JPH09297228A - Array waveguide grating - Google Patents

Array waveguide grating

Info

Publication number
JPH09297228A
JPH09297228A JP11095096A JP11095096A JPH09297228A JP H09297228 A JPH09297228 A JP H09297228A JP 11095096 A JP11095096 A JP 11095096A JP 11095096 A JP11095096 A JP 11095096A JP H09297228 A JPH09297228 A JP H09297228A
Authority
JP
Japan
Prior art keywords
waveguide
channel waveguide
channel
array
fan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11095096A
Other languages
Japanese (ja)
Other versions
JP3112246B2 (en
Inventor
Katsunari Okamoto
勝就 岡本
Yasuji Omori
保治 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP11095096A priority Critical patent/JP3112246B2/en
Publication of JPH09297228A publication Critical patent/JPH09297228A/en
Application granted granted Critical
Publication of JP3112246B2 publication Critical patent/JP3112246B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an array waveguide grating having a flat light frequency characteristic. SOLUTION: In the array waveguide grating provided with a channel waveguide 12 for an input arranged on a substrate 11, the channel waveguide 13 for an output, a channel waveguide array 14, a first sector slab waveguide 15 and a second sector slab waveguide 16, cores of respective waveguides of the channel waveguide 12 for the input in the vicinity of the boundary with the first sector slab waveguide 15 are made a parabolic shape. Thus, a light distribution having a flat electric field distribution in the boundary between the second sector slab waveguide 16 and the channel waveguide 13 for the output is formed, and the flat light frequency characteristic nearly fixing a dividing output characteristic even when a wavelength (light frequency) of a light source is changed is realized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、フラットな光周波
数特性を有する光合分波器を実現し得るアレイ導波路格
子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an arrayed waveguide grating capable of realizing an optical multiplexer / demultiplexer having flat optical frequency characteristics.

【0002】[0002]

【従来の技術】図1は従来のアレイ導波路格子の一例、
ここではアレイ導波路型光合分波器を示すもので、基板
1上に、入力用チャネル導波路2、出力用チャネル導波
路3、チャネル導波路アレイ4、前記入力用チャネル導
波路2とチャネル導波路アレイ4とを接続する第1の扇
型スラブ導波路5、並びに前記チャネル導波路アレイ4
と出力用チャネル導波路3とを接続する第2の扇型スラ
ブ導波路6が形成されてなっている。
FIG. 1 shows an example of a conventional arrayed waveguide grating.
Here, an arrayed waveguide type optical multiplexer / demultiplexer is shown, in which an input channel waveguide 2, an output channel waveguide 3, a channel waveguide array 4, the input channel waveguide 2 and a channel A first fan-shaped slab waveguide for connecting to a waveguide array, and the channel waveguide array;
A second fan-shaped slab waveguide 6 for connecting the output channel waveguide 3 to the slab waveguide 6 is formed.

【0003】この種のアレイ導波路型光合分波器におい
て、前記チャネル導波路アレイ4はその長さが所定の導
波路長差ΔLで順次長くなるように構成されている。ま
た、第1の扇型スラブ導波路5との境界近傍における入
力用チャネル導波路2及びチャネル導波路アレイ4の各
導波路のコアは、図2に示すように直線状に広がるテー
パ形状をなしており、また、第2の扇型スラブ導波路6
との境界近傍における出力用チャネル導波路3及びチャ
ネル導波路アレイ4の各導波路のコアは、図3に示すよ
うに直線状に広がるテーパ形状をなしていた。
In this type of arrayed-waveguide type optical multiplexer / demultiplexer, the channel waveguide array 4 is constructed so that its length gradually increases with a predetermined waveguide length difference ΔL. Further, the cores of the respective waveguides of the input channel waveguide 2 and the channel waveguide array 4 in the vicinity of the boundary with the first fan-shaped slab waveguide 5 have a tapered shape which spreads linearly as shown in FIG. And the second fan-shaped slab waveguide 6
The cores of the respective waveguides of the output channel waveguide 3 and the channel waveguide array 4 in the vicinity of the boundary between and have a tapered shape that spreads linearly as shown in FIG.

