反射鏡に
よる放射パターンと逆相で加わることによりサイドロー
ブレベルを低下させる。
According to the third aspect of the present invention, when the double reflector antenna device is used in outer space, the second support is made up of a plurality of mirror surface members having a curved surface shape having a mirror surface constant different from that of the main reflecting mirror. Since the mirror surface member developing mechanism deploys the plurality of mirror surface members to a position on the outer periphery of the opening of the main reflecting mirror for reflecting spillover electric waves, the reflection on the mirror surface member is directed in a direction other than the main beam direction. The side lobe level is lowered by being emitted and added in a phase opposite to the radiation pattern of the main reflecting mirror.

【0027】また、請求項4の発明によれば、宇宙空間
での複反射鏡アンテナ装置使用時に、第2の支持体を主
反射鏡と同一の鏡面定数の曲面形状を有する複数個の鏡
面部材で構成し、鏡面部材展開機構が上記複数個の鏡面
部材を上記主反射鏡の開口の外周のスピルオーバする電
波を反射させる位置に展開するので、上記鏡面部材での
反射は主ビーム方向に放射され、スピルオーバを低減で
き、利得を増加させることができる。
Further, according to the invention of claim 4, when the double reflecting mirror antenna device is used in outer space, the second support has a plurality of mirror surface members having a curved surface shape having the same mirror surface constant as the main reflecting mirror. Since the mirror surface member developing mechanism deploys the plurality of mirror surface members to a position for reflecting spillover electric waves on the outer periphery of the opening of the main reflecting mirror, the reflection on the mirror surface member is radiated in the main beam direction. , Spillover can be reduced and gain can be increased.

【0028】また、請求項5の発明によれば、第2の支
持体を主反射鏡と同一の鏡面定数の曲面形状を有する複
数個の鏡面部材で構成し、主反射鏡の開口形状を、その
一部あるいは全部に直線部を有する形状とし、宇宙空間
における上記複反射鏡アンテナ装置使用時に、展開され
た上記複数個の鏡面部材を、上記主反射鏡の上記直線部
を介して上記主反射鏡に電気的に連続に接続した鏡面部
材展開機構が上記複数個の鏡面部材を上記主反射鏡の開
口の外周のスピルオーバする電波を反射させる位置に展
開するので、主反射鏡の開口エッジ近傍における電流分
布の乱れによる開口分布の劣化を抑えることができ、か
つ、上記鏡面部材での反射は主ビーム方向に放射され、
スピルオーバを低減でき、利得を増加させることができ
る。
According to the invention of claim 5, the second support is composed of a plurality of mirror surface members having a curved surface shape having the same mirror surface constant as the main reflecting mirror, and the opening shape of the main reflecting mirror is When a part of or the whole of which has a straight line portion, the plurality of mirror surface members that have been deployed when the above-described double reflector antenna device is used in outer space, the main reflection through the straight line portion of the main reflecting mirror. Since the mirror surface member deploying mechanism electrically connected to the mirror deploys the plurality of mirror surface members to the position on the outer periphery of the opening of the main reflecting mirror for reflecting the spillover electric wave, in the vicinity of the opening edge of the main reflecting mirror. The deterioration of the aperture distribution due to the disturbance of the current distribution can be suppressed, and the reflection on the mirror surface member is radiated in the main beam direction,
Spillover can be reduced and gain can be increased.

【0029】また、請求項6の発明によれば、複数個の
鏡面部材が宇宙空間で主反射鏡の開口の外周に展開され
た時に、上記複数個の鏡面部材間に伸張され、スピルオ
ーバする電波を反射させる金属メッシュを備えたので、
宇宙空間での複反射鏡アンテナ装置使用時に、アンテナ
開口を主反射鏡より大きくして高能率とできるととも
に、スピルオーバする電波を反射させスピルオーバを低
減できる。
According to the sixth aspect of the present invention, when a plurality of mirror surface members are deployed on the outer periphery of the opening of the main reflecting mirror in space, the radio waves are expanded between the plurality of mirror surface members and spill over. Since it has a metal mesh that reflects
When using a double reflector antenna device in outer space, the antenna aperture can be made larger than the main reflector to achieve high efficiency, and the spillover radio wave can be reflected to reduce spillover.

