JPH09299953A - Electrolytic water generator - Google Patents

Electrolytic water generator

Info

Publication number
JPH09299953A
JPH09299953A JP8118717A JP11871796A JPH09299953A JP H09299953 A JPH09299953 A JP H09299953A JP 8118717 A JP8118717 A JP 8118717A JP 11871796 A JP11871796 A JP 11871796A JP H09299953 A JPH09299953 A JP H09299953A
Authority
JP
Japan
Prior art keywords
cathode
anode
water
chamber
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8118717A
Other languages
Japanese (ja)
Inventor
Masatoshi Inatani
正敏 稲谷
Hisaaki Gyoten
久朗 行天
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co, Matsushita Electric Industrial Co Ltd filed Critical Matsushita Refrigeration Co
Priority to JP8118717A priority Critical patent/JPH09299953A/en
Publication of JPH09299953A publication Critical patent/JPH09299953A/en
Pending legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PROBLEM TO BE SOLVED: To generate an electrolytic water having an oxidationreduction property close to neutral by providing an electrolytic cell having a partition wall furnished with a hydrogen ion-conductive membrane partitioning a cathode compartment and an anode compartment, filling the cell with an electrolyte and impressing a DC voltage between the cathode and anode. SOLUTION: An electrolytic cell 12 is divided by a partition wall 18 formed with a hydrogen ion-conductive membrane 17 into an anode compartment 14 having an anode 13 and a cathode compartment 16 having a cathode 15. Both electrodes 13 and 15 are connected to a DC power source, and gaseous chlorine and gaseous oxygen are generated from the surface of the anode 13 as a current is applied to form hypochlorous acid and hypochlorite ion in electrolytic water 20. However, the chlorine ion is not increased, an excess of hydrogen ion is transferred to the cathode compartment 16 through the membrane 17, and the generation of strongly acidic water is suppressed. Meanwhile, since gaseous hydrogen is generated on the cathode 15 surface and hydroxyl ion is formed in an electrolyte 23, the change to alkali is retarded.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、各種汚染物質の殺
菌洗浄や工業材料の表面処理等を目的に、水を電気分解
して製造される殺菌洗浄用処理液の製造装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for producing a sterilizing and cleaning treatment liquid produced by electrolyzing water for the purpose of sterilizing and cleaning various pollutants and surface treatment of industrial materials.

【0002】[0002]

【従来の技術】食塩水を隔膜にて区画したアノード室お
よびカソード室を有する電解槽にて電気分解すると、特
開平6−237747号公報に例示されているように、
アノード室からは酸性の生成水が得られるとともに、カ
ソード室側からはアルカリ性の生成水が得られる。この
ようにして得られた生成水は酸化・還元能が高く、この
水の酸化・還元能が医療器具や厨房機器の洗浄や工業材
料の表面処理、微生物の消毒殺菌、植物などの成長に影
響を与えていることは知られている。
2. Description of the Related Art Electrolysis of saline solution in an electrolytic cell having an anode chamber and a cathode chamber partitioned by a diaphragm, as illustrated in JP-A-6-237747,
Acidic product water is obtained from the anode chamber, and alkaline product water is obtained from the cathode chamber side. The water produced in this way has a high oxidation / reduction ability, and this oxidation / reduction ability of water affects the cleaning of medical equipment and kitchen equipment, surface treatment of industrial materials, disinfection of microorganisms, growth of plants, etc. Is known to give.

【0003】洗浄や表面処理の対象となる汚染物質は医
療器具ではたんぱく質や体液等の脂質があり、厨房では
生鮮食品の土壌菌や、水垢等のぬめりや魚介類等の洗浄
液、さらには油汚れがある。工業材料としては半導体表
面のイオン状物質や反応生成物、液状、粒子状物質の汚
れが主体となる。
Contaminants to be washed and surface-treated include lipids such as proteins and body fluids in medical instruments, and cleaning liquids such as soil bacteria of fresh foods, slime such as water stains and seafood, and oil stains in kitchens. There is. Industrial materials are mainly ionic substances and reaction products on the semiconductor surface, and liquid and particulate contaminants.

【0004】酸性のアノード室側生成水は殺菌作用を融
資、また、アルカリ性のカソード室側生成水は魚介類に
対する色合いの悪変防止作用およびドリップの発生防止
作用、野菜類の色合いの悪変防止作用を有する。このた
め、これらの各生成水は生鮮植物用の蘇生液等の処理液
としてそれぞれ単独で使用される。
Acidic water produced in the anode chamber lends a sterilizing action, and water produced in the alkaline cathode chamber acts to prevent the deterioration of the hue of fish and seafood and to prevent the occurrence of drip and the deterioration of the hue of vegetables. Have an effect. Therefore, each of these produced waters is used alone as a treatment liquid such as a resuscitation liquid for fresh plants.

【0005】イオン状物質の汚染形態にはガラス表面等
に見られるイオン交換による吸着、半導体や金属の表面
に見られるイオンの静電的引力による付着、及び半導
体、金属、セラミックスの表面層へのイオンの拡散によ
る侵入と言ったものが挙げられる。このようなイオン状
物質は薬剤洗浄した後、仕上げとして純水又は超純水に
よって洗浄されるのが一般的である。例えば半導体の洗
浄に際しては、電気抵抗率が約18MΩ/cmの超純水
が用いられる。そして、シリコンウエハ等に付着する液
体、又は被膜状の汚染物質の除去には、この汚染物質を
酸化分解したり、溶解させると言った方法が適用されて
おり、酸化分解に用いられる薬剤としては、硫酸と過酸
化水素とを組み合わせたもの、水酸化アンモニウムと過
酸化水素とを組み合わせたもの等、過酸化水素の酸化力
を利用されている。
Contaminated forms of ionic substances include adsorption by ion exchange found on the glass surface, adhesion by electrostatic attraction of ions found on the surface of semiconductors and metals, and adhesion to the surface layer of semiconductors, metals and ceramics. The thing called the penetration | invasion by the diffusion of an ion is mentioned. Such an ionic substance is generally washed with pure water or ultrapure water as a finish after chemical cleaning. For example, when cleaning a semiconductor, ultrapure water having an electric resistivity of about 18 MΩ / cm is used. Then, in order to remove the liquid or film-like contaminants adhering to the silicon wafer or the like, a method of oxidatively decomposing or dissolving this contaminant is applied, and as a drug used for oxidative decomposition, , A combination of sulfuric acid and hydrogen peroxide, a combination of ammonium hydroxide and hydrogen peroxide, etc. are utilized for the oxidizing power of hydrogen peroxide.

【0006】これらの酸化力を付加する洗浄液の製法に
食塩水を電気分解して製造した電解水の利用も考えられ
るが、従来の隔膜電解において電気分解を円滑に行うた
めには食塩等の電解質を数%添加することが不可欠とな
っていた。この為、得られた電解水中には電解質イオン
がかなり含まれることになり、例えば洗浄に利用しよう
とすると、電解質イオンが残留し、被洗浄物の表面に付
着残留する。そして、この残留イオンによる種類の問題
が起きる。例えば金属材料の腐食や劣化、生鮮食品の変
食、さらに食塩等の塩化物を電解質に利用した場合には
塩素臭などの異臭の問題が起こる。
It is possible to use electrolyzed water produced by electrolyzing a saline solution in the production of these washing liquids that add oxidizing power. However, in order to smoothly perform electrolysis in the conventional diaphragm electrolysis, an electrolyte such as a salt solution is used. It was indispensable to add a few%. Therefore, the obtained electrolyzed water contains a considerable amount of electrolyte ions, and when it is used for cleaning, for example, the electrolyte ions remain and remain on the surface of the object to be cleaned. Then, a kind of problem occurs due to the residual ions. For example, corrosion and deterioration of metal materials, alteration of fresh foods, and when chlorides such as salt are used as electrolytes, a problem of offensive odor such as chlorine odor occurs.

【0007】上記問題点を解決する方法として図6で示
す特開平7−75784号公報の様にカチオン型イオン
交換膜1とアニオン型イオン交換型2で仕切られた食塩
水等の電解液3が介在する中間室4を挟み、陰極5をも
つカソード室6と陽極7をもつアノード室8とで構成し
た電解槽9で、前記カチオン型イオン交換膜1に陽極7
を、アニオンイオン交換膜2に陰極5を密接してなるも
ので、両電極に直流電源10で直流電圧を印可させ電解
処理を行うというものが考案されている。
As a method for solving the above-mentioned problems, an electrolytic solution 3 such as a saline solution partitioned by a cation type ion exchange membrane 1 and an anion type ion exchange type 2 is disclosed in Japanese Patent Laid-Open No. 7-75784 shown in FIG. An anode 7 is formed on the cation-type ion exchange membrane 1 in an electrolytic cell 9 which is composed of a cathode chamber 6 having a cathode 5 and an anode chamber 8 having an anode 7 with an intermediate chamber 4 interposed therebetween.
It has been devised that the cathode 5 is closely attached to the anion-ion exchange membrane 2 and a DC voltage is applied to both electrodes by a DC power supply 10 to perform electrolytic treatment.

【0008】図6を元に上記公報の電解処理装置の動作
を説明する。カソード室6とアノード室8とに注入する
水溶液としては純水製造装置(図示せず)を使ってそそ
ぎ込まれる純水であり、中間室4には電解液3として食
塩水が介在している。陽極7と陰極5とに直流電圧をか
け電気分解を行うと、中間室4の電解液3の食塩水中の
カチオンであるナトリウムイオンは陰極5側にアニオン
イオンである塩素イオンは陽極7側に引き寄せられる。
しかし陽極7側にはカチオン型イオン交換膜1が介在す
るため塩素イオンの移動は遮断され、アノード室8の水
分解により生じた水素イオンがアノード室8側から中間
室4側に移動する。また、陰極2側にはアニオン型イオ
ン交換膜2が介在するためナトリウムイオンの移動は遮
断され、カソード室6側から中間室4に水酸基イオンが
移動することとなる。すなわち、中間室4では水素イオ
ンと水酸基イオンの反応で水が生成し食塩水は生成した
水により薄められる。このような水素イオン及び水酸基
イオンの移動が生じることにより陰極5と陽極7との間
に電流が流れ、陽極7から酸素ガスが、陰極5から水素
ガスが発生することとなり水の電気分解がおこなわれ
る。
The operation of the electrolytic treatment apparatus of the above publication will be described with reference to FIG. The aqueous solution to be injected into the cathode chamber 6 and the anode chamber 8 is pure water poured by using a pure water producing device (not shown), and the intermediate chamber 4 contains saline as the electrolytic solution 3. . When a DC voltage is applied to the anode 7 and the cathode 5 to perform electrolysis, sodium ions which are cations in the salt solution of the electrolytic solution 3 in the intermediate chamber 4 are attracted to the cathode 5 side and chlorine ions which are anion ions are attracted to the anode 7 side. To be
However, since the cation-type ion exchange membrane 1 is present on the anode 7 side, movement of chlorine ions is blocked, and hydrogen ions generated by water decomposition in the anode chamber 8 move from the anode chamber 8 side to the intermediate chamber 4 side. Further, since the anion-type ion exchange membrane 2 is interposed on the cathode 2 side, movement of sodium ions is blocked, and hydroxyl ions move from the cathode chamber 6 side to the intermediate chamber 4. That is, in the intermediate chamber 4, water is produced by the reaction of hydrogen ions and hydroxyl ions, and the saline solution is diluted with the produced water. Due to such movement of hydrogen ions and hydroxyl ions, an electric current flows between the cathode 5 and the anode 7, oxygen gas is generated from the anode 7 and hydrogen gas is generated from the cathode 5, and electrolysis of water is performed. Be done.