【0004】なお、図2及び図3において、Rは第1,
第2の扇型スラブ導波路5,6の曲率半径、Uは入力
用,出力用チャネル導波路2,3のテーパ形状の導波路
のコア開口幅、S1 は入力用,出力用チャネル導波路
2,3の間隔、d1 は入力用,出力用チャネル導波路
2,3のテーパ形状の導波路の長さ、Dはチャネル導波
路アレイ4のテーパ形状の導波路のコア開口幅、2aは
チャネル導波路部分のコア幅、S2 はチャネル導波路ア
レイ4の間隔、d2 はチャネル導波路アレイ4のテーパ
形状の導波路の長さである。
2 and 3, R is the first and the first.
Radius of curvature of the second fan-shaped slab waveguides 5 and 6, U is the core opening width of the tapered waveguide of the input and output channel waveguides 2 and 3, S 1 is the input and output channel waveguides 2, 3 is a distance, d 1 is the length of the tapered waveguide of the input and output channel waveguides 2 and 3, D is the core opening width of the tapered waveguide of the channel waveguide array 4, and 2a is The core width of the channel waveguide portion, S 2 is the interval between the channel waveguide arrays 4, and d 2 is the length of the tapered waveguide of the channel waveguide array 4.

【0005】[0005]

【発明が解決しようとする課題】図4は前述した従来の
アレイ導波路格子の光周波数特性を示すもので、各導波
路の中心光周波数(ここでは200GHz間隔)の近傍
で放物線状の損失特性をなしている。このため、レーザ
光源の波長(光周波数)が温度変化等により各信号チャ
ネル(導波路)の中心光周波数から変動すると、損失が
大幅に増加してしまうという問題があった。
FIG. 4 shows the optical frequency characteristics of the above-mentioned conventional arrayed waveguide grating. Parabolic loss characteristics in the vicinity of the center optical frequency of each waveguide (here, at 200 GHz intervals). Is doing. Therefore, if the wavelength (optical frequency) of the laser light source fluctuates from the central optical frequency of each signal channel (waveguide) due to temperature change or the like, there is a problem that the loss increases significantly.

【0006】本発明の目的は、フラットな光周波数特性
を有するアレイ導波路格子を提供することにある。
An object of the present invention is to provide an arrayed waveguide grating having flat optical frequency characteristics.

【0007】[0007]

【課題を解決するための手段】本発明では、前記課題を
解決するため、基板上に配置された入力用チャネル導波
路と、出力用チャネル導波路と、チャネル導波路アレイ
と、前記入力用チャネル導波路及びチャネル導波路アレ
イを接続する第1の扇型スラブ導波路と、前記チャネル
導波路アレイ及び出力用チャネル導波路を接続する第2
の扇型スラブ導波路とを備え、前記チャネル導波路アレ
イの長さが所定の導波路長差で順次長くなるように構成
されたアレイ導波路格子において、第1の扇型スラブ導
波路との境界近傍における入力用チャネル導波路の各導
波路のコアがパラボラ形状をなしているアレイ導波路格
子を提案する。
According to the present invention, in order to solve the above-mentioned problems, an input channel waveguide, an output channel waveguide, a channel waveguide array, and an input channel waveguide are arranged on a substrate. A first fan-shaped slab waveguide connecting the waveguide and the channel waveguide array, and a second fan-shaped slab waveguide connecting the channel waveguide array and the output channel waveguide.
And a fan-shaped slab waveguide, wherein the channel waveguide array length is sequentially increased by a predetermined waveguide length difference. We propose an arrayed waveguide grating in which the core of each waveguide of the input channel waveguide near the boundary has a parabolic shape.

【0008】本発明によれば、第1の扇型スラブ導波路
との境界近傍における入力用チャネル導波路の各導波路
のコアをパラボラ形状となしたことにより、第2の扇型
スラブ導波路と出力用チャネル導波路との境界において
フラットな電界分布をもつ光分布を形成することがで
き、これによって光源の波長(光周波数)が変化しても
分波出力特性はほぼ一定となるフラットな光周波数特性
を備えたアレイ導波路格子を提供でき、大容量・長距離
光通信及び波長分割ルーティング等に適した光合分波器
を実現することができる。
According to the present invention, the core of each waveguide of the input channel waveguide in the vicinity of the boundary with the first fan-shaped slab waveguide has a parabolic shape, so that the second fan-shaped slab waveguide is formed. It is possible to form a light distribution with a flat electric field distribution at the boundary between the output and the channel waveguide for output, which makes the demultiplexing output characteristic almost constant even if the wavelength (optical frequency) of the light source changes. An arrayed waveguide grating having optical frequency characteristics can be provided, and an optical multiplexer / demultiplexer suitable for large-capacity / long-distance optical communication and wavelength division routing can be realized.

【0009】[0009]

【発明の実施の形態】以下、図面を参照して本発明を詳
細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the drawings.