【0030】また、請求項7の発明によれば、主反射鏡
と複数個の鏡面部材の形状を、上記複数個の鏡面部材が
宇宙空間で上記主反射鏡の開口の外周に展開された時
に、上記主反射鏡と上記複数個の鏡面部材とによって得
られる開口が円あるいは楕円の形状を有するように形成
したので、宇宙空間での複反射鏡アンテナ装置使用時
に、簡略な構成でアンテナ開口をより大きくできるので
高能率とできるとともに、スピルオーバする電波を反射
させスピルオーバを低減できる。
Further, according to the invention of claim 7, the shapes of the main reflecting mirror and the plurality of mirror surface members are set such that when the plurality of mirror surface members are developed in outer space around the outer periphery of the opening of the main reflecting mirror. Since the opening obtained by the main reflecting mirror and the plurality of mirror surface members is formed to have a circular or elliptical shape, when using the double reflecting mirror antenna device in outer space, the antenna opening can be formed with a simple structure. Since it can be made larger, high efficiency can be achieved and spillover can be reduced by reflecting radio waves that spillover.

【0031】また、請求項8の発明によれば、第1の支
持体が、複反射鏡アンテナ装置の宇宙空間への運搬時
に、副反射鏡を主反射鏡へ接近させた位置で保持し、上
記複反射鏡アンテナ装置の宇宙空間での使用時に、副反
射鏡を主反射鏡に対する所定の位置へ駆動させて保持す
る副反射鏡駆動機構を備えたので、第2の支持体を小形
に形成でき、複反射鏡アンテナ装置の宇宙空間への運搬
時にアンテナの収納スペースを小さくできる。
According to the invention of claim 8, the first support holds the sub-reflector at a position close to the main reflector when the multi-reflector antenna device is transported to outer space. Since the sub-reflector antenna device is equipped with a sub-reflector drive mechanism that drives and holds the sub-reflector at a predetermined position relative to the main reflector when the device is used in outer space, the second support is formed in a small size. Therefore, the storage space for the antenna can be reduced when the double reflector antenna device is transported to outer space.

【図面の簡単な説明】[Brief description of drawings]

【図1】 この発明の実施の形態1の複反射鏡アンテナ
装置を示す構成図である。
FIG. 1 is a configuration diagram showing a double reflector antenna device according to a first embodiment of the present invention.

【図2】 この発明の実施の形態2の複反射鏡アンテナ
装置を示す構成図である。
FIG. 2 is a configuration diagram showing a double reflector antenna device according to a second embodiment of the present invention.

【図3】 この発明の実施の形態3の複反射鏡アンテナ
装置を示す構成図である。
FIG. 3 is a configuration diagram showing a double reflector antenna device according to a third embodiment of the present invention.

【図4】 この発明の実施の形態4の複反射鏡アンテナ
装置を示す構成図である。
FIG. 4 is a configuration diagram showing a double reflector antenna device according to a fourth embodiment of the present invention.

【図5】 この発明の実施の形態5の複反射鏡アンテナ
装置を示す構成図である。
FIG. 5 is a configuration diagram showing a double reflector antenna device according to a fifth embodiment of the present invention.

【図6】 この発明の実施の形態6の複反射鏡アンテナ
装置を示す構成図である。
FIG. 6 is a configuration diagram showing a double reflector antenna device according to a sixth embodiment of the present invention.

【図7】 この発明の実施の形態7の複反射鏡アンテナ
装置を示す構成図である。
FIG. 7 is a configuration diagram showing a double reflector antenna device according to a seventh embodiment of the present invention.

【図8】 この発明の実施の形態8の複反射鏡アンテナ
装置を示す構成図である。
FIG. 8 is a configuration diagram showing a double reflector antenna device according to an eighth embodiment of the present invention.

【図9】 この発明の実施の形態9の複反射鏡アンテナ
装置を示す構成図である。
FIG. 9 is a configuration diagram showing a double reflector antenna device according to a ninth embodiment of the present invention.

