JPH09292305A - Apparatus for detecting defect of translucent long body - Google Patents

Apparatus for detecting defect of translucent long body

Info

Publication number
JPH09292305A
JPH09292305A JP10511496A JP10511496A JPH09292305A JP H09292305 A JPH09292305 A JP H09292305A JP 10511496 A JP10511496 A JP 10511496A JP 10511496 A JP10511496 A JP 10511496A JP H09292305 A JPH09292305 A JP H09292305A
Authority
JP
Japan
Prior art keywords
light
distribution pattern
scattered light
light receiving
intensity distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10511496A
Other languages
Japanese (ja)
Other versions
JP3384927B2 (en
Inventor
Shinpei Tofuji
慎平 東藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP10511496A priority Critical patent/JP3384927B2/en
Publication of JPH09292305A publication Critical patent/JPH09292305A/en
Application granted granted Critical
Publication of JP3384927B2 publication Critical patent/JP3384927B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To detect the defects at a comparable signal sensitivity, from the inner side to the outer side of the vicinity of the center of a material under inspection, without generating problem points regarding the dynamic range for light-receiving intensity. SOLUTION: Parallel rays 3 are projected from the direction intersecting a moving optical fiber 2. Scattered light 4 from the optical fiber 2 is received with image sensors 5a and 5b. These image sensors 5a and 5b are arranged so as to have a light-receiving angle θ from the position, squarely facing a light projecting axis 3a of the parallel rays. The outputs of these image sensors 5a and 5b are processed in a signal processing part 6, and the distribution pattern of the scattered light intensity is obtained. The activity defects in the optical fiber 2 are judged by a judging part 7, based on the distribution pattern of the scattered light intensity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光ファイバの如き
透光性長尺体内部の気泡等の空洞欠陥を検出する透光性
長尺体欠陥検出装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transmissive elongated body defect detecting apparatus for detecting a cavity defect such as a bubble inside a translucent elongated body such as an optical fiber.

【0002】[0002]

【従来の技術】透光性長尺体、例えば光ファイバの内部
に気泡等の空洞欠陥があると、光伝送損失の増大や機械
的強度の低下あるいは端面融着の失敗など望ましくない
問題が引き起こされる。そこで、光ファイバ線引き設備
等でインラインにてこの空洞欠陥を検出することが行わ
れている。
2. Description of the Related Art Cavity defects such as air bubbles inside a light-transmissive elongated body, for example, an optical fiber, cause undesirable problems such as increased optical transmission loss, reduced mechanical strength, and failure of end face fusion. Be done. Therefore, this cavity defect is detected inline with an optical fiber drawing facility or the like.

【0003】光ファイバの内部欠陥を検出する装置とし
て、例えば特開平4−106448号公報に開示されて
いるように、光ファイバの軸に対して横方向からレーザ
ビーム等の光線を照射し、該光ファイバからの前方散乱
光をイメージセンサにて受光し、その散乱光の強度分布
パターンの異常を検出することにより、気泡等の空洞欠
陥を検出する光ファイバ欠陥検出装置が提案されてい
る。
As a device for detecting an internal defect of an optical fiber, for example, as disclosed in Japanese Patent Application Laid-Open No. 4-106448, a light beam such as a laser beam is radiated from the lateral direction with respect to the axis of the optical fiber, An optical fiber defect detection device has been proposed which detects a cavity defect such as a bubble by receiving forward scattered light from an optical fiber with an image sensor and detecting an abnormality in the intensity distribution pattern of the scattered light.

【0004】この光ファイバ欠陥検出装置は、図5に示
すように、光ファイバ母材1から線引き直後で未コーテ
ィングの状態で走行中の光ファイバ(透光性長尺体)2
に横方向から平行光線3を連続して照射し、その前方散
乱光4をCCDラインセンサやフォトダイオードアレイ
等の受光用イメージセンサ5で受光し、その出力を信号
処理部6で処理し、該信号処理部6から得られる散乱光
強度分布パターンを判定部7で判定すると共に処理部6
の処理結果をモニタ部8で表示し、異常が判定されれば
警報部9から警報を発し、判定結果を記録部10で記録
する構造になっている。
As shown in FIG. 5, this optical fiber defect detecting apparatus has an optical fiber (transparent long body) 2 which is running in an uncoated state immediately after drawing from an optical fiber preform 1.
Parallel light rays 3 are continuously emitted from the lateral direction, the forward scattered light 4 is received by a light receiving image sensor 5 such as a CCD line sensor or a photodiode array, and its output is processed by a signal processing unit 6, The scattered light intensity distribution pattern obtained from the signal processing unit 6 is determined by the determination unit 7 and the processing unit 6
The processing result of (1) is displayed on the monitor unit 8, an alarm is issued from the alarm unit 9 when an abnormality is determined, and the determination result is recorded by the recording unit 10.

【0005】このような光ファイバ欠陥検出装置では、
受光用イメージセンサ5からの出力を信号処理部6で処
理すると、図6の左部に示すような散乱光強度分布パタ
ーン11が得られる。
In such an optical fiber defect detecting device,
When the output from the light-receiving image sensor 5 is processed by the signal processing unit 6, a scattered light intensity distribution pattern 11 as shown in the left part of FIG. 6 is obtained.

【0006】光ファイバ2中に気泡等の周囲と屈折率の
大きく異なる空洞欠陥があると、散乱光強度分布パター
ン11中に空洞欠陥による減光凹部が現れる。この減光
凹部による変異を、信号処理部6から得られる散乱光強
度分布パターン11を判断している判定部7において検
知する。この判定内容が外部に出力され、警報部9から
警報を発し、判定結果を記録部10で記録する。
When the optical fiber 2 has a cavity defect such as a bubble whose refractive index is largely different from that of the surrounding area, a dimming concave portion due to the cavity defect appears in the scattered light intensity distribution pattern 11. The mutation due to the dimming concave portion is detected by the judgment unit 7 which judges the scattered light intensity distribution pattern 11 obtained from the signal processing unit 6. The content of this determination is output to the outside, an alarm is issued from the alarm unit 9, and the determination result is recorded in the recording unit 10.

【0007】ここで、空洞欠陥の光ファイバ2の径方向
位置と散乱光分布について説明する。図7に示したの
は、約φ125 μm の光ファイバ(クラッド部屈折率:約
1.46)2に1軸方向から平行光線3を入射させた場合の
光路をトレースしたものである。光ファイバ2のコア2
aを通る中心線2bからそれぞれd1 =42μm 、d2 =
57μm なる距離に入射した平行光線3は、それぞれt1
=30°、t2 =55°なる散乱角度に散乱される。
Here, the radial position and scattered light distribution of the optical fiber 2 having a cavity defect will be described. Figure 7 shows an optical fiber with a diameter of about 125 μm (refractive index of the cladding: about
1.46) This is a trace of the optical path when a parallel ray 3 is incident on 2 from the uniaxial direction. Core 2 of optical fiber 2
From the center line 2b passing through a, d1 = 42 .mu.m, d2 =
The parallel rays 3 incident at a distance of 57 μm are t1
= 30 ° and t2 = 55 °.

【0008】また、図7の斜線部については、入射光が
侵入しないので測定としては不感帯12となり、この領
域に空洞欠陥があっても検出できない。この不感帯12
は、投光部(及びそれに対応する受光部)の測定平面に
おける入射角度をそれぞれ変えて、入射光を多軸化する
等の手段をとることによりなくすことができる。
Further, in the shaded area in FIG. 7, since the incident light does not enter, a dead zone 12 is obtained for measurement, and even if there is a cavity defect in this area, it cannot be detected. This dead zone 12
Can be eliminated by changing the angle of incidence of the light projecting section (and the light receiving section corresponding thereto) on the measurement plane to make the incident light multiaxial.