【0010】図5は本発明のアレイ導波路格子の実施の
形態の一例、ここではアレイ導波路型光合分波器を示す
もので、基板11上に、入力用チャネル導波路12、出
力用チャネル導波路13、チャネル導波路アレイ14、
前記入力用チャネル導波路12とチャネル導波路アレイ
14とを接続する第1の扇型スラブ導波路15、並びに
前記チャネル導波路アレイ14と出力用チャネル導波路
13とを接続する第2の扇型スラブ導波路16が形成さ
れてなっている。
FIG. 5 shows an embodiment of an arrayed-waveguide grating of the present invention, which is an arrayed-waveguide type optical multiplexer / demultiplexer, in which an input channel waveguide 12 and an output channel are formed on a substrate 11. Waveguide 13, channel waveguide array 14,
A first fan-shaped slab waveguide 15 for connecting the input channel waveguide 12 and the channel waveguide array 14, and a second fan-shaped slab waveguide 15 for connecting the channel waveguide array 14 and the output channel waveguide 13 A slab waveguide 16 is formed.

【0011】チャネル導波路アレイ14はその長さが所
定の導波路長差ΔLで順次長くなるように構成されてい
る。また、第1の扇型スラブ導波路15との境界近傍に
おける入力用チャネル導波路12の各導波路のコアは、
図6に示すようにパラボラ形状をなしている。また、第
1の扇型スラブ導波路15との境界近傍におけるチャネ
ル導波路アレイ14の各導波路のコアは、直線状に広が
るテーパ形状をなしている。
The channel waveguide array 14 is constructed so that its length is gradually increased by a predetermined waveguide length difference ΔL. Further, the core of each waveguide of the input channel waveguide 12 in the vicinity of the boundary with the first fan-shaped slab waveguide 15 is
As shown in FIG. 6, it has a parabolic shape. The core of each waveguide of the channel waveguide array 14 in the vicinity of the boundary with the first fan-shaped slab waveguide 15 has a tapered shape that spreads linearly.

【0012】なお、図6において、Rは第1の扇型スラ
ブ導波路15の曲率半径、Wは入力用チャネル導波路1
2のパラボラ形状の導波路のコア開口幅、S1 は入力用
チャネル導波路12の間隔、l1 は入力用チャネル導波
路12のパラボラ形状の導波路の長さ、Dはチャネル導
波路アレイ14のテーパ形状の導波路のコア開口幅、2
aはチャネル導波路部分のコア幅、S2 はチャネル導波
路アレイ14の間隔、d2 はチャネル導波路アレイ14
のテーパ形状の導波路の長さである。
In FIG. 6, R is the radius of curvature of the first fan-shaped slab waveguide 15, and W is the input channel waveguide 1.
2, the core opening width of the parabolic waveguide, S 1 is the interval between the input channel waveguides 12, l 1 is the length of the parabolic waveguide of the input channel waveguide 12, and D is the channel waveguide array 14 The core opening width of the tapered waveguide of 2
a is the core width of the channel waveguide portion, S 2 is the spacing between the channel waveguide arrays 14, and d 2 is the channel waveguide array 14
Is the length of the tapered waveguide.

【0013】前記第1の扇型スラブ導波路15との境界
近傍における入力用チャネル導波路12の各導波路のコ
アのパラボラ形状は、図7に示すように y=(1/A)(a2 −x2 ) なる式で決められる(但し、Aはパラボラ形状を指定す
るパラメータ、aはコア幅の1/2である。)。
The parabolic shape of the core of each waveguide of the input channel waveguide 12 near the boundary with the first fan-shaped slab waveguide 15 is y = (1 / A) (a) as shown in FIG. 2− x 2 ) (where A is a parameter that specifies the parabolic shape, and a is ½ of the core width).

【0014】ここで、図5において、入力用チャネル導
波路12の一つのポートに光周波数f(波長λ=c/
f:但し、cは光速)の信号光が入射した場合を考え
る。
Here, in FIG. 5, an optical frequency f (wavelength λ = c / is assigned to one port of the input channel waveguide 12).
f: However, consider the case where signal light of (c is the speed of light) is incident.

【0015】入射された光は、図6に示すパラボラ形状
の領域を通過する際に平行ビーム状の光分布をなし、第
1の扇型スラブ導波路15との境界において図8に示す
ような空間的にフラットな電界分布を生じる。コア幅2
a=7μm、コア厚2t=7μm、屈折率差Δ=0.7
5%の光導波路の場合、図8に示すようなフラット光分
布を得るための構造パラメータは、A=1.0、l1
250μmである。
The incident light forms a parallel-beam-shaped light distribution when passing through the parabola-shaped region shown in FIG. 6, and as shown in FIG. 8 at the boundary with the first fan-shaped slab waveguide 15. It produces a spatially flat electric field distribution. Core width 2
a = 7 μm, core thickness 2t = 7 μm, refractive index difference Δ = 0.7
In the case of a 5% optical waveguide, the structural parameters for obtaining the flat light distribution as shown in FIG. 8 are A = 1.0 and l 1 =
250 μm.