【0009】この陽極7表面での酸素生成反応におい
て、酸素ラジカル、過酸化水素、オゾン等の酸化性物質
が中間生成物として生じることとなり、酸菌洗浄効果の
ある電解水の生成が可能になるというものである。
In this oxygen production reaction on the surface of the anode 7, oxidizing substances such as oxygen radicals, hydrogen peroxide and ozone are produced as intermediate products, and it is possible to produce electrolyzed water having an acid bacteria cleaning effect. That is.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、上記の
ように食塩水を電解液として用い、カチオン型またはア
ニオン型のイオン交換膜を介して電気分解する方法であ
れば、直流電圧を付加しない場合には濃度差による浸透
圧の影響により、アノード室側にはナトリウムイオン等
のカチオンイオンが流入し、またカソード側には塩素イ
オン等のアニオンイオンが流入することとなり、カソー
ド室やアノード室に満たされた純水の性能レベルを低下
させる。
However, as described above, in the case where a salt solution is used as an electrolytic solution and electrolysis is performed via a cation type or anion type ion exchange membrane, when a DC voltage is not applied. Due to the effect of osmotic pressure due to the difference in concentration, cation ions such as sodium ions will flow into the anode chamber side, and anion ions such as chlorine ions will flow into the cathode side, filling the cathode chamber and anode chamber. Reduce the performance level of pure water.

【0011】また、電気分解動作中においてもカチオン
型イオン交換膜の分離能は100%完璧なものではな
く、現行の市場品の実力は90〜95%程度のものであ
り、陰極側には数%のカチオンであるナトリウムイオン
がアニオン型イオン交換膜を通して侵入し、また陽極を
もつアノード室側には数%のアニオンイオンである塩素
イオンが侵入してします。
Further, even during the electrolysis operation, the separation ability of the cation-type ion exchange membrane is not 100% perfect, and the current commercial product has an ability of about 90 to 95%, and the cathode side has several hundreds. % Of the cations, sodium ions, penetrate through the anion-type ion exchange membrane, and a few% of the anion ions, chloride ions, enter the anode chamber side with the anode.

【0012】このようにして侵入した塩素イオンによ
り、カソード室は強酸性を示すことになり、またこの塩
素イオンは陽極で電子を奪われると塩素ガスとして変化
する。さらに塩素ガスは水に溶解し殺菌効果を示す次亜
塩素酸として変化するが、塩素臭としての悪臭を発生す
すると共に、ナトリウムイオンと塩を形成し被処理物へ
の残留物として腐食や電子部品等への悪影響を及ぼすこ
とになる。
Due to the chlorine ions thus penetrating, the cathode chamber becomes strongly acidic, and the chlorine ions change as chlorine gas when electrons are deprived from the anode. In addition, chlorine gas dissolves in water and changes as hypochlorous acid, which has a bactericidal effect, but it produces a bad odor as chlorine odor, forms salts with sodium ions, and forms corrosive and electronic substances as residues on the object to be treated. This will have an adverse effect on parts and the like.

【0013】また、強酸性水や強アルカリ性水は多少の
殺菌効果は認められるものの、反面人体への刺激や浸透
性による細胞膜の破壊を引き起こす原因となるもので、
長期間使用していると人体に損傷を与えかねないため、
取扱いに注意を要する。
Further, although strongly acidic water and strongly alkaline water have some bactericidal effects, on the other hand, they cause irritation to the human body and destruction of cell membranes due to permeability,
If you use it for a long time, it may damage the human body,
Handle with care.

【0014】さらに、酸性水やアルカリ性水は公害問題
の一因となり、排水においては中和工程が必要となるな
ど、排水処理の手間がかかる課題も有していた。
Furthermore, acidic water and alkaline water are one of the causes of pollution problems, and there is also a problem that wastewater treatment takes time, such as requiring a neutralization step in wastewater.

【0015】[0015]

【課題を解決するための手段】本発明は、陰極を持つカ
ソード室と、陽極を持つアノード室と、前記カソード室
とアノード室とを仕切る隔壁を水素イオン伝導型膜で構
成したことを特徴とする電解槽で、前記電解槽に電解液
または浄水、イオン交換水、蒸溜水、純粋を満たし、前
記陰極と陽極に直流電圧を付加することによって電解液
を処理する電解水生成装置で、中性に近い酸化・還元性
を有する電解水を生成する特徴を持つものである。
The present invention is characterized in that a cathode chamber having a cathode, an anode chamber having an anode, and a partition wall for partitioning the cathode chamber and the anode chamber are made of a hydrogen ion conductive type membrane. In the electrolytic bath, the electrolytic bath is filled with an electrolytic solution or purified water, ion-exchanged water, distilled water, pure, and an electrolytic water generator for treating the electrolytic solution by applying a DC voltage to the cathode and the anode. It has the characteristic of producing electrolyzed water having a near-oxidative / reducing property.

【0016】[0016]

【発明の実施の形態】この発明の請求項1に記載の発明
は、陰極を持つカソード室と、陽極を持つアノード室
と、前記カソード室とアノード室とを仕切る水素イオン
伝導型膜で構成した隔壁とを有する電解槽で、前記電解
槽に食塩水等の電解液を満たし前記陰極と陽極に直流電
圧を付加する電解水生成装置であり、水素イオン伝導型
膜は水素イオンだけを通過させる性質をもつため、陽極
では塩素ガスや酸素ガスを発生するとともに水の分解で
水素イオンが生じ、陰極では水の分解で生じた水素イオ
ンに電子が授与され水素ガスが発生することとなり、陽
極と陰極の間で水素イオンの伝達が起こり、水素イオン
伝導型膜の水素イオンだけの伝達する働きによりカソー
ド室ではアルカリ金属の増加によりアルカリ性になるこ
となくアノード室においても塩素イオンの増加で酸性と
なることはなく比較的中性を保つこととなり、排水が容
易で人体への影響も少ない強還元性の電解水と強酸化性
の電解水を得ることができる。
BEST MODE FOR CARRYING OUT THE INVENTION The invention according to claim 1 of the present invention comprises a cathode chamber having a cathode, an anode chamber having an anode, and a hydrogen ion conductive type membrane for partitioning the cathode chamber and the anode chamber. In an electrolytic cell having a partition, an electrolytic water generator for filling the electrolytic cell with an electrolytic solution such as saline solution and applying a DC voltage to the cathode and the anode, and the hydrogen ion conductive type membrane has a property of passing only hydrogen ions. As a result, chlorine gas and oxygen gas are generated at the anode, and hydrogen ions are generated by the decomposition of water, and at the cathode, electrons are donated to the hydrogen ions generated by the decomposition of water to generate hydrogen gas. The transfer of hydrogen ions occurs between the two, and due to the transfer function of only hydrogen ions in the hydrogen-ion-conducting membrane, the cathode chamber does not become alkaline due to the increase of alkali metal, and the Even if the amount of chloride ion increases, it will not become acidic and will remain relatively neutral, and it will be possible to obtain strong reducing electrolyzed water and strong oxidizing electrolyzed water that is easy to drain and has little effect on the human body. .

【0017】請求項2記載の発明は、陰極を持つカソー
ド室を電解液で満たし、陽極を持つアノード室は浄水又
はイオン交換水又は蒸溜水又は純水で満たし、陽極は貫
通穴を有するメッシュ状に形成し、隔壁の水素イオン伝
導型膜に密着させてなる電解槽を特徴とするもので、水
素イオン伝導型膜に密着させることにより導電性を確保
すると共に、水の分解で生じる水素イオンを水素イオン
伝導型膜に陽極の貫通穴を通じて効率よく伝達するもの
であり、アノード室の浄水又はイオン交換水又は蒸溜水
又は純水は強酸化性をもつと共に不純物の非常に少ない
電解水となり、半導体等の洗浄に使用しても残分が残ら
ず使用が可能となるものである。
According to a second aspect of the present invention, the cathode chamber having a cathode is filled with an electrolytic solution, the anode chamber having an anode is filled with purified water, ion-exchanged water, distilled water or pure water, and the anode has a mesh shape having a through hole. It is characterized by an electrolytic cell formed on the partition wall and adhered to the hydrogen ion conductive type membrane of the partition wall to ensure conductivity by adhering to the hydrogen ion conductive type membrane, and to prevent hydrogen ions generated by water decomposition. It efficiently transfers to the hydrogen ion conductive type membrane through the through hole of the anode, and the purified water in the anode chamber or ion-exchanged water or distilled water or pure water becomes electrolyzed water with a strong oxidizing property and very few impurities. Even if it is used for cleaning, etc., it is possible to use it without leaving any residue.

【0018】請求項3記載の発明は、カソード室及びア
ノード室を浄水又はイオン交換水又は蒸溜水又は純水で
満たし、陰極と陽極は貫通穴を有するメッシュ状に形成
し隔壁の水素イオン伝導型膜に密着させてなるもので、
両極とも水素イオン伝導型膜に密着させることにより導
電性を確保し、陽極側の水の分解で生じる水素イオンを
水素イオン伝導型膜に貫通穴を通じて効率よく伝達し、
また陰極で生成する水素ガスを水素イオン伝導型膜と貫
通穴を通じてカソード室内に生じせしめる様にしたもの
で、アノード室の浄水又はイオン交換水又は蒸溜水また
は純水は強酸化性をもつと共に、カソード室の浄水又は
イオン交換水又は蒸溜水又は純水は強還元性を有する電
解水を得るものであり、両室共に不純物の非常に少ない
殺菌洗浄力を有する電解水となる。
According to a third aspect of the present invention, the cathode chamber and the anode chamber are filled with purified water, ion-exchanged water, distilled water or pure water, and the cathode and the anode are formed in a mesh shape having a through hole, and the partition wall is a hydrogen ion conductive type. It comes in close contact with the membrane,
By ensuring that both electrodes are in close contact with the hydrogen ion conductive membrane, conductivity is ensured, and hydrogen ions generated by the decomposition of water on the anode side are efficiently transmitted to the hydrogen ion conductive membrane through the through holes.
In addition, the hydrogen gas generated at the cathode is generated in the cathode chamber through the hydrogen ion conductive membrane and the through hole, and the purified water or ion-exchanged water or distilled water or pure water in the anode chamber has a strong oxidizing property. Purified water, ion-exchanged water, distilled water, or pure water in the cathode chamber is for obtaining electrolyzed water having a strong reducing property, and both chambers are electrolyzed water having a sterilizing and cleaning power with very few impurities.