【0009】例えば、図7のP点に空洞欠陥があった場
合には、図8の散乱光強度分布パターン11中(散乱光
強度分布パターン11は、図6のように左右に裾を引く
が、左右それぞれにおいて行う処理は同様なので、片側
の散乱光パターンで代表させて図示することにする。)
にPのような減光凹部が現れる。また、図7のQ点に空
洞欠陥があった場合には、図8の散乱光強度分布パター
ン11中にQのような減光凹部が現れる。なお、図8に
破線で示されているのが散乱光強度分布パターン11の
基準線であり、線引き設備中の測定装置で得られる散乱
光強度分布パターン11は線引きされた光ファイバ2の
振動等諸々の要因により空洞欠陥のない正常状態におい
ても、図8のR部のように揺らいでいる。
For example, when there is a cavity defect at point P in FIG. 7, in the scattered light intensity distribution pattern 11 in FIG. 8 (the scattered light intensity distribution pattern 11 has left and right tails as shown in FIG. 6). , The processing to be performed on each of the left and right sides is the same, and therefore, the scattered light pattern on one side is representatively shown.
A dimming concave portion such as P appears. Further, when there is a cavity defect at the point Q in FIG. 7, a dimming concave portion like Q appears in the scattered light intensity distribution pattern 11 in FIG. The reference line of the scattered light intensity distribution pattern 11 is shown by a broken line in FIG. 8, and the scattered light intensity distribution pattern 11 obtained by the measuring device in the drawing equipment is the vibration of the drawn optical fiber 2 and the like. Even in a normal state where there are no cavity defects due to various factors, the fluctuation is as shown in the R portion of FIG.

【0010】パターン処理において、正常状態の中から
空洞欠陥による散乱光強度分布パターン11の変異を識
別するには、図9(A)に破線で示す基準線からの変位
量Hが正常状態時の散乱光強度分布パターン11におけ
るノイズ量に勝る必要がある。ノイズとしては、センサ
特性によるものと、受光素子であるイメージセンサ5の
位置とも結びついた散乱光状態の変動によるもの等があ
る。
In the pattern processing, in order to identify the variation of the scattered light intensity distribution pattern 11 due to the cavity defect from the normal state, the displacement amount H from the reference line shown by the broken line in FIG. It is necessary to exceed the amount of noise in the scattered light intensity distribution pattern 11. There are two types of noise, one is due to sensor characteristics and the other is due to fluctuations in the scattered light state associated with the position of the image sensor 5 which is a light receiving element.

【0011】実際の測定から、正常状態と欠陥状態の識
別が可能なしきい量を受光位置、つまりセンサ位置座標
によって変化するノイズ量Nとして求め、イメージセン
サ5の長手方向に沿ったセンサ位置座標xに対するH/
N、即ち、識別感度評価値H/Nをプロットした例を図
10に示す。この図は、図8のP点,Q点を結んだ線上
に空洞欠陥がある場合に対応しており、光ファイバ2の
径方向における空洞欠陥の位置によって識別感度は変わ
るが、空洞欠陥の平均的断面内径4μm においては、散
乱角30°に対応したセンサ位置座標のS位置付近より外
側では識別感度評価値H/Nが1を割り込んでしまう。
From the actual measurement, a threshold amount capable of distinguishing between the normal state and the defective state is obtained as a noise amount N which changes depending on the light receiving position, that is, the sensor position coordinate, and the sensor position coordinate x along the longitudinal direction of the image sensor 5. H /
FIG. 10 shows an example in which N, that is, the discrimination sensitivity evaluation value H / N is plotted. This figure corresponds to the case where there is a cavity defect on the line connecting the points P and Q in FIG. 8, and the identification sensitivity changes depending on the position of the cavity defect in the radial direction of the optical fiber 2, but the average of the cavity defects. When the inner diameter of the target cross section is 4 μm, the discrimination sensitivity evaluation value H / N falls below 1 outside the vicinity of the S position of the sensor position coordinate corresponding to the scattering angle of 30 °.

【0012】即ち、図7のPQ線上の空洞欠陥がある位
置に対して、減光凹部がセンサ位置座標x上の対応する
位置に現れ、各減光凹部の深さ寸法Hとノイズ寸法Nに
よる識別感度評価値H/Nを実験的に求めることができ
る。このとき、空洞欠陥の断面内径によっても減光凹部
の大きさが変わるので、実験に用いた代表値として、空
洞欠陥の断面内径が6μm,4μm,2μmの事例を示
した。勿論、光ファイバ2の中心からの空洞欠陥の断面
位置によって減光凹部の大きさや識別感度が変わるが、
ここではPQ線上という想定線を仮定している。これま
で見つかっている空洞欠陥の平均的な断面内径は4μm
程度であり、空洞欠陥の断面内径が4μmの例ではセン
サ位置座標x=S(散乱角にして約30°の位置)より外
側では識別感度評価値H/Nが1を割り込んでしまう。
識別感度評価値H/Nが1より小さいということは、空
洞欠陥による散乱光強度分布パターン11中の変異の検
出が不安定になるということである。
That is, with respect to the position where there is a cavity defect on the PQ line in FIG. 7, the dimming recess appears at the corresponding position on the sensor position coordinate x, depending on the depth dimension H and the noise dimension N of each dimming recess. The discrimination sensitivity evaluation value H / N can be experimentally obtained. At this time, the size of the light-reducing concave portion also changes depending on the cross-sectional inner diameter of the cavity defect. Therefore, as typical values used in the experiment, cases where the cross-sectional inner diameter of the cavity defect is 6 μm, 4 μm, and 2 μm are shown. Of course, the size of the light-reducing recess and the identification sensitivity change depending on the cross-sectional position of the cavity defect from the center of the optical fiber 2.
Here, an assumed line on the PQ line is assumed. The average cross-sectional inside diameter of the cavity defect found so far is 4 μm
In the example in which the cross-sectional inner diameter of the cavity defect is 4 μm, the discrimination sensitivity evaluation value H / N falls below 1 outside the sensor position coordinate x = S (the position where the scattering angle is about 30 °).
When the discrimination sensitivity evaluation value H / N is smaller than 1, it means that the detection of the mutation in the scattered light intensity distribution pattern 11 due to the cavity defect becomes unstable.

【0013】以上のように従来の透光性長尺体欠陥検出
装置においては、一軸の平行光線3に対してイメージセ
ンサ5を正対するように設置している(作られる装置に
よっては、投受光部が多軸である場合もあるが、その中
の一軸に着目する。)。
As described above, in the conventional transmissive long-body defect detecting device, the image sensor 5 is installed so as to face the uniaxial parallel light beam 3 (depending on the device to be manufactured, the light emitting / receiving light may be received). Sometimes the part is multi-axis, but pay attention to one of them.).

【0014】[0014]

【発明が解決しようとする課題】このため、実際の装置
では、以下に述べるような問題点が発生している。
Therefore, in the actual device, the following problems occur.