【0016】このようにして得られたフラットな分布を
もつ光は、さらに第1の扇型スラブ導波路15において
横方向に広がって進み、チャネル導波路アレイ14の各
導波路を励振し、第2の扇型スラブ導波路16において
光周波数fに対応した出力用チャネル導波路13の位置
に集光する。
The light having the flat distribution thus obtained further spreads laterally in the first fan-shaped slab waveguide 15 and excites each waveguide of the channel waveguide array 14, In the second fan-shaped slab waveguide 16, the light is focused at the position of the output channel waveguide 13 corresponding to the optical frequency f.

【0017】この時、相反の定理により、第2の扇型ス
ラブ導波路16と出力用チャネル導波路13との境界に
おける光分布も、図9に示すような、前記同様にフラッ
トな光分布となる。
At this time, due to the reciprocity theorem, the light distribution at the boundary between the second fan-shaped slab waveguide 16 and the output channel waveguide 13 is also a flat light distribution as shown in FIG. Become.

【0018】図10は第2の扇型スラブ導波路16近傍
の拡大図であり、第2の扇型スラブ導波路16との境界
近傍における出力用チャネル導波路13及びチャネル導
波路アレイ14の各導波路のコアは、直線状に広がるテ
ーパ形状をなしている。
FIG. 10 is an enlarged view of the vicinity of the second fan-shaped slab waveguide 16. Each of the output channel waveguide 13 and the channel waveguide array 14 near the boundary with the second fan-shaped slab waveguide 16. The core of the waveguide has a tapered shape that spreads linearly.

【0019】図10において、Rは第2の扇型スラブ導
波路16の曲率半径、Uは出力用チャネル導波路13の
テーパ形状の導波路のコア開口幅、S1 は出力用チャネ
ル導波路13の間隔、d1 は出力用チャネル導波路13
のテーパ形状の導波路の長さ、Dはチャネル導波路アレ
イ14のテーパ形状の導波路のコア開口幅、2aはチャ
ネル導波路部分のコア幅、S2 はチャネル導波路アレイ
14の間隔、d2 はチャネル導波路アレイ14のテーパ
形状の導波路の長さである。
In FIG. 10, R is the radius of curvature of the second fan-shaped slab waveguide 16, U is the core opening width of the tapered waveguide of the output channel waveguide 13, and S 1 is the output channel waveguide 13. , D 1 is the output channel waveguide 13
Of the tapered waveguide, D is the core opening width of the tapered waveguide of the channel waveguide array 14, 2a is the core width of the channel waveguide portion, S 2 is the spacing of the channel waveguide array 14, and d 2 is the length of the tapered waveguide of the channel waveguide array 14.

【0020】前記出力用チャネル導波路13のコア開口
幅Uは、図9に示したフラットな光分布の幅に比べて数
分の1になるように設計されているので、光源の光周波
数fが多少変化しても出力用チャネル導波路13へ結合
する光の量はほぼ一定となる。つまり、光源の光周波数
fが多少変化しても分波出力がほぼ一定となるようなフ
ラットな光周波数特性が実現される。
Since the core opening width U of the output channel waveguide 13 is designed to be a fraction of the width of the flat light distribution shown in FIG. 9, the optical frequency f of the light source is Even if the value of A is slightly changed, the amount of light coupled to the output channel waveguide 13 is substantially constant. That is, a flat optical frequency characteristic is realized in which the demultiplexing output is substantially constant even if the optical frequency f of the light source changes to some extent.

【0021】前述したアレイ導波路格子に関し、以下の
ようなパラメータを用いてマスクを作製した。即ち、R
=11.3mm、W=35μm、S1 =25μm、l1
=250μm、D=20μm、2a=7μm、S2 =2
5μm、d2 =2mm、A=1.0、U=10μm、Δ
L=63μmである。
With respect to the above-mentioned arrayed waveguide grating, a mask was produced using the following parameters. That is, R
= 11.3 mm, W = 35 μm, S 1 = 25 μm, l 1
= 250 μm, D = 20 μm, 2a = 7 μm, S 2 = 2
5 μm, d 2 = 2 mm, A = 1.0, U = 10 μm, Δ
L = 63 μm.

【0022】このようにして作製したマスクにより石英
系光導波路を用いて本実施の形態のアレイ導波路格子を
作製した。
The arrayed waveguide grating of the present embodiment was produced by using a silica type optical waveguide with the mask thus produced.

