JPH09290218A - Dispersion mixing and air flow type classifying device - Google Patents

Dispersion mixing and air flow type classifying device

Info

Publication number
JPH09290218A
JPH09290218A JP12770796A JP12770796A JPH09290218A JP H09290218 A JPH09290218 A JP H09290218A JP 12770796 A JP12770796 A JP 12770796A JP 12770796 A JP12770796 A JP 12770796A JP H09290218 A JPH09290218 A JP H09290218A
Authority
JP
Japan
Prior art keywords
raw material
powder
mixing
supply pipe
material supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12770796A
Other languages
Japanese (ja)
Inventor
Satoshi Mitsumura
聡 三ツ村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP12770796A priority Critical patent/JPH09290218A/en
Publication of JPH09290218A publication Critical patent/JPH09290218A/en
Pending legal-status Critical Current

Links

Landscapes

  • Developing Agents For Electrophotography (AREA)
  • Combined Means For Separation Of Solids (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the size of a device and to simplify its operation by providing the inside of a raw material supplying pipe with a mixing area for mixing the upper flow and lower flow consisting of the air flow in the raw material supplying pipe and plural powder raw materials flowing together with the air flow and dispersing the powder raw materials in the air flow. SOLUTION: The classifying area is segmented to, for example, three sections by classifying edges 17, 18 disposed at a side wall 23 and a lower wall 25. The lower part of the side wall 22 is provided with the raw material supplying pipe 116 consisting of a supplying nozzle part 32 having an aperture opened to the classifying chamber and a tubular part 33. The raw material supplying pipe 116 consists of a pyramidal cylindrical part 32 which is the supplying nozzle part narrowed in the aperture to the classifying machine and a deformed cylindrical part 33 which is a uniform tubular part. This deformed cylindrical part 33 is formed as a curved pipe to mix and disperse the introduced powder in the mixing area where the direction of the pipe wall changes. As a result, the dispersed particle groups are introduced at a uniform dust concn. to the classifying area of the classifying machine 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、分散混合及び気流
式分級装置に関し、更に詳しくは、気流中に凝集して存
在する粉粒体の凝集を解いて一次粒子にまで分散させる
他、2種類以上の微粉体を分散混合させたり、一の微粉
体の周囲に別の微粉体を均一に付着させる混合域が具備
されている、2種類以上の粉体原料を分散混合し、且つ
これに連続して分級を効率よく行い得る分散混合及び気
流分級装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dispersion / mixing and airflow type classifier, and more specifically, it disaggregates powder particles that are aggregated in an airflow to disperse them into primary particles, and also two types. The above fine powder is dispersed and mixed, and a mixing area for uniformly adhering another fine powder around one fine powder is provided. Two or more kinds of powder raw materials are dispersed and mixed, and continuously. The present invention relates to a dispersive mixing and airflow classifying device capable of efficiently performing classification.

【0002】[0002]

【従来の技術】従来より、粉粒体の混合装置としては、
容器回転型混合機、容器固定型混合機或いは流動化型混
合機等が知られている。容器回転型混合機は、図13及
び図14に示す様に、円筒状容器やV型容器を回転させ
ることにより粉体原料を混合するものである。しかし、
これらの装置は、回分式であるため連続処理が不可能で
あるし、比較的硬い凝集塊を形成する粉粒体を混合する
場合には、その解砕が容易でない。又、複数の粉粒体原
料を混合する場合は、原料の物性に大きな差異があると
良好な最終混合状態を期待できない等の問題点がある。
かかる問題を解決する為に、図13及び図14に示した
混合機内に強制攪拌翼、或いは邪魔板を取り付ける等の
工夫がなされているが、未だ十分には解決されていな
い。
2. Description of the Related Art Conventionally, as a powder / granular mixing device,
A container rotary mixer, a fixed container mixer, a fluidized mixer, and the like are known. As shown in FIGS. 13 and 14, the container rotary type mixer is a device for mixing powder raw materials by rotating a cylindrical container or a V-shaped container. But,
Since these devices are batch-type, continuous processing is impossible, and when powder particles forming relatively hard agglomerates are mixed, crushing is not easy. Further, when a plurality of powdery or granular materials are mixed, there is a problem that a good final mixed state cannot be expected if there is a large difference in the physical properties of the raw materials.
In order to solve such a problem, a device such as a forced stirring blade or a baffle plate is attached to the inside of the mixer shown in FIGS. 13 and 14, but it has not been solved yet.

【0003】容器固定型混合機としては、図15に示す
様な、攪拌羽根としての攪拌スクリューが回転(自転)
しながら、且つその支持具の回転によって容器内を遊星
運動(公転)する構造の混合機や、図16に示す様な、
混合槽下部の羽根を高速回転させて、粉粒体を混合槽内
で流動化して混合を行う構造の混合機等がある。
In a fixed container type mixer, a stirring screw as a stirring blade as shown in FIG. 15 rotates (rotates).
Meanwhile, a mixer having a structure in which a planetary motion (revolution) is performed in the container by the rotation of the supporting tool, and as shown in FIG.
There is a mixer having a structure in which the blades in the lower part of the mixing tank are rotated at high speed to fluidize the powder and granules in the mixing tank to perform mixing.