【0015】散乱光強度分布パターン11の受光強度
は、図11に受光角度θ(図1に示す投光軸に正対する
位置と受光手段の受光面がなす角度)が0°の場合の特
性として示すように、中央近傍内側が強く、外側が弱
い。従って、被検出物の中央近傍内側に位置する欠陥は
比較的精度良く検出することができるものの、被検出物
の外側に位置する欠陥を検出することは非常に困難であ
る。被検出物の外側に位置する欠陥を中央近傍内側に位
置する欠陥と同様に検出するには、すなわち外側で中央
近傍内側と同じ光量レベルで受光しようとして平行光線
3の強度を上げると、中央近傍内側の受光強度がさらに
強くなって、受光センサの測定域を越えてしまうなど、
ダイナミックレンジの問題が発生する。言い換えれば、
ダイナミックレンジの問題を生じないようにしようとす
るならば、被検出物の外側に位置する欠陥を検出するこ
とはできなかった。
The light receiving intensity of the scattered light intensity distribution pattern 11 is a characteristic when the light receiving angle θ (the angle formed by the position directly facing the light projecting axis shown in FIG. 1 and the light receiving surface of the light receiving means) shown in FIG. 11 is 0 °. As shown, near the center, the inside is strong and the outside is weak. Therefore, although the defect located inside the vicinity of the center of the object to be detected can be detected relatively accurately, it is very difficult to detect the defect located outside the object to be detected. In order to detect a defect located outside the object to be detected as well as a defect located inside the center, that is, when the intensity of the parallel light beam 3 is increased while trying to receive the same amount of light as the inside near the center, The received light intensity inside becomes even stronger and exceeds the measurement range of the light receiving sensor.
Dynamic range issues arise. In other words,
If it is attempted not to cause the problem of the dynamic range, it is impossible to detect the defect located outside the detected object.

【0016】また、実際の装置では、散乱光強度分布パ
ターン11の外側でのパターン変化が、図9(A)に示
すように緩慢なものとなるため、線振れ等その他の諸々
の外乱要因のあるインライン計測においては、減光凹部
の検出が困難となる。この時、入射させる平行光線3の
光強度を強くすると、変動量も同様に大きくなるので、
S/N比は向上しない。この場合、散乱光強度分布パタ
ーン11は外側での受光強度が強くなると、内側の受光
強度もそれに応じて強くなるため、ダイナミックレンジ
の問題がより深刻になる。そのため、光ファイバ2の径
方向の空洞欠陥の位置について、図7に示される本来検
出することができる領域に図12に斜線部のような不感
帯12aが新たに生じ、この不感帯12aの空洞欠陥を
見逃してしまう。この不感帯12aをなくすには、更な
る多軸化が必要となるが、多軸化を実現するには検出装
置を多数配置するしかなく、実用的ではなかった。
Further, in an actual device, the pattern change outside the scattered light intensity distribution pattern 11 becomes slow as shown in FIG. 9 (A), so that line disturbance and other various disturbance factors are caused. In some in-line measurement, it is difficult to detect the dimming recess. At this time, if the light intensity of the incident parallel rays 3 is increased, the variation amount is also increased.
The S / N ratio does not improve. In this case, in the scattered light intensity distribution pattern 11, when the intensity of the light received on the outer side becomes stronger, the intensity of the light received on the inner side also becomes stronger accordingly, so that the problem of the dynamic range becomes more serious. Therefore, with respect to the position of the cavity defect in the radial direction of the optical fiber 2, a dead zone 12a such as a hatched portion is newly generated in the originally detectable region shown in FIG. 7, and the cavity defect of this dead zone 12a is generated. I miss it. In order to eliminate the dead zone 12a, it is necessary to further increase the number of axes, but in order to realize the number of axes, a large number of detectors must be arranged, which is not practical.

【0017】本発明の目的は、受光強度についてのダイ
ナミックレンジの問題点を生じることなく、被検出物の
中央近傍内側から外側まで同じような信号感度で欠陥を
検出することができる透光性長尺体欠陥検出装置を提供
することにある。
It is an object of the present invention to detect a defect with the same signal sensitivity from the inner side to the outer side in the vicinity of the center of the object to be detected without causing the problem of the dynamic range of the received light intensity. An object is to provide a scale defect detecting device.

【0018】本発明の他の目的は、センサを任意の位置
に任意の角度で設置できる透光性長尺体欠陥検出装置を
提供することにある。
Another object of the present invention is to provide a light-transmissive long-body defect detecting device capable of installing a sensor at an arbitrary position and at an arbitrary angle.

【0019】本発明の他の目的は、センサの使用個数を
低減できる透光性長尺体欠陥検出装置を提供することに
ある。
Another object of the present invention is to provide a transmissive elongated body defect detecting apparatus capable of reducing the number of sensors used.

【0020】[0020]

【課題を解決するための手段】本発明は、透光性長尺体
に交差する方向から光線を投光し、該透光性長尺体から
の散乱光をイメージセンサで受光し、その出力を信号処
理部で処理して散乱光強度分布パターンを得、該散乱光
強度分布パターンから透光性長尺体内の欠陥を判定部で
判定する透光性長尺体欠陥検出装置を改良するものであ
る。
SUMMARY OF THE INVENTION According to the present invention, a light beam is projected from a direction intersecting with a light-transmissive elongated member, scattered light from the light-transmissive elongated member is received by an image sensor, and its output is output. To improve the light-transmissive long-body defect detection device in which the determination unit determines the defect in the light-transmissive elongated body from the scattered light intensity distribution pattern by processing the Is.

【0021】請求項1に記載の透光性長尺体欠陥検出装
置においては、イメージセンサが光線の投光軸に正対す
る位置から受光角度θを持たせて配置されていることを
特徴とする。
In the translucent elongated body defect detection device according to the first aspect, the image sensor is arranged with a light receiving angle θ from a position directly facing the light projection axis of the light beam. .

【0022】このようにイメージセンサを光線の投光軸
に正対する位置から受光角度θを持たせて配置すると、
該イメージセンサの投光軸側の受光強度が弱められ、投
光軸から離れた側の受光強度が強められ、ダイナミック
レンジの問題を解決し、被検出物の中央近傍内側から外
側まで同じような信号感度で欠陥を検出することができ
る。
As described above, when the image sensor is arranged with a light receiving angle θ from the position directly facing the light projection axis,
The light receiving intensity on the light emitting axis side of the image sensor is weakened, and the light receiving intensity on the side away from the light emitting axis is strengthened, which solves the problem of the dynamic range and is similar from the inside to the outside near the center of the object to be detected. Defects can be detected with signal sensitivity.

【0023】また、この場合には、山形をなす散乱光強
度分布パターンの裾部でのパターン変化が明瞭に現れる
ようになり、該散乱光強度分布パターンの裾部での減光
凹部の検出を容易に行うことができる。
Further, in this case, the pattern change at the skirt of the scattered light intensity distribution pattern forming a mountain shape becomes apparent, and it is possible to detect the dimming concave portion at the skirt of the scattered light intensity distribution pattern. It can be done easily.

【0024】請求項2に記載の透光性長尺体欠陥検出装
置においては、イメージセンサが光線の投光軸の両側
に、該投光軸に正対する位置から受光角度θを持たせて
それぞれ配置されていることを特徴とする。
In the translucent long-body defect detecting device according to the second aspect, the image sensor is provided on both sides of the projection axis of the light beam with a light receiving angle θ from a position directly facing the projection axis. It is characterized by being arranged.

【0025】このようにイメージセンサを光線の投光軸
の両側に、該投光軸に正対する位置から受光角度θを持
たせてそれぞれ配置すると、該投光軸の両側に散乱する
散乱光の双方を確実に受光することができる。
Thus, when the image sensors are arranged on both sides of the projection axis of the light beam so as to have a light receiving angle θ from the position directly facing the projection axis, the scattered light scattered on both sides of the projection axis is formed. Both can be reliably received.