【0023】まず、Si基板上に火炎堆積法によってS
iO2 下部クラッド層を堆積し、次にGeO2 をドーパ
ントとして添加したSiO2 ガラスのコア層を堆積した
後に、電気炉で透明ガラス化した。次に、前記設計に基
づく図5、図6及び図10に示すようなパターンを用い
てコア層をエッチングして光導波路部分を作製した。最
後に、再びSiO2 上部クラッド層を堆積した。
First, S is deposited on the Si substrate by the flame deposition method.
An iO 2 lower clad layer was deposited, and then a core layer of SiO 2 glass doped with GeO 2 as a dopant was deposited, followed by transparent vitrification in an electric furnace. Next, the core layer was etched by using the patterns shown in FIGS. 5, 6 and 10 based on the above design to fabricate an optical waveguide portion. Finally, the SiO 2 upper cladding layer was deposited again.

【0024】このようにして作製したアレイ導波路格子
の光周波数特性の測定結果を図11に示す。図11よ
り、光周波数特性がフラット化されていることが分か
る。
FIG. 11 shows the measurement result of the optical frequency characteristics of the arrayed waveguide grating thus manufactured. From FIG. 11, it can be seen that the optical frequency characteristic is flattened.

【0025】これによって、従来のアレイ導波路格子で
は35GHzであった1dB帯域幅(B1.0dB )が、隣
接する信号チャネルへのクロストークを劣化させること
なく120GHzにまで拡大された。
As a result, the 1 dB bandwidth (B 1.0 dB ), which was 35 GHz in the conventional arrayed waveguide grating, is expanded to 120 GHz without deteriorating the crosstalk to the adjacent signal channels.

【0026】[0026]

【発明の効果】以上説明したように、本発明によれば、
第1の扇型スラブ導波路との境界近傍における入力用チ
ャネル導波路の各導波路のコアがパラボラ形状をなして
いるため、隣接する信号チャネルへのクロストークを劣
化させることなく、1dB帯域幅、3dB帯域幅を大幅
に増大でき、フラットな光周波数特性を実現し得る。従
って、光源の波長が温度変化等により各信号チャネルの
中心波長から変動した場合でも通過損失が増加せず、波
長分割ルーティングシステム等の設計の許容度が増すと
いう利点を有する。
As described above, according to the present invention,
Since the core of each waveguide of the input channel waveguide in the vicinity of the boundary with the first fan-shaped slab waveguide has a parabolic shape, a 1 dB bandwidth without deteriorating crosstalk to an adjacent signal channel. The 3 dB bandwidth can be significantly increased, and a flat optical frequency characteristic can be realized. Therefore, even if the wavelength of the light source changes from the central wavelength of each signal channel due to temperature change or the like, the passage loss does not increase, and there is an advantage that the design tolerance of the wavelength division routing system and the like increases.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来のアレイ導波路格子の一例を示す構成図FIG. 1 is a configuration diagram showing an example of a conventional arrayed waveguide grating

【図2】図1における第1の扇型スラブ導波路近傍の拡
大図
FIG. 2 is an enlarged view of the vicinity of the first fan-shaped slab waveguide in FIG.

【図3】図1における第2の扇型スラブ導波路近傍の拡
大図
FIG. 3 is an enlarged view of the vicinity of a second fan-shaped slab waveguide in FIG.

【図4】従来のアレイ導波路格子の光周波数特性の測定
結果を示す図
FIG. 4 is a diagram showing measurement results of optical frequency characteristics of a conventional arrayed waveguide grating.

【図5】本発明のアレイ導波路格子の実施の形態の一例
を示す構成図
FIG. 5 is a configuration diagram showing an example of an embodiment of an arrayed waveguide grating of the present invention.

【図6】図5における第1の扇型スラブ導波路近傍の拡
大図
FIG. 6 is an enlarged view of the vicinity of the first fan-shaped slab waveguide in FIG.

【図7】第1の扇型スラブ導波路との境界近傍における
入力用チャネル導波路のコアの拡大図
FIG. 7 is an enlarged view of the core of the input channel waveguide in the vicinity of the boundary with the first fan-shaped slab waveguide.

【図8】第1の扇型スラブ導波路と入力用チャネル導波
路との境界における電界分布を示す図
FIG. 8 is a diagram showing an electric field distribution at a boundary between a first fan-shaped slab waveguide and an input channel waveguide.

【図9】第2の扇型スラブ導波路と出力用チャネル導波
路との境界における電界分布を示す図
FIG. 9 is a diagram showing an electric field distribution at a boundary between a second fan-shaped slab waveguide and an output channel waveguide.

【図10】図5における第2の扇型スラブ導波路近傍の
拡大図
10 is an enlarged view of the vicinity of the second fan-shaped slab waveguide in FIG.