【図10】 従来例を表す構成図である。FIG. 10 is a configuration diagram showing a conventional example.

【符号の説明】[Explanation of symbols]

1 主反射鏡、2 副反射鏡、3 一次放射器、4 支
持体、4a 支柱、4b 部材、4c 遮へい部材、4
d、4e、4f 鏡面部材、4g 開口形状Aの鏡面部
材、4h 副反射鏡駆動機構、5 衛星構体、6 部材
切り離し機構、7 遮へい板、8 遮へい部材展開機
構、9、10 鏡面部材展開機構、11 金属メッシ
ュ、12 金属メッシュ接合部、13 開口形状Am
主反射鏡、14 開口形状As の副反射鏡、15 開口
形状Ah の一次放射器。
DESCRIPTION OF SYMBOLS 1 main reflecting mirror, 2 sub-reflecting mirror, 3 primary radiator, 4 support, 4a support, 4b member, 4c shielding member, 4
d, 4e, 4f Mirror surface member, 4g Mirror surface member with aperture shape A, 4h Sub-reflecting mirror drive mechanism, 5 Satellite structure, 6 member separating mechanism, 7 Shield plate, 8 Shield member deploying mechanism, 9, 10 Mirror member deploying mechanism, 11 metal mesh, 12 metal mesh junction, 13 a main reflector opening shape a m, 14 subreflector opening shape a s, a primary radiator 15 opening shape a h.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01Q 19/19 H01Q 19/19 // H01Q 13/02 13/02 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication H01Q 19/19 H01Q 19/19 // H01Q 13/02 13/02