【0026】請求項3に記載の透光性長尺体欠陥検出装
置においては、導光部材の受光面が光線の投光軸に正対
する位置から受光角度θを持たせて配置され、該導光部
材の受光出力がイメージセンサに入力されるようになっ
ていることを特徴とする。
In the transmissive elongated body defect detecting device according to the third aspect, the light receiving surface of the light guide member is arranged with a light receiving angle θ from a position directly facing the light projecting axis of the light beam, The light receiving output of the optical member is input to the image sensor.

【0027】このように導光部材の受光面を投光軸に正
対する位置から受光角度θを持たせて配置すると、該受
光面の投光軸側の受光強度が弱められ、投光軸から離れ
た側の受光強度が強められ、ダイナミックレンジの問題
を解決できる。
When the light receiving surface of the light guide member is arranged with a light receiving angle θ from the position directly facing the light projecting axis in this way, the light receiving intensity of the light receiving surface on the light projecting axis side is weakened, and the light receiving surface is separated from the light projecting axis. The received light intensity on the remote side is strengthened, and the problem of dynamic range can be solved.

【0028】また、この場合も、山形をなす散乱光強度
分布パターンの裾部でのパターン変化が明瞭に現れるよ
うになり、該散乱光強度分布パターンの裾部での減光凹
部の検出を容易に行うことができる。
Also in this case, the pattern change at the skirt of the scattered light intensity distribution pattern forming a mountain shape becomes apparent, and it is easy to detect the dimming concave portion at the skirt of the scattered light intensity distribution pattern. Can be done.

【0029】更に、導光部材を用いて、その受光出力を
イメージセンサに入力させるようにすると、該イメージ
センサを任意の位置に、任意の角度で設置できる利点が
ある。
Further, when the light receiving output is input to the image sensor by using the light guide member, there is an advantage that the image sensor can be installed at an arbitrary position and at an arbitrary angle.

【0030】請求項4に記載の透光性長尺体欠陥検出装
置においては、導光部材が光線の投光軸の両側に、その
各受光面を該投光軸に正対する位置から受光角度θを持
たせて、それぞれ配置されていることを特徴とする。
In the transmissive elongated body defect detecting device according to the fourth aspect, the light guide member is provided on both sides of the light projecting axis of the light beam, and the light receiving surface of each of the light receiving surfaces is located directly opposite to the light projecting axis. It is characterized in that they are arranged with θ.

【0031】このように導光部材を光線の投光軸の両側
に、その各受光面を該投光軸に正対する位置から受光角
度θを持たせて、それぞれ配置すると、該投光軸の両側
に散乱する散乱光の双方を確実に受光することができ
る。
As described above, when the light guide members are arranged on both sides of the light projecting axis of the light beam so that each light receiving surface thereof has a light receiving angle θ from a position directly facing the light projecting axis, the light guiding members are arranged. Both of the scattered light scattered on both sides can be reliably received.

【0032】また、導光部材を光線の投光軸の両側に配
置しても、これら導光部材の出力を受光するイメージセ
ンサは1個でもよくなる利点がある。
Further, even if the light guide members are arranged on both sides of the projection axis of the light beam, there is an advantage that only one image sensor can receive the output of these light guide members.

【0033】請求項5に記載の透光性長尺体欠陥検出装
置においては、受光角度θが30°〜60°の範囲に設定さ
れていることを特徴とする。
In the transmissive long-body defect detecting device according to the fifth aspect, the light receiving angle θ is set in the range of 30 ° to 60 °.

【0034】このように受光角度θを30°〜60°の範囲
に設定すると、識別感度評価値H/Nが1を越えること
になり、空洞欠陥による散乱光強度分布パターン中の変
異の検出を安定して行うことかできる。
When the light receiving angle θ is set in the range of 30 ° to 60 ° in this way, the discrimination sensitivity evaluation value H / N exceeds 1, and the detection of the mutation in the scattered light intensity distribution pattern due to the cavity defect is detected. It can be done stably.

【0035】なお、本発明で受光角度θとは、投光軸に
正対する位置(投光軸に直交する位置)と受光手段の受
光面がなす角度をいう。
In the present invention, the light receiving angle θ means the angle formed by the light receiving surface of the light receiving means and the position directly facing the light projecting axis (the position orthogonal to the light projecting axis).

【0036】[0036]

【発明の実施の形態】図1は、本発明に係る透光性長尺
体欠陥検出装置における実施の形態の第1例を示したも
のである。なお、前述した図5と対応する部分には、同
一符号を付けて示している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a first example of an embodiment of a transmissive elongated body defect detecting device according to the present invention. Parts corresponding to those in FIG. 5 described above are denoted by the same reference numerals.

【0037】本例の透光性長尺体欠陥検出装置において
は、レーザ発振器の如きビーム光源13からの出力ビー
ム14をビーム整形器15で平行光線3に整形し、この
平行光線3を光ファイバ母材1から線引き直後の未コー
ティングの光ファイバ(透光性長尺体)2に横方向から
直交する向きで照射するようになっている。このように
光ファイバ2に横方向から直交する向きで平行光線3を
照射すると、該平行光線3の進行方向の前方に光ファイ
バ2から前方散乱光4が散乱する。
In the transmissive elongated body defect detecting apparatus of this example, the output beam 14 from the beam source 13 such as a laser oscillator is shaped into a parallel light beam 3 by a beam shaper 15, and the parallel light beam 3 is converted into an optical fiber. Irradiation is performed on the uncoated optical fiber (transparent elongated body) 2 immediately after drawing from the base material 1 in a direction orthogonal to the lateral direction. In this way, when the parallel light beam 3 is applied to the optical fiber 2 in a direction orthogonal to the lateral direction, the forward scattered light 4 is scattered from the optical fiber 2 in the forward direction of the parallel light beam 3.

【0038】本例の透光性長尺体欠陥検出装置において
は、このような前方散乱光4を受光するため、特に第
1,第2のイメージセンサ5a,5bが平行光線3の投
光軸3aの両側に、該投光軸3aに正対する位置から角
度θを持たせてそれぞれ同一測定面に中心部が並ぶよう
にして配置されている。本発明では、この角度θを前述
したように受光角度と称する。これら第1,第2のイメ
ージセンサ5a,5bは、例えばCCDラインセンサや
フォトダイオードアレイ等で構成されている。
In the transmissive long-body defect detecting apparatus of this example, since the forward scattered light 4 is received, the first and second image sensors 5a and 5b are particularly arranged to project the parallel rays 3 from the projection axis. It is arranged on both sides of 3a such that the central portions are aligned on the same measurement surface with an angle θ from the position directly facing the projection axis 3a. In the present invention, this angle θ is referred to as the light receiving angle as described above. The first and second image sensors 5a and 5b are composed of, for example, a CCD line sensor, a photodiode array, or the like.

【0039】これら第1,第2のイメージセンサ5a,
5bで光電変換されたイメージ出力は信号処理部6で処
理され、該信号処理部6から得られる散乱光強度分布パ
ターンが判定部7で判定されるようになっている。
These first and second image sensors 5a,
The image output photoelectrically converted by 5b is processed by the signal processing unit 6, and the scattered light intensity distribution pattern obtained from the signal processing unit 6 is determined by the determination unit 7.