【図11】本発明のアレイ導波路格子の光周波数特性の
測定結果を示す図
FIG. 11 is a diagram showing measurement results of optical frequency characteristics of the arrayed waveguide grating of the present invention.

【符号の説明】[Explanation of symbols]

11…基板、12…入力用チャネル導波路、13…出力
用チャネル導波路、14…チャネル導波路アレイ、15
…第1の扇型スラブ導波路、16…第2の扇型スラブ導
波路。
11 ... substrate, 12 ... input channel waveguide, 13 ... output channel waveguide, 14 ... channel waveguide array, 15
... 1st fan-shaped slab waveguide, 16 ... 2nd fan-shaped slab waveguide.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 基板上に配置された入力用チャネル導波
路と、出力用チャネル導波路と、チャネル導波路アレイ
と、前記入力用チャネル導波路及びチャネル導波路アレ
イを接続する第1の扇型スラブ導波路と、前記チャネル
導波路アレイ及び出力用チャネル導波路を接続する第2
の扇型スラブ導波路とを備え、前記チャネル導波路アレ
イの長さが所定の導波路長差で順次長くなるように構成
されたアレイ導波路格子において、 第1の扇型スラブ導波路との境界近傍における入力用チ
ャネル導波路の各導波路のコアがパラボラ形状をなして
いることを特徴とするアレイ導波路格子。
An input channel waveguide disposed on a substrate, an output channel waveguide, a channel waveguide array, and a first sector connecting the input channel waveguide and the channel waveguide array. A second connecting the slab waveguide to the channel waveguide array and the output channel waveguide;
And a fan-shaped slab waveguide, wherein the length of the channel waveguide array sequentially increases with a predetermined waveguide length difference. An arrayed waveguide grating, characterized in that the core of each waveguide of the input channel waveguide near the boundary has a parabolic shape.
【請求項2】 パラボラ形状が、 y=(1/A)(a2 −x2 ) (但し、Aはパラボラ形状を指定するパラメータ、aは
コア幅の1/2) なる式で決められることを特徴とする請求項1記載のア
レイ導波路格子。
2. The parabolic shape is determined by an equation: y = (1 / A) (a 2 −x 2 ) (where A is a parameter that specifies the parabolic shape, and a is 1/2 of the core width). The arrayed waveguide grating according to claim 1, wherein:
JP11095096A 1996-05-01 1996-05-01 Array waveguide grating Expired - Lifetime JP3112246B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11095096A JP3112246B2 (en) 1996-05-01 1996-05-01 Array waveguide grating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11095096A JP3112246B2 (en) 1996-05-01 1996-05-01 Array waveguide grating

Publications (2)

Publication Number Publication Date
JPH09297228A true JPH09297228A (en) 1997-11-18
JP3112246B2 JP3112246B2 (en) 2000-11-27

Family

ID=14548660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11095096A Expired - Lifetime JP3112246B2 (en) 1996-05-01 1996-05-01 Array waveguide grating

Country Status (1)

Country Link
JP (1) JP3112246B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100296384B1 (en) * 1999-06-21 2001-07-12 윤종용 AWG WDM comprising alignment waveguide and apparatus for aligning it
US6289147B1 (en) 1999-11-01 2001-09-11 Bbv Design Bv Passband flattening of a phasar
EP1291689A1 (en) * 2001-09-11 2003-03-12 Alcatel Optronics UK Limited Improved arrayed waveguide grating
US6671433B2 (en) 2000-04-18 2003-12-30 The Furukawa Electric Co., Ltd. Arrayed waveguide grating type optical multiplexer/demultiplexer
WO2004061496A1 (en) * 2002-12-27 2004-07-22 Nippon Telegraph And Telephone Corporation Array waveguide lattice type optical multilexer/demultiplexer circuit
US6836591B2 (en) 1999-12-27 2004-12-28 The Furukawa Electric Co., Ltd. Arrayed waveguide grating type optical multiplexer/demultiplexer and optical waveguide circuit
US6836594B2 (en) 2001-04-16 2004-12-28 Nec Corporation Array waveguide grating, array waveguide grating module, optical communication unit and optical communication system
KR100450324B1 (en) * 1997-12-30 2005-04-06 삼성전자주식회사 Optical Wavelength Multiplexer / Splitter with Flat Frequency Response
US6888985B2 (en) * 2000-06-29 2005-05-03 Nec Corporation Arrayed waveguide grating and optical communication system using arrayed waveguide grating
WO2006013805A1 (en) 2004-08-02 2006-02-09 Nippon Telegraph And Telephone Corporation Flat optical circuit, design method for wave motion propagating circuit and computer program
US7031569B2 (en) 2002-10-01 2006-04-18 Nhk Spring Co., Ltd Optical multi-demultiplexer
US7343070B2 (en) 2002-07-13 2008-03-11 Gemfire Europe Limited Optical splitter with tapered multimode interference waveguide
JP2009122461A (en) * 2007-11-15 2009-06-04 Nippon Telegr & Teleph Corp <Ntt> Optical wavelength multiplexer/demultiplexer circuit
WO2011033725A1 (en) 2009-09-18 2011-03-24 日本電信電話株式会社 Optical multiplexer/demultiplexer circuit
US8630517B2 (en) 2010-07-02 2014-01-14 Oki Electric Industry Co., Ltd. Optical multiplexer/demultiplexer
KR20140100565A (en) 2012-01-13 2014-08-14 니폰 덴신 덴와 가부시끼가이샤 Arrayed waveguide grating, optical module providied with said arryed waveguide, and optical communications system
JP2015001626A (en) * 2013-06-14 2015-01-05 Nttエレクトロニクス株式会社 Optical wavelength multiplexing and demultiplexing circuit
CN111679365A (en) * 2020-05-29 2020-09-18 北京邮电大学 Four-channel silicon-based array waveguide grating wavelength division multiplexer
CN112327409A (en) * 2020-11-19 2021-02-05 西南交通大学 Low-crosstalk silicon-based array waveguide grating
CN113608305A (en) * 2021-07-15 2021-11-05 苏州旭创科技有限公司 Beam controller and beam control method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5399693B2 (en) 2008-07-14 2014-01-29 日本電信電話株式会社 Optical wavelength multiplexing / demultiplexing circuit