【0019】請求項4記載の発明は、電解液で満たさ
れ、陽極が浸漬してなるアノード室と、貫通穴を有する
メッシュ状に形成した陰極との間に水素イオン伝導型膜
を介在させ、前記陰極は前記水素イオン伝導型膜に密着
し、前記陰極表面に酸素を含むガスを順次送り込む吸排
気機構とを設けた電解槽で、前記陰極と陽極に直流電圧
を付加する電解水生成装置であり、アノード室の電解液
は中性の酸菌洗浄用電解水となるもので、陰極は吸排気
機構と貫通穴により送り込まれる酸素と水素イオン伝導
膜を開始アノード室より伝達される水素イオンと電子と
の反応で水の生成が起こるものであり、アノード室にで
きる電解水は中和された安全で排水において問題のない
酸化水であり、陰極側では酸素を送り込むことにより水
を生成させることができるので非常に構造的に簡素化が
できるものである。
According to a fourth aspect of the present invention, a hydrogen ion conductive type membrane is interposed between an anode chamber filled with an electrolytic solution and having an anode immersed therein, and a mesh-shaped cathode having a through hole. The cathode is an electrolytic cell that is in close contact with the hydrogen ion conductive type membrane and is provided with an intake / exhaust mechanism for sequentially feeding a gas containing oxygen to the cathode surface, and in an electrolyzed water generator that applies a DC voltage to the cathode and the anode. Yes, the electrolyte in the anode chamber becomes neutral electrolyzed water for acid bacterium cleaning, and the cathode starts the oxygen and hydrogen ion conductive membranes sent by the intake / exhaust mechanism and the through holes and the hydrogen ions transmitted from the anode chamber. Water is generated by the reaction with electrons, the electrolyzed water that can be formed in the anode chamber is neutralized, safe, and oxidizing water that does not cause any problems in drainage, and oxygen is sent on the cathode side to generate water. But In which it is very structurally simplified because kill.

【0020】請求項5記載の発明は、電解液を食塩、ク
エン酸、ほう酸、酢酸等の導電性食品添加物の水溶液と
することで、厨房機器の洗浄殺菌に使用したとき食品に
接触しても食品衛生状安全に取扱いできるものとしたも
のである。
According to a fifth aspect of the present invention, the electrolytic solution is an aqueous solution of a conductive food additive such as sodium chloride, citric acid, boric acid, acetic acid, etc., so that when it is used for cleaning and sterilizing kitchen equipment, it comes into contact with food. Is a food hygiene condition that can be handled safely.

【0021】請求項6記載の発明は、浄水又はイオン交
換水又は蒸溜水又は純水で満たされたアノード室に浸漬
する陽極と陰極との間に水素イオン伝導型膜を介在さ
せ、前記陽極と陰極は貫通穴を有するメッシュ状に形成
され前記水素イオン伝導型膜に密着してなり、前記陰極
表面に酸素を含むガスを順次送り込む吸排気機構とを設
けた電解槽で、前記陰極と陽極に直流電圧を付加する電
解水生成装置であり、水素イオン伝導型膜に密着させる
ことにより導電性を確保し、水の分解で生じる水素イオ
ンを水素イオン伝導型膜に陽極の貫通穴を通じて効率よ
く伝達するもので、アノード室の浄水又はイオン交換水
又は蒸溜水又は純水は強酸化性をもつと共に不純物の非
常に少ない電解水となり、半導体等の洗浄にも残分が残
らず使用が可能となるものである。そしてさらに陰極側
では酸素を送り込むことにより水を生成させ水素ガスの
発生がなく安全で、且つ非常に構造的に簡素化ができる
ものである。
According to a sixth aspect of the present invention, a hydrogen ion conductive type membrane is interposed between an anode and a cathode immersed in an anode chamber filled with purified water, ion exchanged water, distilled water or pure water, and The cathode is formed in a mesh shape having through holes and is in close contact with the hydrogen ion conductive type membrane, and is an electrolytic cell provided with an intake / exhaust mechanism for sequentially feeding a gas containing oxygen to the cathode surface, and the cathode and the anode are provided. This is an electrolyzed water generator that applies a DC voltage, and ensures electrical conductivity by closely adhering to the hydrogen ion conductive type membrane, and efficiently transfers hydrogen ions generated by water decomposition to the hydrogen ion conductive type membrane through the through hole of the anode. The purified water in the anode chamber, ion-exchanged water, distilled water, or pure water becomes electrolyzed water that has strong oxidizing properties and very few impurities, and can be used without any residue for cleaning semiconductors. It is intended. Further, on the cathode side, oxygen is sent to generate water, which does not generate hydrogen gas, is safe, and can be structurally simplified.

【0022】請求項7記載の発明は、電解槽のカソード
室及び/又はアノード室に電解質又は浄水又はイオン交
換水又は蒸溜水又は純水を順次送り込む注入機構と順次
排出する排出機構とを設け循環させたもので、循環水を
利用することにより連続的に必要な電解水を確保できる
ようにしたものである。
According to a seventh aspect of the present invention, the cathode chamber and / or the anode chamber of the electrolytic cell are provided with an injection mechanism for sequentially feeding the electrolyte, purified water, ion-exchanged water, distilled water, or pure water and a discharge mechanism for sequentially discharging the circulation. By using the circulating water, it is possible to continuously secure the necessary electrolyzed water.

【0023】以下本発明の一実施例の形態について、図
面を参照しながら説明する。 (実施の形態1)図1は本発明の一実施の形態である電
解水生成装置11の概要図と電解槽12部の横断面図を
示すものである。
An embodiment of the present invention will be described below with reference to the drawings. (Embodiment 1) FIG. 1 shows a schematic view of an electrolyzed water producing apparatus 11 which is an embodiment of the present invention and a cross-sectional view of an electrolytic cell 12 part.

【0024】電解槽12は陽極13を持つアノード室1
4と陰極15を持つカソード室16とで構成されてお
り、アノード室14とカソード室16は水素イオン伝導
型膜17で形成する隔壁18で仕切られている。水素イ
オン伝導型膜17はスルホン酸基を有するテフロン系の
樹脂が主体の膜であり、スルホン酸基の水素イオンが自
由に出入りする性質を利用して水素イオン伝導型膜17
として開発されたものである。この水素イオン伝導型膜
17は水素イオンのみを伝達する性質をもつ樹脂であ
り、その他のイオンを伝導したり、透過したりすること
はない。今回使用した水素イオン伝導型膜17はデュポ
ン者からナフィオン膜との名で販売されている高分子膜
を用いた。
The electrolytic cell 12 is an anode chamber 1 having an anode 13.
4 and a cathode chamber 16 having a cathode 15. The anode chamber 14 and the cathode chamber 16 are partitioned by a partition wall 18 formed of a hydrogen ion conductive type membrane 17. The hydrogen ion conductive type membrane 17 is a film mainly composed of a Teflon-based resin having a sulfonic acid group, and the hydrogen ion conductive type membrane 17 is utilized by utilizing the property that hydrogen ions of the sulfonic acid group freely enter and leave.
It was developed as The hydrogen ion conductive film 17 is a resin having a property of transmitting only hydrogen ions, and does not conduct or transmit other ions. As the hydrogen ion conductive membrane 17 used this time, a polymer membrane sold under the name of Nafion membrane by DuPont was used.

【0025】19は陽極13に正電位を、陰極15に負
の電位を付加する直流電源であり、アノード室14の電
解液A20に浸漬された酸化電位測定電極21の信号を
酸化電位計22で計測し、またカソード室16の電解液
B23に浸漬した還元電位測定電極24の信号を還元電
位計25で計測し、稼働と停止を制御するものである。
陽極13と陰極15の材質はチタンの板に白金をコーテ
ィングしたものを用いた。
Reference numeral 19 is a DC power source for applying a positive potential to the anode 13 and a negative potential to the cathode 15, and a signal from the oxidation potential measuring electrode 21 immersed in the electrolyte solution A20 in the anode chamber 14 is measured by an oxidation potential meter 22. The reduction potential meter 25 measures the signal of the reduction potential measuring electrode 24 immersed in the electrolytic solution B23 in the cathode chamber 16, and controls the operation and stop.
The material of the anode 13 and the cathode 15 was a titanium plate coated with platinum.

【0026】26は食塩の濃度を所定の濃度に調整する
電解源液調整装置A27と、フロートスイッチA28に
より自動的に開閉する開閉バルブA29とで構成する注
入機構Aであり、調整電解源水である電解液20をアノ
ード室14へ順次送り込むものである。
Reference numeral 26 is an injection mechanism A composed of an electrolytic source solution adjusting device A27 for adjusting the salt concentration to a predetermined concentration and an opening / closing valve A29 which is automatically opened / closed by a float switch A28. A certain electrolytic solution 20 is sequentially sent to the anode chamber 14.

【0027】30はカソード室16に食塩の濃度を所定
に調整した電解源水の電解液23を順次送り込む注入機
構Bであり、電解源液調整装置B31とフロートスイッ
チB32により開閉する開閉バルブB33で構成され
る。
Reference numeral 30 denotes an injection mechanism B for sequentially feeding the electrolytic solution 23 of electrolytic source water whose salt concentration has been adjusted to a predetermined level into the cathode chamber 16, and an opening / closing valve B33 which is opened / closed by an electrolytic source solution adjusting device B31 and a float switch B32. Composed.

【0028】34はアノード室14の電解水を順次排出
する排水機構Aであり、35はカソード室16の電解水
を同様に順次排出する排水機構Bとなっている。
Reference numeral 34 is a drainage mechanism A for sequentially discharging the electrolyzed water in the anode chamber 14, and 35 is a drainage mechanism B for similarly sequentially discharging the electrolyzed water in the cathode chamber 16.

【0029】また36はアノード室14の電解により発
生する酸素ガス又は塩素ガスの排機口Aであり、37は
カソード室16の電解で発生する水素ガスを排出する排
気口Bである。
Reference numeral 36 is an exhaust port A for oxygen gas or chlorine gas generated by electrolysis of the anode chamber 14, and 37 is an exhaust port B for discharging hydrogen gas generated by electrolysis of the cathode chamber 16.

【0030】以下、上記で説明した実施の形態1の電解
水生成装置11の作用と電解槽12中の科学反応につい
て説明する。
The operation of the electrolyzed water producing apparatus 11 of the first embodiment and the scientific reaction in the electrolytic cell 12 will be described below.

【0031】まず、電解源液調整装置A27を稼働し食
塩水の濃度を決める。今回は厨房機器の殺菌洗浄水を狙
い、0.9%の生理食塩水並みの濃度に設定した。次に
電解液A20を開閉バルブA29の開放によりアノード
室14に注入する。開閉バルブA29はフロートスイッ
チA28が満水を検知するまで開放されており、アノー
ド室14が電解液で満水になると自動的に閉鎖されるこ
ととなる。
First, the electrolytic source solution adjusting device A27 is operated to determine the concentration of saline solution. This time, we aimed to sterilize and wash water for kitchen equipment, and set the concentration to the same level as physiological saline of 0.9%. Next, the electrolytic solution A20 is injected into the anode chamber 14 by opening the opening / closing valve A29. The on-off valve A29 is open until the float switch A28 detects full water, and is automatically closed when the anode chamber 14 is filled with electrolyte.