【0040】なお、この場合、前述した図5で示すよう
に、処理部6の処理結果をモニタ部8で表示し、異常が
判定されれば警報部9から警報を発し、判定結果を記録
部10で記録する構造にすることもできる。
In this case, as shown in FIG. 5 described above, the processing result of the processing unit 6 is displayed on the monitor unit 8, and if an abnormality is determined, the alarm unit 9 issues an alarm and the determination result is recorded in the recording unit. It is also possible to adopt a structure in which recording is performed by 10.

【0041】このように透光性長尺体欠陥検出装置を構
成し、第1,第2のイメージセンサ5a,5bを平行光
線3の投光軸3aの両側に、該投光軸3aに正対する位
置から受光角度θを例えばθ=45°としてそれぞれ配置
すると、図11に示すように従来の受光角度θ=0°の
場合に比べて、受光角度θ=45°の場合には、散乱光強
度分布パターン11の内側の光強度が弱く、外側の光強
度が強く受光されるようになる。従って、散乱光強度分
布パターン11の内外の光強度差によるダイナミックレ
ンジの問題が緩和されることになる。
In this way, the light-transmissive long-body defect detecting device is configured, and the first and second image sensors 5a and 5b are provided on both sides of the projection axis 3a of the parallel light beam 3 and directly on the projection axis 3a. When the light receiving angle θ is arranged at, for example, θ = 45 ° from the opposite position, the scattered light is greater in the case of the light receiving angle θ = 45 ° than in the case of the conventional light receiving angle θ = 0 ° as shown in FIG. The light intensity inside the intensity distribution pattern 11 is weak and the light intensity outside is strong. Therefore, the problem of the dynamic range due to the light intensity difference between the inside and outside of the scattered light intensity distribution pattern 11 is alleviated.

【0042】また、散乱光強度分布パターン11の外側
(裾部)の光強度が強調されることにより、該散乱光強
度分布パターン11の外側での欠陥識別能力を向上させ
ることができる。即ち、本例のように第1,第2のイメ
ージセンサ5a,5bを平行光線3の投光軸3aの両側
に、該投光軸3aに正対する位置から受光角度θを持た
せてそれぞれ配置すると、図9(B)に示すように破線
で示す基準線からの変位量Hが増加して、欠陥識感度が
向上する。
Further, by emphasizing the light intensity on the outer side (skirt) of the scattered light intensity distribution pattern 11, it is possible to improve the defect identification ability on the outer side of the scattered light intensity distribution pattern 11. That is, as in this example, the first and second image sensors 5a and 5b are arranged on both sides of the projection axis 3a of the parallel light beam 3 with a light receiving angle θ from a position directly facing the projection axis 3a. Then, as shown in FIG. 9B, the displacement amount H from the reference line shown by the broken line increases, and the defect recognition sensitivity is improved.

【0043】断面内径2μmの空洞欠陥が図7のS1 の
線上にあるサンプルについて、散乱角度t=30°に相当
する部位に散乱光強度分布パターン11の変異が減光凹
部として現れるので、ここでの識別感度評価値H/Nを
受光角度θを変えながら調べた例を、図2にS1 として
示す。同様に、断面内径2μmの空洞欠陥が図7のS2
の線上にあるサンプルについて、散乱角度t=45°に相
当する部位に散乱光強度分布パターン11の変異が減光
凹部として現れるので、ここでの識別感度評価値H/N
を受光角度θを変えながら調べた例を、図2にS2 とし
て示す。
With respect to the sample having a cavity defect having a cross-sectional inner diameter of 2 μm on the line S1 in FIG. 7, a variation of the scattered light intensity distribution pattern 11 appears as a dimming concave portion at the site corresponding to the scattering angle t = 30 °, so that here An example in which the discrimination sensitivity evaluation value H / N of (1) is examined while changing the light receiving angle θ is shown as S1 in FIG. Similarly, a cavity defect having an inner diameter of 2 μm in cross section is S2 in FIG.
For the sample on the line, the variation of the scattered light intensity distribution pattern 11 appears as a dimming concave portion at the site corresponding to the scattering angle t = 45 °, so that the discrimination sensitivity evaluation value H / N
FIG. 2 shows an example of S2 which was investigated while changing the light receiving angle θ.

【0044】この図2により、受光角度θが30°〜60°
の範囲にあれば、識別感度評価値H/Nが1を越えるこ
とがわかる。また、この範囲のとき、散乱光強度分布パ
ターン11の内側の感度も図10に示されている値より
小さくはなるが、1を割り込むことはない。
From FIG. 2, the light receiving angle θ is 30 ° to 60 °.
It is understood that the discrimination sensitivity evaluation value H / N exceeds 1 in the range of. Further, in this range, the sensitivity inside the scattered light intensity distribution pattern 11 is also smaller than the value shown in FIG. 10, but does not fall below 1.

【0045】このように識別感度評価値H/Nが1を越
えると、空洞欠陥による散乱光強度分布パターン11中
の変異の検出を安定して行うことかできる。
As described above, when the discrimination sensitivity evaluation value H / N exceeds 1, it is possible to stably detect the mutation in the scattered light intensity distribution pattern 11 due to the cavity defect.

【0046】従って、図12に斜線部で示した不感帯1
2aの箇所に断面内径1〜2μm前後の微小な空洞欠陥
が存在しても、該空洞欠陥を見逃すことなく検出するこ
とができる。
Therefore, the dead zone 1 shown by the hatched portion in FIG.
Even if there is a minute void defect having a cross-sectional inner diameter of about 1 to 2 μm at the location 2a, it can be detected without missing the void defect.

【0047】図3は、本発明に係る透光性長尺体欠陥検
出装置における実施の形態の第2例を示したものであ
る。なお、前述した図1と対応する部分には、同一符号
を付けて示している。
FIG. 3 shows a second example of the embodiment of the transparent long-body defect detecting device according to the present invention. The parts corresponding to those in FIG. 1 described above are denoted by the same reference numerals.

【0048】本例の透光性長尺体欠陥検出装置において
は、第1,第2のイメージセンサ5a,5bが平行光線
3の投光軸3aの両側に、該投光軸3aに正対する位置
から角度θを持たせてそれぞれファイバ軸方向に対して
相異なる測定平面に中心部が並ぶようにして配置されて
いる。その他の構成は、図示しないが、第1例と同様に
構成されている。
In the transmissive long-body defect detecting apparatus of this example, the first and second image sensors 5a and 5b face the projection axis 3a on both sides of the projection axis 3a of the parallel light beam 3. An angle θ is provided from the position, and the central portions are arranged in different measurement planes with respect to the fiber axis direction. Although not shown, other configurations are similar to those of the first example.

【0049】このような構造でも、第1例と同様な効果
を得ることができる。更に、相異なる測定平面に中心部
が並ぶようにして配置することにより、相手側のイメー
ジセンサ(5aにとっては5b、5bにとっては5a)
からの反射光を避けることができるなどの利点もある。
また、それぞれのセンサにおける受光角度θは異なって
いてもよい。
Even with such a structure, the same effect as in the first example can be obtained. Furthermore, by arranging so that the central portions are aligned on different measurement planes, the image sensor on the other side (5a for 5a, 5a for 5b)
There is also an advantage that reflected light from can be avoided.
Further, the light receiving angle θ of each sensor may be different.

【0050】図4は、本発明に係る透光性長尺体欠陥検
出装置における実施の形態の第3例を示したものであ
る。なお、前述した図1と対応する部分には、同一符号
を付けて示している。
FIG. 4 shows a third example of the embodiment of the transmissive elongated body defect detecting device according to the present invention. The parts corresponding to those in FIG. 1 described above are denoted by the same reference numerals.