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100450324B1 (en) * 1997-12-30 2005-04-06 삼성전자주식회사 Optical Wavelength Multiplexer / Splitter with Flat Frequency Response
KR100296384B1 (en) * 1999-06-21 2001-07-12 윤종용 AWG WDM comprising alignment waveguide and apparatus for aligning it
US6289147B1 (en) 1999-11-01 2001-09-11 Bbv Design Bv Passband flattening of a phasar
US6836591B2 (en) 1999-12-27 2004-12-28 The Furukawa Electric Co., Ltd. Arrayed waveguide grating type optical multiplexer/demultiplexer and optical waveguide circuit
US6671433B2 (en) 2000-04-18 2003-12-30 The Furukawa Electric Co., Ltd. Arrayed waveguide grating type optical multiplexer/demultiplexer
US7194165B2 (en) 2000-06-29 2007-03-20 Nec Corporation Arrayed waveguide grating and optical communication system using arrayed waveguide grating
US6888985B2 (en) * 2000-06-29 2005-05-03 Nec Corporation Arrayed waveguide grating and optical communication system using arrayed waveguide grating
US6836594B2 (en) 2001-04-16 2004-12-28 Nec Corporation Array waveguide grating, array waveguide grating module, optical communication unit and optical communication system
US6928214B2 (en) 2001-04-16 2005-08-09 Nec Corporation Array waveguide grating, array waveguide grating module, optical communication unit and optical communication system
EP1291689A1 (en) * 2001-09-11 2003-03-12 Alcatel Optronics UK Limited Improved arrayed waveguide grating
US7343070B2 (en) 2002-07-13 2008-03-11 Gemfire Europe Limited Optical splitter with tapered multimode interference waveguide
US7031569B2 (en) 2002-10-01 2006-04-18 Nhk Spring Co., Ltd Optical multi-demultiplexer
US7400800B2 (en) 2002-12-27 2008-07-15 Ntt Electronics Corporation Arrayed waveguide grating type optical multiplexer/demultiplexer circuit
WO2004061496A1 (en) * 2002-12-27 2004-07-22 Nippon Telegraph And Telephone Corporation Array waveguide lattice type optical multilexer/demultiplexer circuit
US7856163B2 (en) 2004-08-02 2010-12-21 Nippon Telegraph And Telephone Corporation Planar lightwave circuit, design method for wave propagation circuit, and computer program
US8554040B2 (en) 2004-08-02 2013-10-08 Nippon Telegraph And Telephone Corporation Planar lightwave circuit, design method for wave propagation circuit, and computer program
WO2006013805A1 (en) 2004-08-02 2006-02-09 Nippon Telegraph And Telephone Corporation Flat optical circuit, design method for wave motion propagating circuit and computer program
US8538222B2 (en) 2004-08-02 2013-09-17 Nippon Telegraph And Telephone Corporation Planar lightwave circuit, design method for wave propagation circuit, and computer program
EP2506047A1 (en) 2004-08-02 2012-10-03 Nippon Telegraph And Telephone Corporation Flat optical circuit, design method for wave motion propagating circuit and computer program
EP2506049A1 (en) 2004-08-02 2012-10-03 Nippon Telegraph And Telephone Corporation Planar lightwave circuit, including a slab type coupler
EP2506048A1 (en) 2004-08-02 2012-10-03 Nippon Telegraph And Telephone Corporation Planar lightwave circuit, including an improved arrayed waveguide grating filter
EP2511742A1 (en) 2004-08-02 2012-10-17 Nippon Telegraph And Telephone Corporation Planar lightwave circuit, including an optical branch circuit
EP2511743A1 (en) 2004-08-02 2012-10-17 Nippon Telegraph And Telephone Corporation A planar lightwave circuit including a cross waveguide
US8463097B2 (en) 2004-08-02 2013-06-11 Nippon Telegraph And Telephone Corporation Planar lightwave circuit, design method for wave propagation circuit, and computer program
JP2009122461A (en) * 2007-11-15 2009-06-04 Nippon Telegr & Teleph Corp <Ntt> Optical wavelength multiplexer/demultiplexer circuit
WO2011033725A1 (en) 2009-09-18 2011-03-24 日本電信電話株式会社 Optical multiplexer/demultiplexer circuit
US8737779B2 (en) 2009-09-18 2014-05-27 Nippon Telegraph And Telephone Corporation Optical wavelength multi/demultiplexer
US8630517B2 (en) 2010-07-02 2014-01-14 Oki Electric Industry Co., Ltd. Optical multiplexer/demultiplexer
KR20140100565A (en) 2012-01-13 2014-08-14 니폰 덴신 덴와 가부시끼가이샤 Arrayed waveguide grating, optical module providied with said arryed waveguide, and optical communications system
US9116305B2 (en) 2012-01-13 2015-08-25 Nippon Telegraph And Telephone Corporation Arrayed waveguide grating, optical module provided with said arrayed waveguide grating, and optical communications system
JP2015001626A (en) * 2013-06-14 2015-01-05 Nttエレクトロニクス株式会社 Optical wavelength multiplexing and demultiplexing circuit
CN111679365A (en) * 2020-05-29 2020-09-18 北京邮电大学 Four-channel silicon-based array waveguide grating wavelength division multiplexer
CN111679365B (en) * 2020-05-29 2021-08-06 北京邮电大学 Four-channel silicon-based array waveguide grating wavelength division multiplexer
CN112327409A (en) * 2020-11-19 2021-02-05 西南交通大学 Low-crosstalk silicon-based array waveguide grating
CN113608305A (en) * 2021-07-15 2021-11-05 苏州旭创科技有限公司 Beam controller and beam control method