【0032】カソード室16についても同様に電解源液
調整装置B31を稼働し、調整源液を0.9%の生理食
塩水並みの濃度に設定した。次に電解液B23を開閉バ
ルブB33の開放によりカソード室16に注入する。開
閉バルブB33はフロートスイッチB28が満水を検知
するまで開放されており、カソード室14が満水になる
と自動的に閉鎖されることとなる。
Similarly, in the cathode chamber 16, the electrolytic source solution adjusting device B31 was operated to set the adjusted source solution to a concentration equivalent to 0.9% physiological saline. Next, the electrolytic solution B23 is injected into the cathode chamber 16 by opening the opening / closing valve B33. The open / close valve B33 is open until the float switch B28 detects full water, and is automatically closed when the cathode chamber 14 is full.

【0033】次に直流電源19の本体電源端子38を商
用電源につなぎ電気分解の運転を開始する。今回、陽極
13を正電位とし陰極15を負電位とし陽極13と陰極
15との間に直流電圧3Vを付加した。
Next, the main body power supply terminal 38 of the DC power supply 19 is connected to a commercial power supply to start the electrolysis operation. This time, the anode 13 has a positive potential and the cathode 15 has a negative potential, and a DC voltage of 3 V is applied between the anode 13 and the cathode 15.

【0034】陽極13及び陰極15の表面材質は腐食電
位の高い白金で形成されており、電極材の溶解は殆ど無
く、陽極13の表面においては電解液20中の塩素イオ
ンと水分子を酸化し、(化1)〜(化4)の反応が見ら
れ、陽極13表面から塩素ガスや酸素ガスを発生する。
また、電解水中には殺菌力を持つ次亜塩素酸や次亜塩素
イオンと水素イオンが生じる。
The surface material of the anode 13 and the cathode 15 is formed of platinum having a high corrosion potential, and the electrode material is hardly dissolved. On the surface of the anode 13, chlorine ions and water molecules in the electrolytic solution 20 are oxidized. , (Chemical formula 1) to (Chemical formula 4) are observed, and chlorine gas and oxygen gas are generated from the surface of the anode 13.
Further, hypochlorous acid or hypochlorous ion and hydrogen ion having a bactericidal effect are generated in the electrolyzed water.

【0035】[0035]

【化1】 Embedded image

【0036】[0036]

【化2】 Embedded image

【0037】[0037]

【化3】 Embedded image

【0038】[0038]

【化4】 Embedded image

【0039】[0039]

【化5】 Embedded image

【0040】ここでは、水素イオンの対イオンである塩
素イオンの増加はほとんどないため過剰となる水素イオ
ンはイオン伝導型膜17を通じてカソード室16に移動
する。そのため、アノード室14内では水素イオン濃度
の増加は見られず強酸性水にはならない。
Here, since there is almost no increase in chlorine ions, which are counter ions of hydrogen ions, excess hydrogen ions move to the cathode chamber 16 through the ion conductive membrane 17. Therefore, no increase in hydrogen ion concentration is observed in the anode chamber 14, and strong acidic water is not obtained.

【0041】陰極15の表面においては(化5)の科学
反応が起こり、水素ガスを発生すると共に電解液23中
には水酸基イオンを生じる。この水酸基イオンはアノー
ド室16で生成し、水素イオン伝導型膜17を通過して
きた過剰の水素イオンと反応することにより水となり、
中和されるためカソード室の電解水23のアルカリ性へ
の変化も緩和される。しかし水素ガスの発生過程におけ
る中間生成物として水素ラジカルなどの還元剤が生成さ
れているため、殺菌力を有する電解水を得ることができ
る。
On the surface of the cathode 15, the chemical reaction of (Chemical Formula 5) occurs, hydrogen gas is generated, and hydroxyl ions are generated in the electrolytic solution 23. This hydroxyl ion is generated in the anode chamber 16 and becomes water by reacting with the excess hydrogen ion that has passed through the hydrogen ion conductive type membrane 17,
The neutralization also alleviates the change of the electrolyzed water 23 in the cathode chamber to alkaline. However, since a reducing agent such as hydrogen radicals is produced as an intermediate product in the process of generating hydrogen gas, electrolyzed water having sterilizing power can be obtained.

【0042】尚、酸化電位測定電極21と酸化電位計2
2により酸化電位を測定した結果が水素電極に大使12
00mV以上で、還元電位測定電極24と還元電位計に
より還元電位を測定した結果が−900mV以下となれ
ば、電解をストップするようにした。
The oxidation potential measuring electrode 21 and the oxidation potential meter 2
The result of measuring the oxidation potential by 2 is the ambassador for the hydrogen electrode 12
When the result of measuring the reduction potential with the reduction potential measuring electrode 24 and the reduction potential meter at 00 mV or higher was -900 mV or lower, electrolysis was stopped.

【0043】以上のように水素イオン伝導型膜17を電
解槽12の隔壁18として利用することにより、水素イ
オンの移動が起こるだけで、食塩水に含まれるナトリウ
ムイオンや塩素イオンの移動が遮断されることにより、
アノード室14の電解水が強酸性水になることがなく、
またカソード室16の電解水が強アルカリ水になること
もないので取扱いも容易で、排水についても中和処理も
必要としない電解水を得ることができる。尚、この電解
水は0.9%の生理的食塩水を使用しているので食塩の
電気分解で生じる塩素、次亜塩素酸、次亜塩素酸イオン
により強力な殺菌効果を有するもので、また、カソード
室16の電解水も水素ラジカルによる還元能をもつもの
で殺菌効果を有するものである。
By using the hydrogen ion conductive type membrane 17 as the partition wall 18 of the electrolytic cell 12 as described above, the movement of hydrogen ions only occurs, and the movement of sodium ions and chlorine ions contained in the saline is blocked. By doing
Electrolyzed water in the anode chamber 14 does not become strongly acidic water,
Further, since the electrolyzed water in the cathode chamber 16 does not become strong alkaline water, it is easy to handle, and it is possible to obtain electrolyzed water that does not require neutralization treatment for drainage. Since this electrolyzed water uses 0.9% physiological saline, it has a strong bactericidal effect due to chlorine, hypochlorous acid, and hypochlorite ion generated by electrolysis of sodium chloride. The electrolyzed water in the cathode chamber 16 also has a reducing ability by hydrogen radicals and has a sterilizing effect.

【0044】(実施の形態2)図2は本発明の他の実施
例の形態である電解水生成装置11の概要図と電解槽1
2部の横断面図を示すものである。尚、実施の形態1と
同じ構成部分については説明を省略する。
(Embodiment 2) FIG. 2 is a schematic view of an electrolyzed water producing apparatus 11 and an electrolyzer 1 according to another embodiment of the present invention.
It is a cross-sectional view of 2 parts. The description of the same components as in the first embodiment will be omitted.

【0045】電解槽12は実施の形態1同様にアノード
室14とカソード室16とで構成されており、アノード
室14とカソード室16とは水素イオン伝導型膜17で
形成する隔壁18で仕切られている。陽極39は貫通穴
を有する多孔性のメッシュ状のチタン材に白金をコーテ
ィングしたものを用い、水素イオン伝導型膜17に密着
して取りつけられている。陽極39材としてはパンチメ
タル等のチタン電極に白金をコーティングしたものが利
用できる。
The electrolytic cell 12 is composed of an anode chamber 14 and a cathode chamber 16 as in the first embodiment, and the anode chamber 14 and the cathode chamber 16 are partitioned by a partition wall 18 formed of a hydrogen ion conductive type membrane 17. ing. The anode 39 is made of a porous mesh titanium material having through holes and coated with platinum, and is attached in close contact with the hydrogen ion conduction type membrane 17. As the material for the anode 39, a titanium electrode such as punch metal coated with platinum can be used.

【0046】40は純水を創る純水製造装置41と、フ
ロートスイッチA28により自動的に開閉する開閉バル
ブA29とで構成する注入機構Cであり、純水をアノー
ド室14へ順次送り込むものである。
Reference numeral 40 denotes an injection mechanism C composed of a pure water producing device 41 for producing pure water and an opening / closing valve A29 which is automatically opened / closed by a float switch A28, and successively supplies pure water to the anode chamber 14. .

【0047】尚、カソード室16については実施の形態
1と同様の構造となっている。次にかかる構成での電解
水生成装置11の作用と電解槽12中の化学反応につい
て説明するが、実施の形態1と同様部分は省略する。
The cathode chamber 16 has the same structure as in the first embodiment. Next, the operation of the electrolyzed water producing apparatus 11 and the chemical reaction in the electrolytic cell 12 with such a configuration will be described, but the same parts as in Embodiment 1 are omitted.

【0048】今回は半導体製造工程のセラミックの表面
を洗浄するのに使用される超純水の酸化力の向上を狙う
電解水の製造であり、まず純粋製造装置41を稼働す
る。次に純水である電解液A20を開閉バルブA29の
開放によりアノード室14に注入する。開閉バルブA2
9はフロートスイッチA28が満水を検知するまで開放
されており、アノード室14が電解液で満水になると自
動的に閉鎖されることとなる。
This time is the production of electrolyzed water for the purpose of improving the oxidizing power of ultrapure water used for cleaning the surface of ceramics in the semiconductor production process. First, the pure production apparatus 41 is operated. Next, the electrolytic solution A20, which is pure water, is injected into the anode chamber 14 by opening the opening / closing valve A29. Open / close valve A2
9 is open until the float switch A28 detects full water, and is automatically closed when the anode chamber 14 is full of electrolyte.

【0049】次に、直流電源19の本体電源端子38を
商用電源につなぎ電気分解の運転を開始する。今回、陽
極39を正電位とし陰極15を負電位とし陽極39と陰
極15との間に直流電圧3Vを付加した。
Next, the main body power supply terminal 38 of the DC power supply 19 is connected to a commercial power supply to start the electrolysis operation. This time, the anode 39 was set to a positive potential and the cathode 15 was set to a negative potential, and a DC voltage of 3 V was applied between the anode 39 and the cathode 15.

【0050】陽極39及び陰極15の表面材質は腐食電
位の高い白金で形成されており、電極材の溶解は殆ど無
く、陽極39の表面においては水分子を酸化し、(化
6)〜(化8)の反応が見られ、陽極39表面から酸素
ガスが発生する。また、電解水中には水素イオンの他
に、殺菌力を持つ酸素ラジカルや水酸基ラジカル、さら
に過酸化水素やオゾンが生成する。
The surface material of the anode 39 and the cathode 15 is formed of platinum having a high corrosion potential, the electrode material hardly dissolves, and water molecules are oxidized on the surface of the anode 39, and the chemical formulas The reaction 8) is observed, and oxygen gas is generated from the surface of the anode 39. In addition to hydrogen ions, oxygen radicals and hydroxyl radicals having bactericidal power, and hydrogen peroxide and ozone are generated in the electrolyzed water.