【0051】本例の透光性長尺体欠陥検出装置において
は、ファイバ融着コンジット等からなる第1,第2の導
光部材16a,16bの受光面16a1 ,16b1 が平
行光線3の投光軸3aの両側に、該投光軸3aに正対す
る位置から受光角度θを持たせてそれぞれ水平向きで同
一測定面に中心部が並ぶように配置されている。これら
第1,第2の導光部材16a,16bの受光出力は、こ
れら第1,第2の導光部材16a,16bの出力端16
a2 ,16b2 を本例では共通のイメージセンサ5に対
向させることにより入力されるようになっている。本例
でも、受光角度θは30°〜60°の範囲に設定されてい
る。その他の構成は、図示しないが、第1例と同様に構
成されている。
In the transmissive long-body defect detection apparatus of this example, the light receiving surfaces 16a1 and 16b1 of the first and second light guide members 16a and 16b made of fiber fusion conduits or the like project the parallel light beam 3. On both sides of the axis 3a, the light receiving angle θ is provided from the position directly facing the light projecting axis 3a, and the central portions are arranged horizontally in the same measurement plane. The light receiving outputs of the first and second light guide members 16a and 16b are output to the output end 16 of the first and second light guide members 16a and 16b.
In the present example, a2 and 16b2 are arranged to face a common image sensor 5 to be input. Also in this example, the light receiving angle θ is set in the range of 30 ° to 60 °. Although not shown, other configurations are similar to those of the first example.

【0052】このように導光部材16a,16bの受光
面16a1 ,16b1 を投光軸3aに正対する位置から
受光角度θを持たせて配置すると、該受光面16a1 ,
16b1 の投光軸3a側の受光強度が弱められ、投光軸
3aから離れた側の受光強度が強められ、ダイナミック
レンジの問題を第1例と同様に解決できる。
When the light receiving surfaces 16a1 and 16b1 of the light guide members 16a and 16b are arranged at a light receiving angle θ from the position directly facing the light projecting axis 3a, the light receiving surfaces 16a1 and 16b
The received light intensity on the side of the projection axis 3a of 16b1 is weakened, and the received light intensity on the side away from the projection axis 3a is strengthened, and the problem of the dynamic range can be solved as in the first example.

【0053】また、この場合も、信号処理部6から得ら
れる山形をなす散乱光強度分布パターン11は、その裾
部でのパターン変化が明瞭に現れるようになり、該散乱
光強度分布パターン11の裾部での減光凹部の検出を容
易に行うことができる。
Also in this case, in the scattered light intensity distribution pattern 11 having a mountain shape obtained from the signal processing unit 6, the pattern change at the skirt becomes apparent, and the scattered light intensity distribution pattern 11 of the scattered light intensity distribution pattern 11 becomes It is possible to easily detect the dimming concave portion at the hem.

【0054】更に、導光部材16a,16bを用いて、
その受光出力をイメージセンサ5に入力させるようにす
ると、該イメージセンサ5を任意の位置に、任意の角度
で設置できる利点がある。
Further, by using the light guide members 16a and 16b,
If the received light output is input to the image sensor 5, there is an advantage that the image sensor 5 can be installed at any position and at any angle.

【0055】本例のように、第1,第2の導光部材16
a,16bを平行光線3の投光軸3aと共に、それぞれ
ファイバ軸方向に対して相異なる測定平面の両側に、そ
の各受光面16a1 ,16b1 を該投光軸3aに正対す
る位置から受光角度θを持たせて、それぞれ配置する
と、該投光軸3aの両側に散乱する散乱光4の双方を確
実に受光することができる。
As in this example, the first and second light guide members 16
a and 16b together with the projection axis 3a of the parallel light beam 3 on both sides of different measurement planes with respect to the fiber axis direction, and their light receiving surfaces 16a1 and 16b1 from the position directly facing the projection axis 3a at the light receiving angle .theta. When each of them is arranged with the above, it is possible to surely receive both of the scattered light 4 scattered on both sides of the projection axis 3a.

【0056】また、第1,第2の導光部材16a,16
bを平行光線3の投光軸3aの両側に配置しても、これ
ら第1,第2の導光部材16a,16bの出力を受光す
るイメージセンサは1個でもよくなる利点がある。
Further, the first and second light guide members 16a, 16
Even if b is arranged on both sides of the projection axis 3a of the parallel light beam 3, there is an advantage that only one image sensor receives the outputs of the first and second light guide members 16a and 16b.

【0057】また、この例でも受光角度θを30°〜60°
の範囲に設定すると、識別感度評価値H/Nが1を越え
ることになり、空洞欠陥による散乱光強度分布パターン
11中の変異の検出を安定して行うことかできる。
Also in this example, the light receiving angle θ is 30 ° to 60 °.
If the range is set to, the discrimination sensitivity evaluation value H / N exceeds 1, and it is possible to stably detect the mutation in the scattered light intensity distribution pattern 11 due to the cavity defect.

【0058】[0058]

【発明の効果】請求項1に記載の透光性長尺体欠陥検出
装置においては、イメージセンサを光線の投光軸に正対
する位置から受光角度θを持たせて配置しているので、
該イメージセンサの投光軸側の受光強度が弱められ、投
光軸から離れた側の受光強度が強められ、ダイナミック
レンジの問題を解決し、被検出部の中央近傍内側から外
側まで同じような信号感度で欠陥を検出することができ
る。
In the light-transmitting elongated body defect detecting device according to the first aspect of the present invention, the image sensor is arranged with a light receiving angle θ from a position directly facing the light projection axis of the light beam.
The light receiving intensity on the light emitting axis side of the image sensor is weakened, and the light receiving intensity on the side remote from the light emitting axis is strengthened, which solves the problem of the dynamic range and is similar from the inside to the outside near the center of the detected part. Defects can be detected with signal sensitivity.

【0059】また、本発明によれば、山形をなす散乱光
強度分布パターンの裾部でのパターン変化が明瞭に現れ
るようになり、該散乱光強度分布パターンの裾部での減
光凹部の検出を容易に行うことができる。
Further, according to the present invention, the pattern change at the skirt of the scattered light intensity distribution pattern forming a mountain shape becomes apparent, and the detection of the dimming concave portion at the skirt of the scattered light intensity distribution pattern is detected. Can be done easily.

【0060】請求項2に記載の透光性長尺体欠陥検出装
置においては、イメージセンサを光線の投光軸の両側
に、該投光軸に正対する位置から受光角度θを持たせて
それぞれ配置しているので、該投光軸の両側に散乱する
散乱光の双方を確実に受光することができる。
In the transmissive long-body defect detecting device according to the second aspect, the image sensor is provided on both sides of the projection axis of the light beam with a light receiving angle θ from a position directly facing the projection axis. Since they are arranged, both the scattered light scattered on both sides of the projection axis can be reliably received.

【0061】請求項3に記載の透光性長尺体欠陥検出装
置においては、導光部材の受光面を投光軸に正対する位
置から受光角度θを持たせて配置しているので、該受光
面の投光軸側の受光強度が弱められ、投光軸から離れた
側の受光強度が強められ、ダイナミックレンジの問題を
解決することができる。
In the transmissive long-body defect detecting device according to the third aspect, since the light receiving surface of the light guide member is arranged with a light receiving angle θ from a position directly facing the light projecting axis, The light receiving intensity on the light emitting surface side of the light receiving surface is weakened, and the light receiving intensity on the side away from the light emitting axis is strengthened, and the problem of the dynamic range can be solved.