Also Published As

Publication number Publication date
JP3112246B2 (en) 2000-11-27

Similar Documents

Publication Publication Date Title
JP3112246B2 (en) Array waveguide grating
JP2870499B2 (en) Optical wavelength multiplexer / demultiplexer
AU776921B2 (en) Arrayed waveguide gratings
JP4190733B2 (en) Arrayed waveguide grating optical multiplexer / demultiplexer
JP2000171661A (en) Array waveguide diffraction grating type optical multiplexer/demultiplexer
JP3201560B2 (en) Optical signal processing circuit
US6741772B2 (en) Optical multiplexer/demultiplexer and waveguide type optical coupler
JP3224086B2 (en) Arrayed waveguide grating with variable frequency width of flat band characteristics
US7031569B2 (en) Optical multi-demultiplexer
JPH112733A (en) Array grating optical synthesizing and branching device
US6735363B1 (en) Waveguide-grating router with output tapers configured to provide a passband that is optimized for each channel individually
JP3775673B2 (en) Arrayed waveguide grating type optical multiplexer / demultiplexer
JP3144620B2 (en) Array waveguide grating
JP3214545B2 (en) Array waveguide grating
JP3931835B2 (en) Star coupler and optical wavelength multiplexer / demultiplexer
JP3144614B2 (en) Flat band characteristic array grating
JP3206796B2 (en) Optical equalizer
JP2002055250A (en) Optical multiplexer/demultiplexer and its manufacturing method
JPH08211237A (en) Array grid type optical multiplexer and demultiplexer
JP3137165B2 (en) Manufacturing method of optical waveguide circuit
JP3249960B2 (en) Array grating type optical multiplexer / demultiplexer
GB2360098A (en) Optical waveguide array device
EP1054272A1 (en) Arrayed waveguide grating with grooves
JPH08334792A (en) Light signal processing circuit and method therefor
JP2001215452A (en) Mach-zehnder optical circuit

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070922

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080922

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080922

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 13

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term