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 主反射鏡、副反射鏡、一次放射器、及び
上記副反射鏡を保持する支持体を備えてなる複反射鏡ア
ンテナ装置において、上記支持体を少なくとも、上記複
反射鏡アンテナ装置の幾何光学的な光線を遮る面積を低
減させた形状と配置で設置され、上記複反射鏡アンテナ
装置の宇宙空間での使用時の負荷に耐えられれば足る強
度の第1の支持体と、上記複反射鏡アンテナ装置の宇宙
空間への運搬時の負荷に耐える強度の第2の支持体とに
分けて構成し、少なくとも上記第2の支持体を宇宙空間
における上記複反射鏡アンテナ装置使用時に、上記複反
射鏡アンテナ装置の電波の経路外へ排除する切り離し機
構を備えたことを特徴とする複反射鏡アンテナ装置。
1. A multi-reflecting mirror antenna device comprising a main reflecting mirror, a sub-reflecting mirror, a primary radiator, and a support for holding the sub-reflecting mirror, wherein at least the support is provided in the multi-reflecting mirror antenna device. The first support, which is installed in such a shape and arrangement that the area for intercepting the geometrical optical rays is reduced, and has sufficient strength to withstand the load of the above-mentioned double-reflecting mirror antenna device when used in outer space, It is configured by being divided into a second supporting body having a strength capable of withstanding a load when the double reflecting mirror antenna device is transported to outer space, and at least the second supporting body is used in the outer space when the double reflecting mirror antenna device is used. A multi-reflecting mirror antenna device comprising a disconnecting mechanism for removing the radio wave from the multi-reflecting mirror antenna device to the outside of the radio wave path.
【請求項2】 請求項1記載の複反射鏡アンテナ装置に
おいて、上記第2の支持体と独立に又は上記第2の支持
体と共に設置され、宇宙空間における上記複反射鏡アン
テナ装置使用時に展開配置され、上記主反射鏡に照射す
る不都合な太陽光を遮る遮へい部材と、上記遮へい部材
を展開し、上記複反射鏡アンテナ装置の電波の経路外の
上記主反射鏡に照射する不都合な太陽光を遮る位置に駆
動して設置する遮へい部材展開機構とを備えたことを特
徴とする複反射鏡アンテナ装置。
2. The multi-reflecting mirror antenna device according to claim 1, wherein the multi-reflecting mirror antenna device is installed independently of the second support or together with the second support, and is deployed when the multi-reflection mirror antenna device is used in outer space. The shielding member for shielding the undesired sunlight irradiating the main reflecting mirror and the shielding member are developed, and the undesired sunlight irradiating the main reflecting mirror outside the radio wave path of the double reflector antenna device is A multi-reflecting mirror antenna device comprising: a shield member deploying mechanism that is driven and installed at a shield position.
【請求項3】 主反射鏡、副反射鏡、一次放射器、及び
上記副反射鏡を保持する支持体を備えてなる複反射鏡ア
ンテナ装置において、上記支持体を少なくとも、上記複
反射鏡アンテナ装置の幾何光学的な光線を遮る面積を低
減させた形状と配置で設置され、上記複反射鏡アンテナ
装置の宇宙空間での使用時の負荷に耐えられれば足る強
度の第1の支持体と、上記複反射鏡アンテナ装置の宇宙
空間への運搬時の負荷に耐える強度で、上記主反射鏡と
上記副反射鏡との間に設けられ、上記主反射鏡と異なる
鏡面定数の曲面形状を有する複数個の鏡面部材からなる
第2の支持体とに分けて構成し、宇宙空間における上記
複反射鏡アンテナ装置使用時に、上記複数個の鏡面部材
を、上記副反射鏡への接続支持を解除して上記主反射鏡
の開口の外周のスピルオーバする電波を反射させる位置
に展開する鏡面部材展開機構を備えたことを特徴とする
複反射鏡アンテナ装置。
3. A multi-reflecting mirror antenna device comprising a main reflecting mirror, a sub-reflecting mirror, a primary radiator, and a support for holding the sub-reflecting mirror, wherein at least the support is provided in the multi-reflecting mirror antenna device. The first support, which is installed in such a shape and arrangement that the area for intercepting the geometrical optical rays is reduced, and has sufficient strength to withstand the load of the above-mentioned double-reflecting mirror antenna device when used in outer space, A plurality of curved surfaces having a mirror constant different from that of the main reflecting mirror, which is provided between the main reflecting mirror and the sub-reflecting mirror and has a strength that can withstand a load when the double reflecting mirror antenna device is transported to outer space. And a second support composed of a mirror surface member, and when the double reflection mirror antenna device is used in outer space, the support for connecting the plurality of mirror surface members to the sub-reflecting mirror is released, and The spin around the opening of the main reflector A multi-reflecting mirror antenna device comprising a mirror surface member deploying mechanism for deploying to a position for reflecting a radio wave that overruns.
【請求項4】 主反射鏡、副反射鏡、一次放射器、及び
上記副反射鏡を保持する支持体を備えてなる複反射鏡ア
ンテナ装置において、上記支持体を少なくとも、上記複
反射鏡アンテナ装置の幾何光学的な光線を遮る面積を低
減させた形状と配置で設置され、上記複反射鏡アンテナ
装置の宇宙空間での使用時の負荷に耐えられれば足る強
度の第1の支持体と、上記複反射鏡アンテナ装置の宇宙
空間への運搬時の負荷に耐える強度で、上記主反射鏡と
上記副反射鏡との間に設けられ、上記主反射鏡と同一の
鏡面定数の曲面形状を有する複数個の鏡面部材からなる
第2の支持体とに分けて構成し、宇宙空間における上記