【0062】また、本発明でも、山形をなす散乱光強度
分布パターンの裾部でのパターン変化が明瞭に現れるよ
うになり、該散乱光強度分布パターンの裾部での減光凹
部の検出を容易に行うことができる。
Also in the present invention, the pattern change at the skirt of the scattered light intensity distribution pattern forming a mountain shape becomes apparent, and it is easy to detect the dimming concave portion at the skirt of the scattered light intensity distribution pattern. Can be done.

【0063】更に、導光部材を用いて、その受光出力を
イメージセンサに入力させるようにすると、該イメージ
センサを任意の位置に、任意の角度で設置できる利点が
ある。
Further, when the light receiving output is input to the image sensor by using the light guide member, there is an advantage that the image sensor can be installed at an arbitrary position and at an arbitrary angle.

【0064】請求項4に記載の透光性長尺体欠陥検出装
置においては、導光部材を光線の投光軸の両側に、その
各受光面を該投光軸に正対する位置から受光角度θを持
たせて、それぞれ配置しているので、該投光軸の両側に
散乱する散乱光の双方を確実に受光することができる。
In the translucent elongated body defect detecting device according to the fourth aspect, the light guide members are disposed on both sides of the light projecting axis of the light beam, and the light receiving surfaces of the light receiving members are located at positions opposite to the light projecting axis. Since they are respectively arranged with θ, it is possible to reliably receive both of the scattered light scattered on both sides of the projection axis.

【0065】また、導光部材を光線の投光軸の両側に配
置しても、これら導光部材の出力を受光するイメージセ
ンサは1個でもよくなる利点がある。
Further, even if the light guide members are arranged on both sides of the projection axis of the light beam, there is an advantage that only one image sensor receives the output of these light guide members.

【0066】請求項5に記載の透光性長尺体欠陥検出装
置においては、受光角度θを30°〜60°の範囲に設定し
ているので、識別感度評価値H/Nが1を越えることに
なり、空洞欠陥による散乱光強度分布パターン中の変異
の検出を安定して行うことかできる。
In the transparent long-body defect detecting device according to the fifth aspect, since the light receiving angle θ is set in the range of 30 ° to 60 °, the discrimination sensitivity evaluation value H / N exceeds 1. Therefore, it is possible to stably detect the mutation in the scattered light intensity distribution pattern due to the cavity defect.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る透光性長尺体欠陥検出装置におけ
る実施の形態の第1例の概略構成を示す平面図である。
FIG. 1 is a plan view showing a schematic configuration of a first example of an embodiment of a transparent long-body defect detecting device according to the present invention.

【図2】第1例の構成の場合におけるセンサ設置角と識
別感度評価値H/Nの関係を示す特性図である。
FIG. 2 is a characteristic diagram showing a relationship between a sensor installation angle and a discrimination sensitivity evaluation value H / N in the case of the configuration of the first example.

【図3】本発明に係る透光性長尺体欠陥検出装置におけ
る実施の形態の第2例の要部構成を示す側面図である。
FIG. 3 is a side view showing a configuration of a main part of a second example of the embodiment of the transparent long-body defect detecting device according to the present invention.

【図4】本発明に係る透光性長尺体欠陥検出装置におけ
る実施の形態の第3例の要部構成を示す平面図である。
FIG. 4 is a plan view showing a configuration of a main part of a third example of the embodiment of the transparent long-body defect detecting device according to the present invention.

【図5】従来の透光性長尺体欠陥検出装置における概略
構成を示す斜視図である。
FIG. 5 is a perspective view showing a schematic configuration of a conventional translucent long body defect detection device.

【図6】図5に示す透光性長尺体欠陥検出装置のイメー
ジセンサに入力される散乱光と該散乱光をもとに得られ
る散乱光強度分布パターンを示す説明図である。
FIG. 6 is an explanatory diagram showing scattered light input to the image sensor of the translucent elongated body defect detection device shown in FIG. 5 and a scattered light intensity distribution pattern obtained based on the scattered light.

【図7】光ファイバに入射された平行光線と散乱光との
関係を示す説明図である。
FIG. 7 is an explanatory diagram showing a relationship between parallel rays incident on an optical fiber and scattered light.

【図8】光ファイバ中に空洞欠陥があった場合の散乱光
強度分布パターンの例を示す説明図である。
FIG. 8 is an explanatory diagram showing an example of a scattered light intensity distribution pattern when there is a cavity defect in the optical fiber.

【図9】(A)(B)は従来例の場合と本発明の場合に
おける図8のQ部の拡大図である。
9A and 9B are enlarged views of a Q portion in FIG. 8 in the case of the conventional example and the case of the present invention.

【図10】従来例でセンサ位置座標xに対して識別感度
評価値H/Nを空洞欠陥の断面内径を変えてプロットし
た例を示す特性図である。
FIG. 10 is a characteristic diagram showing an example in which the discrimination sensitivity evaluation value H / N is plotted with respect to the sensor position coordinate x in the conventional example while changing the cross-sectional inner diameter of the cavity defect.

【図11】センサの受光角度を変えたときのセンサ位置
座標xと該センサの受光強度との関係を示す特性図であ
る。
FIG. 11 is a characteristic diagram showing a relationship between sensor position coordinates x and light receiving intensity of the sensor when the light receiving angle of the sensor is changed.

【図12】光ファイバに平行光線を入射させたときの不
感帯の状態を示す説明図である。
FIG. 12 is an explanatory diagram showing a state of a dead zone when parallel rays are incident on an optical fiber.

【符号の説明】[Explanation of symbols]

1 光ファイバ母材 2 光ファイバ 2a コア 2b 中心線 3 平行光線 3a 投光軸 4 前方散乱光 5 受光用イメージセンサ 6 信号処理部 7 判定部 8 モニタ部 9 警報部 10 記録部 11 散乱光強度分布パターン 12,12a 不感帯 13 ビーム光源 14 出力ビーム 15 ビーム整形器 16a,16b 第1,第2の導光部材 16a1 ,16b1 受光面 16a2 ,16b2 出力端 1 Optical fiber base material 2 Optical fiber 2a Core 2b Center line 3 Parallel light beam 3a Projection axis 4 Forward scattered light 5 Image sensor 6 for receiving 6 Signal processing unit 7 Judgment unit 8 Monitor unit 9 Alarm unit 10 Recording unit 11 Scattered light intensity distribution Pattern 12, 12a Dead zone 13 Beam light source 14 Output beam 15 Beam shaper 16a, 16b First and second light guide members 16a1, 16b1 Light receiving surface 16a2, 16b2 Output end