【0051】[0051]

【化6】 [Chemical 6]

【0052】[0052]

【化7】 [Chemical 7]

【0053】[0053]

【化8】 Embedded image

【0054】水素イオンの対イオンは元から存在しない
ため、過剰となる水素イオンはアノード室には存在でき
ず、水素イオン伝導型膜17を通じてカソード室16に
移動する。よってアノード室14内では水素イオン濃度
の増加は見られず強酸性水にはならない。
Since counter ions of hydrogen ions do not exist originally, excess hydrogen ions cannot exist in the anode chamber and move to the cathode chamber 16 through the hydrogen ion conduction type membrane 17. Therefore, no increase in hydrogen ion concentration is observed in the anode chamber 14, and strong acidic water is not obtained.

【0055】尚、陽極39に貫通穴を有するメッシュ状
の材料とし、水素イオン伝導膜17に密着させることに
より、不導電体の純水でも電解水20と接する陽極39
の表面で生成する水素イオンを円滑に水素イオン伝導型
膜17に伝達することが可能となるものである。すなわ
ち、陽極39と水素イオン伝導膜17とを隔離すると水
素イオンの移動が不導電体の純水層に邪魔されて円滑に
行かず、また貫通穴が無いと純水に接する面から水素イ
オン伝導膜17への水素イオンの移動を陽極39自身が
遮断するため円滑な水素イオンの移動ができなくなる。
The anode 39 is made of a mesh-shaped material having through holes and is closely attached to the hydrogen ion conductive film 17, so that the pure water of the non-conductor is in contact with the electrolyzed water 20.
It is possible to smoothly transfer the hydrogen ions generated on the surface of the hydrogen ion conduction type membrane 17 to the hydrogen ion conduction type membrane 17. That is, when the anode 39 and the hydrogen ion conductive film 17 are separated from each other, the movement of hydrogen ions is hindered by the pure water layer of the non-conductive material and does not proceed smoothly. Since the anode 39 itself blocks the movement of hydrogen ions to the film 17, smooth movement of hydrogen ions cannot be performed.

【0056】実施の形態1と同様に、陰極15の表面に
おいては(化5)の化学反応が起こり、水素ガスを発生
すると共に電解水23中には水酸基イオンを生じる。こ
の水酸化基イオンはアノード室16で生成し、水素イオ
ン伝導型膜17を通過してきた過剰の水素イオンと反応
することにより水となり、中和されるためカソード室の
電解水23のアルカリ性への変化も緩和される。しかし
水素ガスの発生過程における中間生成物として水素ラジ
カルなどの還元剤が生成されているため、殺菌力を有す
る電解水を得ることができる。
Similar to the first embodiment, the chemical reaction of (Chemical Formula 5) occurs on the surface of the cathode 15 to generate hydrogen gas and hydroxyl ions in the electrolyzed water 23. This hydroxyl group ion is generated in the anode chamber 16 and becomes water by reacting with the excess hydrogen ion that has passed through the hydrogen ion conductive type membrane 17, and is neutralized, so that the electrolyzed water 23 in the cathode chamber is made alkaline. Changes are also eased. However, since a reducing agent such as hydrogen radicals is produced as an intermediate product in the process of generating hydrogen gas, electrolyzed water having sterilizing power can be obtained.

【0057】以上のように陽極39として貫通穴を有す
る多孔性のメッシュ状のチタン材に白金をコーティング
したものを用い、水素イオン伝導型膜17に密着して取
りつけることにより、不導電体である純水の電気分解で
生成する水素イオンを円滑に陰極15に移動させ電気分
解を可能とすることで、酸素の生成時に生じる酸素ラジ
カルやオゾンを酸化力を利用できる純水電解水を製造で
きる。また、この電解水が中性であることから人体への
影響も少なく、排水における公害の問題が生じないもの
となる。
As described above, the anode 39 is made of a porous mesh titanium material having through holes and coated with platinum, and is adhered to the hydrogen ion conduction type membrane 17 so as to be a non-conductive body. By smoothly moving the hydrogen ions generated by electrolysis of pure water to the cathode 15 to enable electrolysis, pure water electrolyzed water that can utilize the oxidizing power of oxygen radicals and ozone generated during generation of oxygen can be manufactured. Further, since the electrolyzed water is neutral, the influence on the human body is small, and the problem of pollution in drainage does not occur.

【0058】(実施の形態3)図3は本発明の他の一実
施の形態である電解水生成装置11の概要図と電解槽1
2部の横断面図を示すものである。尚、実施の形態1又
は2と同じ構成部分については説明を省略する。
(Embodiment 3) FIG. 3 is a schematic view of an electrolyzed water producing apparatus 11 and an electrolyzer 1 according to another embodiment of the present invention.
It is a cross-sectional view of 2 parts. The description of the same components as in the first or second embodiment will be omitted.

【0059】電解槽12は実施の形態1同様にアノード
室14とカソード室16とで孔性されており、アノード
室14とカソード室16とは水素イオン伝導型膜17で
形成する隔壁18で仕切られている。陽極39と同様に
陰極42も貫通穴を有する多孔性のメッシュ状のチタン
材に白金をコーティングしたものを用い、水素イオン伝
導型膜17に密着して取りつけられている。
Like the first embodiment, the electrolytic cell 12 is made porous by the anode chamber 14 and the cathode chamber 16, and the anode chamber 14 and the cathode chamber 16 are partitioned by the partition wall 18 formed of the hydrogen ion conductive type membrane 17. Has been. Similarly to the anode 39, the cathode 42 is made of a porous mesh titanium material having through holes and coated with platinum, and is attached to the hydrogen ion conduction type membrane 17 in close contact.

【0060】43は純水を創る純粋製造装置44と、フ
ロートスイッチB32により自動的に開閉する開閉バル
ブB33とで構成する注入機構Dであり、純水をカソー
ド室16へ順次送り込むものである。
Reference numeral 43 denotes an injection mechanism D composed of a pure production device 44 for producing pure water and an opening / closing valve B33 which is automatically opened / closed by a float switch B32, and successively sends pure water into the cathode chamber 16.

【0061】次にかかる構成での電解水生成装置11の
作用と電解槽12中の化学反応について説明するが、実
施の形態1又は2と同様部分は省略する。
Next, the operation of the electrolyzed water producing apparatus 11 and the chemical reaction in the electrolytic cell 12 with such a configuration will be described, but the same parts as in Embodiment 1 or 2 will be omitted.

【0062】半導体製造工程のセラミックの表面を洗浄
するのに使用される超純水の酸化力及び還元力の向上を
狙う電解水の製造を目的とするものであり、まず純水製
造装置44を稼働する。次に純水である電解液B23を
開閉バルブB33の開放によりカソード室16に注入す
る。開閉バルブB33はフロートスイッチB32が満水
を検知するまで開放されており、カソード室16が電解
液で満水になると自動的に閉鎖されることとなる。
The purpose of the present invention is to produce electrolyzed water for the purpose of improving the oxidizing power and reducing power of ultrapure water used for cleaning the surface of ceramics in the semiconductor manufacturing process. Get up and running. Next, the electrolytic solution B23, which is pure water, is injected into the cathode chamber 16 by opening the open / close valve B33. The open / close valve B33 is open until the float switch B32 detects full water, and is automatically closed when the cathode chamber 16 is full of electrolytic solution.

【0063】尚、アノード室14と注水機構C40につ
いては実施の形態2と同様の構造となっている。
The anode chamber 14 and the water injection mechanism C40 have the same structure as in the second embodiment.

【0064】次に、直流電源19の本体電源端子38を
商用電源につなぎ電気分解の運転を開始する。陽極39
を正電位とし陰極42を負電位とし陽極39と陰極42
との間に直流電圧3Vを付加した。
Next, the main body power supply terminal 38 of the DC power supply 19 is connected to a commercial power supply to start the electrolysis operation. Anode 39
Is a positive potential, the cathode 42 is a negative potential, and the anode 39 and the cathode 42 are
And a DC voltage of 3 V was applied between and.

【0065】陽極39及び陰極42の表面材質は腐食電
位の高い白金で形成されており、電極材の溶解は殆ど無
く、陽極39の表面においては実施の形態2と同様の反
応が起こる。陰極42については(化5)の反応が陰極
表面で起こり、水素イオンが水素ガスとなる反応の過程
では中間生成物として還元性を有する水素ラジカルが生
成し殺菌力を有する電解水となる。
The surface material of the anode 39 and the cathode 42 is formed of platinum having a high corrosion potential, the electrode material is hardly dissolved, and the same reaction as in the second embodiment occurs on the surface of the anode 39. With respect to the cathode 42, the reaction of (Chemical Formula 5) occurs on the surface of the cathode, and in the course of the reaction in which hydrogen ions become hydrogen gas, reducing hydrogen radicals are produced as intermediate products to produce electrolyzed water having sterilizing power.

【0066】尚、陰極42に貫通穴を有するメッシュ状
の材料とし、水素イオン伝導型膜17に密着させること
により、純水である電解水23と接する陰極42の表面
で生成する水酸基イオンと円滑に水素イオン伝導膜17
を通過してくる水素イオンと反応させることが可能とな
るものである。すなわち、陰極42と水素イオン伝導型
膜17とを隔離すると水酸基イオン又は水素イオンの移
動が不導電体の純水層に邪魔されて円滑に行かず、また
貫通穴が無いと純水に接する面から水素イオン伝導型膜
17への水酸基イオンの移動を陰極42自身が遮断する
ため円滑な水酸基イオンと水素イオンの移動ができなく
なる。
By using a mesh-shaped material having a through hole in the cathode 42 and adhering it to the hydrogen ion conduction type membrane 17, it is possible to smoothly react with the hydroxyl ions generated on the surface of the cathode 42 in contact with the electrolyzed water 23 which is pure water. Hydrogen ion conductive film 17
It is possible to react with hydrogen ions passing through. That is, when the cathode 42 and the hydrogen ion conductive type film 17 are separated from each other, the movement of hydroxyl ions or hydrogen ions is hindered by the pure water layer of the non-conductive member and does not go smoothly. Since the cathode 42 itself blocks the movement of the hydroxyl ions from the hydrogen ion conduction type membrane 17 to the hydrogen ion conductive type film 17, smooth movement of the hydroxyl ions and the hydrogen ions cannot be performed.

【0067】実施の形態2と同様に、陽極39の表面に
おいては(化6)〜(8)の化学反応が起こり、酸素ガ
スを発生すると共に電解液20中に水素イオンを生じ
る。この水素イオンは水素イオン伝導型17を通過しカ
ソード室16で生じた水酸基イオンと反応することによ
り水となり中和されるためカソード室16の電解液23
のアルカリ性への変化は緩和される。しかし水素ガスの
発生過程における中間生成物として水素ラジカルなどの
還元剤が生成されているため、殺菌力を有する電解水を
得ることができる。
Similar to the second embodiment, on the surface of the anode 39, the chemical reactions (Formula 6) to (8) occur to generate oxygen gas and hydrogen ions in the electrolytic solution 20. The hydrogen ions pass through the hydrogen ion conductive type 17 and react with the hydroxyl ions generated in the cathode chamber 16 to become water, which is neutralized.
The change to alkalinity is moderated. However, since a reducing agent such as hydrogen radicals is produced as an intermediate product in the process of generating hydrogen gas, electrolyzed water having sterilizing power can be obtained.