複反射鏡アンテナ装置使用時に、上記複数個の鏡面部材
を、上記副反射鏡への接続支持を解除して上記主反射鏡
の開口の外周のスピルオーバする電波を反射させる位置
に展開する鏡面部材展開機構を備えたことを特徴とする
複反射鏡アンテナ装置。
4. A multi-reflecting mirror antenna device comprising a main reflecting mirror, a sub-reflecting mirror, a primary radiator, and a support for holding the sub-reflecting mirror, wherein at least the support is provided in the multi-reflecting mirror antenna device. The first support, which is installed in such a shape and arrangement that the area for intercepting the geometrical optical rays is reduced, and has sufficient strength to withstand the load of the above-mentioned double-reflecting mirror antenna device when used in outer space, A plurality of curved surfaces having the same mirror surface constant as the main reflecting mirror, which are provided between the main reflecting mirror and the sub-reflecting mirror and have a strength to withstand the load of the double-reflecting mirror antenna device when transported to outer space. And a second support made up of a single mirror surface member. When the double reflector mirror antenna device is used in outer space, the plurality of mirror surface members are disconnected from the sub-reflecting mirror. The spin around the aperture of the main reflector is A multi-reflecting mirror antenna device comprising a mirror surface member deploying mechanism for deploying to a position for reflecting a radio wave that overruns.
【請求項5】 請求項3又は請求項4記載の複反射鏡ア
ンテナ装置において、主反射鏡の開口形状を、その一部
あるいは全部に直線部を有する形状とし、宇宙空間にお
ける上記複反射鏡アンテナ装置使用時に、展開された上
記複数個の鏡面部材を、上記主反射鏡の上記直線部を介
して上記主反射鏡に電気的に連続に接続したことを特徴
とする複反射鏡アンテナ装置。
5. The double-reflecting mirror antenna device according to claim 3 or 4, wherein the opening of the main reflecting mirror has a linear part in part or in whole, and the double-reflecting mirror antenna in outer space. A multi-reflecting mirror antenna device, characterized in that, when the device is used, the plurality of developed mirror surface members are electrically continuously connected to the main reflecting mirror through the straight line portion of the main reflecting mirror.
【請求項6】 請求項3、4又は5記載の複反射鏡アン
テナ装置において、上記複数個の鏡面部材が宇宙空間で
上記主反射鏡の開口の外周に展開された時に、上記複数
個の鏡面部材間に伸張され、スピルオーバする電波を反
射させる金属メッシュを備えたことを特徴とする複反射
鏡アンテナ装置。
6. The multi-reflecting mirror antenna device according to claim 3, 4 or 5, wherein when the plurality of mirror surface members are deployed on the outer periphery of the opening of the main reflecting mirror in space, the plurality of mirror surface members are provided. A multi-reflecting mirror antenna device comprising a metal mesh that is stretched between members and that reflects a spillover electric wave.
【請求項7】 請求項5記載の複反射鏡アンテナ装置に
おいて、上記主反射鏡と上記複数個の鏡面部材の形状
を、上記複数個の鏡面部材が宇宙空間で上記主反射鏡の
開口の外周に展開された時に、上記主反射鏡と上記複数
個の鏡面部材とによって得られる開口が円あるいは楕円
の形状を有するように形成したことを特徴とする複反射
鏡アンテナ装置。
7. The multi-reflecting mirror antenna device according to claim 5, wherein the main reflecting mirror and the plurality of mirror surface members are shaped such that the plurality of mirror surface members are outer space of an opening of the main reflecting mirror in outer space. A multi-reflecting mirror antenna device, characterized in that an opening obtained by the main reflecting mirror and the plurality of mirror-finished members has a circular or elliptical shape when expanded.
【請求項8】 請求項1〜7のいずれか1項に記載の複
反射鏡アンテナ装置において、第1の支持体が、上記複
反射鏡アンテナ装置の宇宙空間への運搬時に、上記副反
射鏡を上記主反射鏡へ接近させた位置で保持し、上記複
反射鏡アンテナ装置の宇宙空間での使用時に、上記副反
射鏡を上記主反射鏡に対する所定の位置へ駆動させて保
持する副反射鏡駆動機構を備えたことを特徴とする複反
射鏡アンテナ装置。
8. The double-reflecting mirror antenna device according to claim 1, wherein the first support member transports the double-reflecting mirror antenna device to outer space. Is held at a position close to the main reflecting mirror, and the sub-reflecting mirror is driven and held at a predetermined position with respect to the main reflecting mirror when the double reflecting mirror antenna device is used in space. A double-reflecting mirror antenna device comprising a driving mechanism.
JP12588396A 1996-05-21 1996-05-21 Double reflector antenna device Expired - Lifetime JP3763428B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12588396A JP3763428B2 (en) 1996-05-21 1996-05-21 Double reflector antenna device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12588396A JP3763428B2 (en) 1996-05-21 1996-05-21 Double reflector antenna device