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 透光性長尺体に交差する方向から光線を
投光し、該透光性長尺体からの散乱光をイメージセンサ
で受光し、その出力を信号処理部で処理して散乱光強度
分布パターンを得、該散乱光強度分布パターンから前記
透光性長尺体内の欠陥を判定部で判定する透光性長尺体
欠陥検出装置において、 前記イメージセンサが前記光線の投光軸に正対する位置
から受光角度θを持たせて配置されていることを特徴と
する透光性長尺体欠陥検出装置。
1. A light ray is projected from a direction intersecting with the translucent elongated body, scattered light from the translucent elongated body is received by an image sensor, and an output thereof is processed by a signal processing unit. In a transmissive long-body defect detection device for obtaining a scattered light intensity distribution pattern and determining a defect in the translucent long body from the scattered light intensity distribution pattern by a determination unit, the image sensor projects the light beam. A transparent long-body defect detecting device, which is arranged with a light receiving angle θ from a position directly facing the axis.
【請求項2】 前記イメージセンサが前記投光軸の両側
に、該投光軸に正対する位置から受光角度θを持たせて
それぞれ配置されていることを特徴とする請求項1に記
載の透光性長尺体欠陥検出装置。
2. The transmission according to claim 1, wherein the image sensors are arranged on both sides of the projection axis with a light receiving angle θ from a position directly facing the projection axis. Optical long-body defect detection device.
【請求項3】 透光性長尺体に交差する方向から光線を
投光し、該透光性長尺体からの散乱光をイメージセンサ
で受光し、その出力を信号処理部で処理して散乱光強度
分布パターンを得、該散乱光強度分布パターンから前記
透光性長尺体内の欠陥を判定部で判定する透光性長尺体
欠陥検出装置において、 導光部材の受光面が前記光線の投光軸に正対する位置か
ら受光角度θを持たせて配置され、前記導光部材の受光
出力が前記イメージセンサに入力されるようになってい
ることを特徴とする透光性長尺体欠陥検出装置。
3. A light beam is projected from a direction intersecting with the translucent elongated body, scattered light from the translucent elongated body is received by an image sensor, and the output thereof is processed by a signal processing unit. In a translucent long-body defect detection device for obtaining a scattered light intensity distribution pattern and determining a defect in the translucent long body from the scattered light intensity distribution pattern by a determination unit, a light-receiving surface of a light guide member is the light beam. Is arranged so as to have a light-receiving angle θ from a position directly facing the light-projecting axis, and the light-receiving output of the light-guiding member is input to the image sensor. Defect detection device.
【請求項4】 前記導光部材が前記投光軸の両側に、そ
の各受光面を該投光軸に正対する位置から受光角度θを
持たせて、それぞれ配置されていることを特徴とする請
求項3に記載の透光性長尺体欠陥検出装置。
4. The light guide member is arranged on both sides of the light projecting axis, with each light receiving surface having a light receiving angle θ from a position directly facing the light projecting axis. The transmissive elongated body defect detection device according to claim 3.
【請求項5】 前記受光角度θが30°〜60°の範囲に設
定されていることを特徴とする請求項1,2,3または
4に記載の透光性長尺体欠陥検出装置。
5. The transparent long-body defect detecting apparatus according to claim 1, 2, 3 or 4, wherein the light receiving angle θ is set in a range of 30 ° to 60 °.
JP10511496A 1996-04-25 1996-04-25 Transparent long body defect detection device Expired - Lifetime JP3384927B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10511496A JP3384927B2 (en) 1996-04-25 1996-04-25 Transparent long body defect detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10511496A JP3384927B2 (en) 1996-04-25 1996-04-25 Transparent long body defect detection device

Publications (2)

Publication Number Publication Date
JPH09292305A true JPH09292305A (en) 1997-11-11
JP3384927B2 JP3384927B2 (en) 2003-03-10

Family

ID=14398813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10511496A Expired - Lifetime JP3384927B2 (en) 1996-04-25 1996-04-25 Transparent long body defect detection device

Country Status (1)

Country Link
JP (1) JP3384927B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001044777A1 (en) * 1999-12-16 2001-06-21 The Furukawa Electric Co., Ltd. Method for detecting defect of optical fiber
JP2001235396A (en) * 1999-12-16 2001-08-31 Furukawa Electric Co Ltd:The Method of inspecting defect of optical fiber
EP1318391A1 (en) * 2001-12-06 2003-06-11 Samsung Electronics Co., Ltd. Apparatus for the micro-bubble analysis of a high-purity glass tube, using the scattering of laser light
US6850328B1 (en) * 1997-04-18 2005-02-01 Lasse Leirfall Monitoring dust deposition
JP2009186281A (en) * 2008-02-05 2009-08-20 Nippon Electric Glass Co Ltd Method and device for inspecting flaw of glass article
WO2010007693A1 (en) * 2008-07-16 2010-01-21 古河電気工業株式会社 Streak surface inspection device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6850328B1 (en) * 1997-04-18 2005-02-01 Lasse Leirfall Monitoring dust deposition
WO2001044777A1 (en) * 1999-12-16 2001-06-21 The Furukawa Electric Co., Ltd. Method for detecting defect of optical fiber
JP2001235396A (en) * 1999-12-16 2001-08-31 Furukawa Electric Co Ltd:The Method of inspecting defect of optical fiber
US6600554B2 (en) 1999-12-16 2003-07-29 The Furukawa Electric Co., Ltd. Method for detecting defect of optical fiber
US6639658B2 (en) * 1999-12-16 2003-10-28 The Furukawa Electric Co., Ltd. Method for detecting defect of optical fiber
EP1318391A1 (en) * 2001-12-06 2003-06-11 Samsung Electronics Co., Ltd. Apparatus for the micro-bubble analysis of a high-purity glass tube, using the scattering of laser light
US6822735B2 (en) 2001-12-06 2004-11-23 Samsung Electronics Co., Ltd. Micro-bubble analyzing apparatus for high-purity glass tube using laser light scattering
JP2009186281A (en) * 2008-02-05 2009-08-20 Nippon Electric Glass Co Ltd Method and device for inspecting flaw of glass article
WO2010007693A1 (en) * 2008-07-16 2010-01-21 古河電気工業株式会社 Streak surface inspection device
JP2010025642A (en) * 2008-07-16 2010-02-04 Furukawa Electric Co Ltd:The Streak surface inspection device

Also Published As

Publication number Publication date
JP3384927B2 (en) 2003-03-10

Similar Documents

Publication Publication Date Title
US5125741A (en) Method and apparatus for inspecting surface conditions
CA2109884C (en) Method of detecting impurities in molten resin
US6449036B1 (en) Sensor unit, process and device for inspecting the surface of an object
JPS5965708A (en) Sonde for automatic surface inspection
US5453837A (en) Interferometric device for determining sizes and properties of cylindrical objects based on phase shift measurements
JP3384927B2 (en) Transparent long body defect detection device
US5448362A (en) Non-contact measurement of displacement and changes in dimension of elongated objects such as filaments
CN1910446A (en) Method and device for the optical monitoring of a running fiber strand
JPH02278103A (en) Method and device for three-dimensionally inspecting printed circuit substrate
JP3248445B2 (en) Surface abnormality detection method and surface condition measuring device for multi-core optical fiber
JP2006214886A (en) Method and device for detecting defect of optical element
KR101996899B1 (en) Method for calibrating light-scattering type particle sensor
JP2009025269A (en) Defect inspection apparatus and defect inspection method of optically-transparent sheet
US6373564B1 (en) Image tracking device and method for transverse measurement of optical fiber
JP3189378B2 (en) Device for detecting bubbles in optical fiber resin coating and method for detecting bubbles in optical fiber resin coating
JPS59137805A (en) Optical distance meter for profiling work
JP2518484B2 (en) Optical stranded wire flaw detection method and equipment
JP3369268B2 (en) Defect detection method inside translucent object
JPS63273044A (en) Refractive index detecting sensor
US6927849B2 (en) Optical fiber coating defect detector
KR100226904B1 (en) Detecting apparatus and method of surface fault of steel plate using laser
KR900005642B1 (en) Checking machine of dia-meter
JP2683745B2 (en) Optical fiber end face state detection method and detection device
JPS6310778B2 (en)
JPH06249794A (en) Method and apparatus for measuring abnromal point in linear material, and method and apparatus for manufacturing linear material

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071227

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081227

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081227

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091227

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101227

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101227

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111227

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111227

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121227

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121227

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131227

Year of fee payment: 11

EXPY Cancellation because of completion of term