【0068】以上のように陰極42として貫通穴を有す
る多孔性のメッシュ状のチタン材に白金をコーティング
したものを用い、水素イオン伝導型膜17に密着して取
りつけることにより、不導電体である純水の電気分解で
生成する水酸基イオンとアノード室14から伝達される
水素イオンとを円滑に中和させることができ、水の電気
分解が可能となることで、アノード室14では酸素の生
成時に生じる酸素ラジカルやオゾンや過酸化水素水の酸
化力を持つ純水の電解水が製造でき、カソード室16で
は還元性を持つ純水の電解水が製造ができる。また、こ
の電解水は中性であることから人体への影響も少なく、
排水における公害の問題が生じないものとなる。
As described above, as the cathode 42, a porous mesh-shaped titanium material having through holes coated with platinum is used, and it is a non-conductor when it is attached in close contact with the hydrogen ion conduction type membrane 17. Hydroxyl ions generated by electrolysis of pure water and hydrogen ions transferred from the anode chamber 14 can be smoothly neutralized, and the electrolysis of water can be performed. Therefore, when oxygen is generated in the anode chamber 14, Electrolyzed water of pure water having an oxidizing power of oxygen radicals or ozone or hydrogen peroxide generated can be produced, and electrolyzed water of pure water having reducing ability can be produced in the cathode chamber 16. Also, since this electrolyzed water is neutral, it has little effect on the human body,
Pollution problems in drainage will not occur.

【0069】(実施の形態4)図4は本発明の他の一実
施の形態である電解水生成装置11の概要図と電解層1
2部の横断面図を示すものである。尚、実施の形態1又
は2又は3と同じ構成部分については説明を省略する。
(Embodiment 4) FIG. 4 is a schematic view of an electrolyzed water producing apparatus 11 and an electrolysis layer 1 according to another embodiment of the present invention.
It is a cross-sectional view of 2 parts. The description of the same components as in the first, second or third embodiment will be omitted.

【0070】電解槽12は実施の形態1同様にアノード
室14とカソード室16とで構成されており、アノード
室14とカソード室16とは水素イオン伝導型膜17で
形成する隔壁18で仕切られている。陽極13はチタン
板に白金をコーティングしたものを使用し、陰極42は
貫通穴を有する多孔性のメッシュ状のものとして電極面
での反応を大きくするために、表面に白金超微粒子を担
持したカーボン粉末とフッ素樹脂粉末の混合物を加圧成
形して適度な発水性を持たせた多孔質ガス拡散電極を用
い、陰極は水素イオン伝導型膜17に密着して取りつけ
られている。
The electrolytic cell 12 is composed of an anode chamber 14 and a cathode chamber 16 as in the first embodiment, and the anode chamber 14 and the cathode chamber 16 are partitioned by a partition wall 18 formed of a hydrogen ion conductive type membrane 17. ing. As the anode 13, a titanium plate coated with platinum is used, and as the cathode 42, a porous mesh having through holes is used, and a carbon having platinum ultrafine particles supported on the surface thereof is used to increase the reaction on the electrode surface. The cathode is attached to the hydrogen ion conduction type membrane 17 in close contact with it, using a porous gas diffusion electrode which is formed by pressure molding a mixture of powder and fluororesin powder to have appropriate water repellency.

【0071】26は実施の形態1と同様の電解源液調整
装置A27とフロートスイッチA28により自動的に開
閉する開閉バルブA29とで構成する注入機構Aであ
り、調整電解源水である電解液20をアノード室14へ
順次送り込むものである。
Reference numeral 26 is an injection mechanism A composed of an electrolytic source solution adjusting device A27 similar to that of the first embodiment and an opening / closing valve A29 which is automatically opened / closed by a float switch A28. Are sequentially sent to the anode chamber 14.

【0072】45は吸入口46に取りつけられたフィル
ター47を介して外気を吸入する吸入ファン48と、陰
極表面にガスを均一に導入するバランスダクト49と排
気口50とからなるカソード室16に酸素を含むガスを
順次送り込む吸排気機構である。
Reference numeral 45 is an intake fan 48 for sucking the outside air through a filter 47 attached to the suction port 46, oxygen is introduced into the cathode chamber 16 comprising a balance duct 49 for uniformly introducing the gas to the cathode surface and an exhaust port 50. It is an intake / exhaust mechanism that sequentially sends gas containing

【0073】次にかからる構成での電解水生成装置11
の作用と電解槽12中の化学反応について説明するが、
実施の形態1又は2又は3と同様部分は省略する。
Electrolyzed water generator 11 having the following structure
The action and the chemical reaction in the electrolytic cell 12 will be described.
The same parts as in Embodiment 1, 2 or 3 are omitted.

【0074】まず、電解源液調整装置A27を稼働し所
定の食塩水濃度を決めるが、以下アノード室14側の作
用と化学反応ついては実施の形態1と同様であり説明は
省略する。この電解水の主要な用途は厨房および機器の
殺菌洗浄水で野菜の蘇生水として、また食器やまな板の
洗浄殺菌用である。
First, the electrolytic source solution adjusting apparatus A27 is operated to determine a predetermined salt solution concentration. The operation and chemical reaction on the anode chamber 14 side are the same as those in the first embodiment, and the description thereof will be omitted. The main uses of this electrolyzed water are as sterilizing and washing water for kitchen and equipment, as water for revitalizing vegetables, and for washing and sterilizing dishes and cutting boards.

【0075】この実施の形態においては直流電源19の
本体電源端子38を商用電源につなぎ電気分解の運転を
開始するが、陽極13と陰極42との間に直流電圧3V
を付加し、直流電源19はアノード室14の酸化電位測
定電極21と酸化電位計22により酸化電位を測定し、
アノード室14の電解水の酸化電位が1200mV以上
になった時、運転を停止するように制御されている。
In this embodiment, the main body power supply terminal 38 of the DC power supply 19 is connected to the commercial power supply to start the electrolysis operation, but a DC voltage of 3 V is applied between the anode 13 and the cathode 42.
In addition, the DC power supply 19 measures the oxidation potential with the oxidation potential measuring electrode 21 and the oxidation potential meter 22 of the anode chamber 14,
The operation is controlled to stop when the oxidation potential of the electrolyzed water in the anode chamber 14 becomes 1200 mV or higher.

【0076】陽極13では(化1)〜(化4)の反応が
起こり、塩素がスと酸素ガスを生成すると共に殺菌力の
ある時亜塩素酸の次亜塩素酸イオンを生成し、また水素
イオンを生成する。水素イオンの対イオンである塩素イ
オンは原理的に増加することは考えられないので過剰の
水素イオンは水素イオン伝導型膜17を通過してカソー
ド室16側に移動する。
At the anode 13, the reactions of (Chemical formula 1) to (Chemical formula 4) occur, and chlorine produces hydrogen gas and oxygen gas, and also produces hypochlorite ion of chlorous acid when it has sterilizing power, and also hydrogen. Generates ions. Chlorine ions, which are counter ions of hydrogen ions, are not expected to increase in principle, and therefore excess hydrogen ions pass through the hydrogen ion conduction type membrane 17 and move to the cathode chamber 16 side.

【0077】カソード室16の陰極42表面では吸排気
機構45により送り込まれてくる酸素と、直流電源19
の負の電位として流れてくる電子と、水素イオン伝導型
膜17をアノード室から通過してくる水素イオンとの3
つの成分がぶつかり、(化9)の反応を起こすことによ
り水を生成する。生成した水は水素イオン伝導型膜17
に吸着するか、蒸気となって排気口50から排出され
る。
On the surface of the cathode 42 of the cathode chamber 16, oxygen sent by the intake / exhaust mechanism 45 and the DC power source 19
Of electrons flowing as a negative potential of the hydrogen ions and hydrogen ions passing through the hydrogen ion conductive type membrane 17 from the anode chamber.
Two components collide with each other to generate water by causing the reaction of (Chemical Formula 9). The generated water is a hydrogen ion conduction type membrane 17
Is adsorbed on or becomes vapor and is discharged from the exhaust port 50.

【0078】[0078]

【化9】 Embedded image

【0079】又、電気分解によって発生した水素イオン
が陰極42の表面で酸素ガスと反応して水分に変換する
際、十分に反応が起こらず未反応の水素が残存する可能
性を想定して陰極42の水素イオン伝導型膜17との逆
面に白金触媒を担持したカーボン性ハニカム状集電体を
圧着させるとよい。
Further, when hydrogen ions generated by electrolysis react with oxygen gas on the surface of the cathode 42 and are converted into water, it is assumed that unreacted hydrogen remains without sufficient reaction. A carbonaceous honeycomb current collector carrying a platinum catalyst may be pressure-bonded to the surface of 42 opposite to the hydrogen ion conductive membrane 17.

【0080】尚、陰極42は貫通穴を有する多孔性のメ
ッシュ状のものとして、表面に白金超微粒子を担持した
カーボン粉末とフッ素樹脂粉末の混合物を加圧成形して
適度な発水性を持たせた多孔質ガス拡散電極を用い、水
素イオン伝導型膜17に密着して取りつけることによ
り、酸素を含むガスと、陰極42に運ばれた電子と、水
素イオン伝導型膜17を通過してくる水素イオンとを円
滑に反応させることが可能となるものである。すなわ
ち、陰極42と水素イオン伝導型膜17とを隔離すると
水素イオンの移動が不導電体のガス層に邪魔されて円滑
に行かず、また貫通穴が無いとガスに接する面から水素
イオン伝導膜17への酸素の移動を陰極42自身が遮断
するため円滑な3つの成分の反応ができなくなる。
The cathode 42 is a porous mesh having through-holes, and a mixture of carbon powder carrying platinum ultrafine particles on its surface and fluororesin powder is pressure-molded to have an appropriate water-repellent property. By using the porous gas diffusion electrode and closely attaching it to the hydrogen ion conduction type membrane 17, the gas containing oxygen, the electrons carried to the cathode 42, and the hydrogen passing through the hydrogen ion conduction type membrane 17 are attached. It is possible to smoothly react with ions. That is, when the cathode 42 and the hydrogen ion conductive type film 17 are separated from each other, the movement of hydrogen ions is hindered by the gas layer of the non-conductive material, and the hydrogen ion conductive film 17 does not move smoothly if there is no through hole. Since the cathode 42 itself blocks the movement of oxygen to 17, the smooth reaction of the three components cannot be performed.