Publications (2)

Publication Number Publication Date
JPH09312518A true JPH09312518A (en) 1997-12-02
JP3763428B2 JP3763428B2 (en) 2006-04-05

Family

ID=14921289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12588396A Expired - Lifetime JP3763428B2 (en) 1996-05-21 1996-05-21 Double reflector antenna device

Country Status (1)

Country Link
JP (1) JP3763428B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2905804A1 (en) * 2006-09-13 2008-03-14 Alcatel Sa SPACE ACQUISITION INSTRUMENT WITH REFLECTOR (S) DEPLOYABLE (S) AND HIGH COMPACITY
JP2008187650A (en) * 2007-01-31 2008-08-14 Mitsubishi Electric Corp Deployable antenna
EP2466688A1 (en) * 2010-12-14 2012-06-20 Alcatel Lucent Parabolic reflector antenna
EP2678731A4 (en) * 2011-02-25 2016-07-06 Univ Utah State Res Foundation Multiple petal deployable telescope
WO2022099143A1 (en) * 2020-11-09 2022-05-12 Hughes Network Systems, Llc Reducing reflector antenna spillover lobes and back lobes in satellite communication systems

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2905804A1 (en) * 2006-09-13 2008-03-14 Alcatel Sa SPACE ACQUISITION INSTRUMENT WITH REFLECTOR (S) DEPLOYABLE (S) AND HIGH COMPACITY
WO2008031826A1 (en) * 2006-09-13 2008-03-20 Thales Highly compact acquisition instrument for operation in space with one or more deployable reflectors
JP2008187650A (en) * 2007-01-31 2008-08-14 Mitsubishi Electric Corp Deployable antenna
EP2466688A1 (en) * 2010-12-14 2012-06-20 Alcatel Lucent Parabolic reflector antenna
EP2678731A4 (en) * 2011-02-25 2016-07-06 Univ Utah State Res Foundation Multiple petal deployable telescope
WO2022099143A1 (en) * 2020-11-09 2022-05-12 Hughes Network Systems, Llc Reducing reflector antenna spillover lobes and back lobes in satellite communication systems

Also Published As

Publication number Publication date
JP3763428B2 (en) 2006-04-05

Similar Documents

Publication Publication Date Title
US4562441A (en) Orbital spacecraft having common main reflector and plural frequency selective subreflectors
US6522305B2 (en) Microwave antennas
US5859619A (en) Small volume dual offset reflector antenna
US4342036A (en) Multiple frequency band, multiple beam microwave antenna system
EP0597318B1 (en) Multibeam antenna for receiving satellite
US3276022A (en) Dual frequency gregorian-newtonian antenna system with newtonian feed located at common focus of parabolic main dish and ellipsoidal sub-dish
JPH0352682B2 (en)
US6580399B1 (en) Antenna system having positioning mechanism for reflector
JPH09312518A (en) Dual reflection mirror antenna system
JP2002204124A (en) Offset cassegrain antenna of side feeding type provided with main reflecting mirror gimbals
EP0986133A2 (en) Multi-focus reflector antenna
EP1207584B1 (en) Integrated dual beam reflector antenna
EP0168904B1 (en) Offset-fed dual reflector antenna
US3706999A (en) Cassegraninian antenna having limited spillover energy
US7119754B2 (en) Receiving antenna for multibeam coverage
US6243047B1 (en) Single mirror dual axis beam waveguide antenna system
JP4151593B2 (en) Double reflector antenna device
JP2002353723A (en) Parabolic antenna with radome
JP2687412B2 (en) Reflector antenna
JPH0474005A (en) Reflection type antenna
JP2687413B2 (en) Reflector antenna
Imbriale et al. Novel solutions to low-frequency problems with geometrically designed beam-waveguide systems
JP2643560B2 (en) Multi-beam antenna
Amyotte et al. High performance Ka-band multibeam antennas
JP2687415B2 (en) Reflector antenna

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041109

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20041130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060112

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100127

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100127

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110127

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120127

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130127

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130127

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term