【0081】以上のように陰極42として多孔質ガス拡
散電極のような貫通穴を有する多孔性メッシュ状のもの
を用い、水素イオン伝導型膜17に密着して取りつける
ことにより、吸排気機構45で送り込まれる酸素と、ア
ノード質14から水素イオン伝導型膜17を通過してく
る水素イオンと陰極に運ばれる電子により水分を生成す
ることは、陰極42表面からの水素ガスの発生をなくす
ことになり、水素ガスによる火災や爆発の危険から逃れ
ることができる。またカソード質16には電解液や浄
水、イオン交換水、蒸溜水、純水などの濃度管理や調整
が必要でなくなるため、非常に電解槽の構造が簡素化で
き、設備費用が削減できる。
As described above, as the cathode 42, a porous mesh-shaped one having a through hole such as a porous gas diffusion electrode is used, and the hydrogen ion conduction type membrane 17 is closely attached to the cathode 42, whereby the intake / exhaust mechanism 45 is provided. The generation of moisture by the oxygen fed in, the hydrogen ions passing through the hydrogen ion conduction type membrane 17 from the anode material 14 and the electrons carried to the cathode eliminates the generation of hydrogen gas from the surface of the cathode 42. Escape from the danger of fire and explosion due to hydrogen gas. Further, since it is not necessary to control or adjust the concentration of the electrolytic solution, purified water, ion-exchanged water, distilled water, pure water, etc. in the cathode material 16, the structure of the electrolytic cell can be greatly simplified and the facility cost can be reduced.

【0082】また、当然アノード室14では酸素の生成
時に生じる酸素ラジカルやオゾンや過酸化水素水の酸化
力を利用できる純水の電解水が製造でき、この電解水は
中性に近いことからも人体への影響も少なく、排水にお
ける公害の問題が生じないものとなる。
Further, naturally, in the anode chamber 14, pure water electrolyzed water which can utilize the oxygen radicals generated during the generation of oxygen and the oxidizing power of ozone and hydrogen peroxide water can be produced, and this electrolyzed water is close to neutral. The impact on the human body is small and the problem of pollution in drainage will not occur.

【0083】(実施の形態5)図5は本発明の他の一実
施の形態である電解水生成装置11の概要図と電解槽1
2部の横断面図を示すものである。尚、実施の形態1〜
4と同じ構成部分については説明を省略する。
(Embodiment 5) FIG. 5 is a schematic view of an electrolyzed water producing apparatus 11 and an electrolyzer 1 according to another embodiment of the present invention.
It is a cross-sectional view of 2 parts. In addition, Embodiment 1
The description of the same components as those in 4 will be omitted.

【0084】電解槽12は実施の形態1同様にアノード
室14とカソード室16とで構成されており、アノード
室14とカソード室16とは水素イオン伝導型膜17で
形成する隔壁18で仕切られている。陽極39は貫通穴
を有する多孔性のメッシュ状のチタン材に白金をコーテ
ィングしたものを用い、陰極42は貫通穴を有する多孔
性のメッシュ状のものとして、表面に白金超微粒子を担
持したカーボン粉末とフッ素樹脂粉末の混合物を加圧成
形して適度な発水性を持たせた多孔質ガス拡散電極を用
い、また、両極とも水素イオン伝導型膜17に密着して
取りつけられている。
The electrolytic cell 12 is composed of an anode chamber 14 and a cathode chamber 16 as in the first embodiment, and the anode chamber 14 and the cathode chamber 16 are partitioned by a partition wall 18 formed of a hydrogen ion conductive type membrane 17. ing. The anode 39 is a porous mesh titanium material having a through hole coated with platinum, and the cathode 42 is a porous mesh material having a through hole and is a carbon powder having platinum ultrafine particles carried on the surface thereof. A porous gas diffusion electrode having a proper water-repellent property obtained by press-molding a mixture of fluorinated resin powder and is mixed, and both electrodes are attached in close contact with the hydrogen ion conduction type membrane 17.

【0085】アノード室14は実施の形態2と同様のも
のであり、カソード室16は実施の形態の4と同様のも
ので、これら二つの形態を組み合わせたものである。
The anode chamber 14 is the same as that of the second embodiment, the cathode chamber 16 is the same as that of the fourth embodiment, and these two forms are combined.

【0086】以上の組合せの形態であれば超純水の電気
分解により生じる酸素ラジカル、過酸化水素水、オゾン
の酸化性のある中性の殺菌洗浄材が製造可能となり、カ
ソード室16には酸素を含むガスを送り込むだけで水溶
液の濃度管理や調整が必要でなくなり、水素の発生がな
いことにより火災や爆発の危険も少ない電解水生成装置
11を提供することができる。
With the above combination, it is possible to manufacture a neutral sterilizing and cleaning material having an oxidizing property of oxygen radicals, hydrogen peroxide solution, and ozone generated by electrolysis of ultrapure water, and oxygen is stored in the cathode chamber 16. It is not necessary to control or adjust the concentration of the aqueous solution just by sending in a gas containing the gas, and it is possible to provide the electrolyzed water generation apparatus 11 in which the risk of fire or explosion is small because hydrogen is not generated.

【0087】また、又、当然アノード室14では酸素の
生成時に生じる酸素ラジカルやオゾンや過酸化水素水の
酸化力を利用できる純水の電解水が製造でき、この電解
水は中性に近いことから人体への影響も少なく、排水に
おける公害の問題が生じないものとなる。
Also, of course, in the anode chamber 14, pure water electrolyzed water can be produced which can utilize the oxygen radicals generated during the generation of oxygen and the oxidizing power of ozone and hydrogen peroxide, and the electrolyzed water is close to neutral. As a result, there is little impact on the human body, and pollution problems in wastewater do not occur.

【0088】また、本実施の形態事例で紹介した電解液
は食塩水を主体に説明したが、電解により塩素ガスと酸
素ガスを発生する電解液であれば同様の効果が得られる
ものである。しかし、厨房用の殺菌洗浄剤として使用す
るには食品の安全性面から考慮して食塩、クエン酸、ほ
う酸、酢酸等の導電性食品添加物の水溶液を電解液に使
用することが望まれる。
Further, although the electrolytic solution introduced in the case of the present embodiment has been described mainly using a saline solution, the same effect can be obtained if the electrolytic solution generates chlorine gas and oxygen gas by electrolysis. However, from the viewpoint of food safety, it is desirable to use an aqueous solution of a conductive food additive such as salt, citric acid, boric acid or acetic acid as the electrolytic solution in order to use it as a germicidal detergent for the kitchen.

【0089】また、図1で示すように電解槽12から順
次電解液を排水できる排水機構A34および排水機構B
35により、連続的に電解水を使用すると電解液20の
推移が下がりフロートスイッチ28が働き、自動的に電
解水供給装置27から新たな電解液20がそそがれるこ
ととなる。また、新たな電解液20の注入により酸化電
位が下がると酸化電位計22が酸化電位の低下を示し、
停止していた電解も自動的に再開されるようになる。こ
のように、電解液、浄水、イオン交換水、蒸留水、純水
を順次送り込む注入機構と順次排出する排出機構とで連
続的に循環するようにすることにより効率良く電解水が
生成される。
Further, as shown in FIG. 1, a drainage mechanism A34 and a drainage mechanism B capable of sequentially draining the electrolytic solution from the electrolytic cell 12.
As a result of 35, when electrolytic water is continuously used, the transition of the electrolytic solution 20 is lowered and the float switch 28 operates to automatically pour new electrolytic solution 20 from the electrolytic water supply device 27. Further, when the oxidation potential is lowered by the injection of new electrolyte solution 20, the oxidation potential meter 22 shows a decrease in the oxidation potential,
The stopped electrolysis will be automatically restarted. As described above, the electrolytic solution is efficiently generated by continuously circulating the electrolytic solution, the purified water, the ion-exchanged water, the distilled water, and the pure water by the injecting mechanism that sequentially sends the pure water and the discharging mechanism that sequentially discharges the pure water.

【0090】[0090]

【発明の効果】以上のように本発明の電解水生成装置
は、陰極を持つカソード室と、陽極を持つアノード室
と、前記カソード室とアノード室とを仕切る隔壁を水素
イオン伝導型膜で構成したことを特徴とする電解槽で、
前記電解槽に電解液または浄水、イオン交換水、蒸溜
水、純水を満たし、前記陰極と陽極に直流電圧を付加す
ることによって電解液を処理する電解水生成装置で、中
性に近い、酸化・還元性を有する殺菌および洗浄力の強
い電解水を生成する特徴を持つ装置を提供することがで
きる。
As described above, in the electrolyzed water producing apparatus of the present invention, the cathode chamber having the cathode, the anode chamber having the anode, and the partition wall for partitioning the cathode chamber and the anode chamber are composed of the hydrogen ion conductive type membrane. In the electrolytic cell characterized by
An electrolyzed water generator that treats the electrolytic solution by filling the electrolytic cell with electrolytic solution or purified water, ion-exchanged water, distilled water, and pure water, and applying a DC voltage to the cathode and anode. It is possible to provide a device having a characteristic of generating electrolyzed water having a sterilizing property and a strong detergency having a reducing property.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施の形態における電解水生成
装置と電解槽の横断面図
FIG. 1 is a cross-sectional view of an electrolyzed water generator and an electrolyzer according to a first embodiment of the present invention.

【図2】本発明の第2の実施の形態における電解水生成
装置と電解槽の横断面図
FIG. 2 is a cross-sectional view of an electrolyzed water generator and an electrolyzer according to a second embodiment of the present invention.

【図3】本発明の第3の実施の形態における電解水生成
装置と電解槽の横断面図
FIG. 3 is a cross-sectional view of an electrolyzed water generator and an electrolyzer according to a third embodiment of the present invention.

【図4】本発明の第4の実施の形態における電解水生成
装置と電解槽の横断面図
FIG. 4 is a cross-sectional view of an electrolyzed water generator and an electrolyzer according to a fourth embodiment of the present invention.

【図5】本発明の第5の実施の形態における電解水生成
装置と電解槽の横断面図
FIG. 5 is a cross-sectional view of an electrolyzed water generator and an electrolyzer according to a fifth embodiment of the present invention.

【図6】従来の実施の形態における電解水生成装置の電
解槽の横断面図
FIG. 6 is a cross-sectional view of an electrolytic cell of an electrolyzed water generator according to a conventional embodiment.

【符号の説明】[Explanation of symbols]

11 電解水生成装置 12 電解槽 13,39 陽極 14 アノード室 15,42 陰極 16 カソード室 17 水素イオン伝導型膜 18 隔壁 20,23 電解液 26,30,40,43 注入機構 33,34 排水機構 45 吸排気機構 11 Electrolyzed Water Generator 12 Electrolyzer 13,39 Anode 14 Anode Chamber 15,42 Cathode 16 Cathode Chamber 17 Hydrogen Ion Conductive Membrane 18 Partition Wall 20,23 Electrolyte 26, 30, 40, 43 Injection Mechanism 33, 34 Drainage Mechanism 45 Intake and exhaust mechanism

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 陰極を持つカソード室と、陽極を持つア
ノード室と、前記カソード室とアノード室とを仕切る水
素イオン伝導型膜で構成した隔壁とを有する電解槽で、
前記電解槽に電解液を満たし前記陰極と陽極に直流電圧
を付加する電解水生成装置。
1. An electrolytic cell having a cathode chamber having a cathode, an anode chamber having an anode, and a partition wall composed of a hydrogen ion conductive type membrane for partitioning the cathode chamber and the anode chamber,
An electrolyzed water generator for filling the electrolytic cell with an electrolytic solution and applying a DC voltage to the cathode and the anode.
【請求項2】 陰極を持つカソード室を電解液で満た
し、陽極を持つアノード室は浄水又はイオン交換水又は
蒸溜水又は純水で満たし、陽極は貫通穴を有するメッシ
ュ状に形成し隔壁の水素イオン伝導型膜に密着させてな
る電解槽を特徴とする請求項1記載の電解水生成装置。
2. A cathode chamber having a cathode is filled with an electrolytic solution, an anode chamber having an anode is filled with purified water, ion-exchanged water, distilled water or pure water, and the anode is formed in a mesh shape having a through hole to form hydrogen in a partition wall. The electrolyzed water producing apparatus according to claim 1, wherein the electrolyzed water producing apparatus is an electrolyzer which is in close contact with the ion conductive membrane.
【請求項3】 カソード室及びアノード室を浄水又はイ
オン交換水又は蒸溜水又は純水で満たし、陰極と陽極は
貫通穴を有するメッシュ状に形成し隔壁の水素イオン伝
導型膜に密着させてなる電解槽を特徴とする請求項1記
載の電解水生成装置。
3. The cathode chamber and the anode chamber are filled with purified water, ion-exchanged water, distilled water or pure water, and the cathode and the anode are formed in a mesh shape having a through hole and adhered to the hydrogen ion conductive type membrane of the partition wall. The electrolyzed water generator according to claim 1, wherein the electrolyzed water generator is an electrolyzer.
【請求項4】 電解液で満たされ、陽極が浸漬してなる
アノード室と、貫通穴を有するメッシュ状に形成した陰
極との間に水素イオン伝導型膜を介在させ、前記陰極は
前記水素イオン伝導型膜に密着し、前記陰極表面委酸素
を含むガスを順次送り込む吸排気機構ととを設けた電解
槽で、前記陰極と陽極に直流電圧を付加する電解水生成
装置。
4. A hydrogen ion conductive type membrane is interposed between an anode chamber filled with an electrolytic solution, in which an anode is immersed, and a mesh-shaped cathode having a through hole, and the cathode is the hydrogen ion. An electrolyzed water producing apparatus for applying a DC voltage to the cathode and the anode in an electrolytic cell which is in close contact with the conductive type membrane and is provided with an intake / exhaust mechanism for sequentially feeding the gas containing oxygen on the cathode surface.
【請求項5】 電解液を食塩、クエン酸、ほう酸、酢酸
等の導電性食品添加物の水溶液とした請求項1又は請求
項2又は請求項4記載の電解水生成装置。
5. The electrolyzed water generator according to claim 1, 2 or 4, wherein the electrolytic solution is an aqueous solution of a conductive food additive such as salt, citric acid, boric acid or acetic acid.
【請求項6】 浄水又はイオン交換水又は蒸溜水又は純
水で満たされたアノード室に浸漬する陽極と陰極との間
に水素イオン伝導型膜を介在させ、前記陽極と陰極は貫
通穴を有するメッシュ状に形成され、前記水素イオン伝
導型膜に密着してなり、前記陰極表面に酸素を含むガス
を順次送り込む吸排気機構とを設けた電解槽で、前記陰
極と陽極に直流電圧を付加する電解水生成装置。
6. A hydrogen ion conductive membrane is interposed between an anode and a cathode, which is immersed in an anode chamber filled with purified water, ion-exchanged water, distilled water or pure water, and the anode and the cathode have through holes. A DC voltage is applied to the cathode and the anode in an electrolytic cell that is formed in a mesh shape and is in close contact with the hydrogen ion conductive type membrane, and is provided with an intake / exhaust mechanism for sequentially feeding a gas containing oxygen to the cathode surface. Electrolyzed water generator.
【請求項7】 電解槽のカソード室及び/又はアノード
室に、電解液又は浄水又はイオン交換水又は純水を順次
送り込む注入機構と、順次排出する排水機構とを設けた
請求項1から請求項6に記載の電解水生成装置。
7. The method according to claim 1, wherein the cathode chamber and / or the anode chamber of the electrolytic cell are provided with an injection mechanism for sequentially feeding an electrolytic solution, purified water, ion-exchanged water or pure water, and a drainage mechanism for sequentially discharging the electrolytic solution. 6. The electrolyzed water generator according to item 6.
JP8118717A 1996-05-14 1996-05-14 Electrolytic water generator Pending JPH09299953A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8118717A JPH09299953A (en) 1996-05-14 1996-05-14 Electrolytic water generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8118717A JPH09299953A (en) 1996-05-14 1996-05-14 Electrolytic water generator

Publications (1)

Publication Number Publication Date
JPH09299953A true JPH09299953A (en) 1997-11-25

Family

ID=14743357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8118717A Pending JPH09299953A (en) 1996-05-14 1996-05-14 Electrolytic water generator

Country Status (1)

Country Link
JP (1) JPH09299953A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000153277A (en) * 1998-11-17 2000-06-06 Pioneer Electronic Corp Reduced water generator and generating method
JP2001170635A (en) * 1999-12-21 2001-06-26 Matsushita Electric Ind Co Ltd Water reforming device
WO2008152043A1 (en) 2007-06-12 2008-12-18 Solvay (Société Anonyme) Aqueous composition containing a salt, manufacturing process and use
JP2009007325A (en) * 2007-05-31 2009-01-15 Business Act:Kk Activity adjusting aqueous solution, activity adjusting medium, method for producing the same and method for adjusting activity
JP2010088973A (en) * 2008-10-03 2010-04-22 Chugoku Electric Manufacture Co Ltd Hydrogen-containing electrolytic water generation device and hot water supply device
JP2010094622A (en) * 2008-10-17 2010-04-30 Spring:Kk Apparatus and method for producing dissolved hydrogen drinking water
JP2016120454A (en) * 2014-12-24 2016-07-07 学校法人 龍谷大学 Promotion oxidation water treatment method
JP2017087087A (en) * 2015-11-02 2017-05-25 国立研究開発法人日本原子力研究開発機構 Hydrogen water production apparatus
US9663427B2 (en) 2003-11-20 2017-05-30 Solvay (Société Anonyme) Process for producing epichlorohydrin
JP6139761B1 (en) * 2016-07-24 2017-05-31 株式会社テックコーポレーション Electrolyzed water generator
WO2017204069A1 (en) * 2016-05-25 2017-11-30 株式会社日本トリム Functional water production device
WO2021045107A1 (en) * 2019-09-05 2021-03-11 横河電機株式会社 Wastewater treatment method and wastewater treatment apparatus

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000153277A (en) * 1998-11-17 2000-06-06 Pioneer Electronic Corp Reduced water generator and generating method
JP2001170635A (en) * 1999-12-21 2001-06-26 Matsushita Electric Ind Co Ltd Water reforming device
JP4590668B2 (en) * 1999-12-21 2010-12-01 パナソニック株式会社 Water reformer
US9663427B2 (en) 2003-11-20 2017-05-30 Solvay (Société Anonyme) Process for producing epichlorohydrin
JP2009007325A (en) * 2007-05-31 2009-01-15 Business Act:Kk Activity adjusting aqueous solution, activity adjusting medium, method for producing the same and method for adjusting activity
WO2008152043A1 (en) 2007-06-12 2008-12-18 Solvay (Société Anonyme) Aqueous composition containing a salt, manufacturing process and use
JP2010088973A (en) * 2008-10-03 2010-04-22 Chugoku Electric Manufacture Co Ltd Hydrogen-containing electrolytic water generation device and hot water supply device
JP4536137B2 (en) * 2008-10-03 2010-09-01 中国電機製造株式会社 Hydrogen-containing electrolyzed water generator and hot water supply equipment
JP2010094622A (en) * 2008-10-17 2010-04-30 Spring:Kk Apparatus and method for producing dissolved hydrogen drinking water
JP2016120454A (en) * 2014-12-24 2016-07-07 学校法人 龍谷大学 Promotion oxidation water treatment method
JP2017087087A (en) * 2015-11-02 2017-05-25 国立研究開発法人日本原子力研究開発機構 Hydrogen water production apparatus
WO2017204069A1 (en) * 2016-05-25 2017-11-30 株式会社日本トリム Functional water production device
JP2017209625A (en) * 2016-05-25 2017-11-30 株式会社日本トリム Functional Water Generator
US10875791B2 (en) 2016-05-25 2020-12-29 Nihon Trim Co., Ltd. Functional water production device
JP6139761B1 (en) * 2016-07-24 2017-05-31 株式会社テックコーポレーション Electrolyzed water generator
WO2021045107A1 (en) * 2019-09-05 2021-03-11 横河電機株式会社 Wastewater treatment method and wastewater treatment apparatus
JP2021037499A (en) * 2019-09-05 2021-03-11 横河電機株式会社 Wastewater treatment method and apparatus
US11794147B2 (en) 2019-09-05 2023-10-24 Yokogawa Electric Corporation Wastewater treatment method and wastewater treatment apparatus

Similar Documents

Publication Publication Date Title
CA2468856C (en) Method and apparatus for producing negative and positive oxidative reductive potential (orp) water
US20040037737A1 (en) Method of and equipment for washing, disinfecting and/or sterilizing health care devices
KR20140074927A (en) Electrolysis system and electrolysis method for the same
JP5417097B2 (en) ELECTROLYTIC CELL, ELECTROLYTIC DEVICE, METHOD FOR PRODUCING ACIDIC ELECTROLYTIC WATER, AND METHOD FOR PRODUCING ALKALI ELECTROLYTIC WATER
JPH11169856A (en) Electrolytic water producing device
JPH09299953A (en) Electrolytic water generator
JP3798486B2 (en) Disinfectant manufacturing method, manufacturing apparatus and disinfectant, and disinfecting method
KR20100056858A (en) Sterilizing and washing apparatus
KR101951448B1 (en) Sterilizing water generating device capable of controlling concentration
US20220153613A1 (en) Ultra-high alkaline electrolyzed water generation system
JP2006088156A (en) Method and apparatus for producing disinfectant, disinfectant, and sterilization method
JP2001340822A (en) Method for cleaning pipe for beer and apparatus for cleaning beer server
KR101020717B1 (en) Method and Apparatus for Sterilizing and Purifying Air in a Room
EP0802164B1 (en) Process for producing bactericide and for sterilizing water
JP2573143B2 (en) Sterile water production equipment
JP2003034889A (en) Method for electrolysis in device for generating strong- electrolyzed water
JP2904009B2 (en) Water treatment method and water treatment device
JPH10201694A (en) Method and device for washing and sterilizing dishes
JP2005125276A (en) Sterilizing electrolytic water making apparatus
KR200253647Y1 (en) Sterilized water creating device
JP3888252B2 (en) Electrolyzed water generator
JP3906731B2 (en) Electrolyzed water generator
JP2003225671A (en) Method of forming sterilized cleaning water and apparatus for the same
JP3861761B2 (en) Electrolyzed water generator
JP2023078532A (en) Hypochlorous acid water treatment apparatus and space sterilization system using the same