【0004】しかし、図15に示した様な形状の容器固
定型の混合機によっては、細かい粒子から形成されてい
る凝集塊を解砕する様な混合は困難である。これに対し
図16に示す様な混合機によれば、高速回転する羽根に
より、かかる凝集塊をある程度ほぐすことは可能である
が、充分に解砕しようとすると、長時間の運転が必須と
なる。更に、この場合には、粉体の粒子同士の激しい衝
突により、粉体が発熱し、変質するおそれがある。又、
これらの装置は、一定量の容積中にある量を投入して、
数分から数時間という長時間混合を行わないと均一な分
散を得ることは難しい。その場合、混合時間が長く、容
器内の粉塵濃度も高い為、一度分散された粒子が再度凝
集するという問題が生じる。この様な現象は、粒子の粒
径が細かいものほど、又、帯電性の強い粉体を処理する
場合ほど顕著に生じる。又、この様な形式の混合装置
は、回分式である為、連続処理が不可能である。更に、
混合容器の全ての領域で、均一な混合を行うことは困難
である。
However, with a container-fixing type mixer having a shape as shown in FIG. 15, it is difficult to perform mixing such as crushing aggregates formed from fine particles. On the other hand, according to the mixer as shown in FIG. 16, it is possible to loosen the agglomerates to some extent by the blades rotating at a high speed, but long-term operation is indispensable for sufficient crushing. . Further, in this case, the powder particles may generate heat due to violent collision between the particles of the powder particles, and the powder particles may be deteriorated. or,
These devices put a certain amount into a certain volume,
It is difficult to obtain a uniform dispersion without mixing for a long time of several minutes to several hours. In that case, since the mixing time is long and the dust concentration in the container is high, there arises a problem that particles once dispersed re-aggregate. Such a phenomenon is more prominent as the particle size is smaller and the more highly charged powder is treated. Further, since the mixing device of this type is a batch type, continuous processing is impossible. Furthermore,
It is difficult to achieve uniform mixing in all areas of the mixing vessel.

【0005】更に、上記した混合機によって、一方の微
粉体の周囲に別の微粉体を均質付着させることは困難で
ある。即ち、一般に、電子写真の現像剤として用いられ
るトナーは、流動性の向上を図る目的から、その表面に
シリカ等の無機、或いは有機の微粉体を付着結合させる
表面処理が行われているが、トナーの如き、使用されて
いる樹脂微粉体の軟化点が低い場合には、原料粉体を分
散混合させた場合に、トナーがトナー粒子同士の衝突に
より発熱して溶融してしまい、造粒・融着等の不都合が
生じる。
Further, it is difficult to uniformly deposit another fine powder around one fine powder by the above-mentioned mixer. That is, in general, a toner used as a developer for electrophotography is subjected to a surface treatment for adhering and binding an inorganic or organic fine powder such as silica to the surface thereof for the purpose of improving fluidity. When the softening point of the resin fine powder used, such as toner, is low, when the raw material powder is dispersed and mixed, the toner is heated by the collision of the toner particles and melts, resulting in granulation and Inconvenience such as fusion occurs.

【0006】一方、従来より、粉体原料の分級処理につ
いては、各種の気流式分級機及び気流式分級方法が提案
されている。この中で、回転翼を用いる分級機と可動部
分を有しない分級機がある。このうち、可動部分のない
分級機として、固定壁遠心式分級機と慣性力分級機があ
る。慣性力を利用する分級機としては、ロフラー・エフ
及びケイ・マレイ(Loffier. F. and K. Maly)による
「Symposiumon Powder Techn
ology D−2(1981)」に例示され、日鉄鉱
業製として商品化されているエルボジェット分級機や、
オクダ・エス及びヤスクニ・ジェイ(Okuda.S.and Yasu
kuni.J.)による「Proc. Inter.Symp
osium on Powder Technolog
y’81,771(1981)」で例示される分級機が
提案されている。
On the other hand, various kinds of airflow classifiers and airflow type classification methods have been conventionally proposed for classifying powder raw materials. Among these, there are a classifier using a rotary wing and a classifier without a movable part. Among them, a classifier without a movable part includes a fixed wall centrifugal classifier and an inertial force classifier. As a classifier utilizing inertial force, Loffier F. and K. Maly's "Symposiumon Powder Techn"
, and an elbow jet classifier commercialized as Nittetsu Mining Co., Ltd.
Okuda.S. And Yasu
kuni.J.) "Proc. Inter. Symp
osium on Powder Technology
y'81, 771 (1981) ”is proposed.

【0007】図10に慣性力を利用した分級機の断面図
を示す。図10に示す様に、先ず、分級機内へ開口して
いる原料供給管16の開口部から、高速で気流と共に粉
体原料を分級域内へと噴出させる。図10に示す様に分
級室内にはコアンダブロック26が設けられている為、
噴出された気流に対して角度の交差する気流が導入され
ると、噴出された際の慣性力と、コアンダブロック26
に沿って流れる湾曲気流の遠心力とによって、粉体原料
は粗粉と微粉とに分離された後、先端の細くなった分級
エッジ17及び18により、粗粉と微粉の2分割、或い
は粗粉と中粉と微粉の如き多分割分級が行われる。
FIG. 10 is a sectional view of a classifier utilizing inertial force. As shown in FIG. 10, first, the powder raw material is jetted out into the classification area together with the air flow at a high speed from the opening of the raw material supply pipe 16 opening into the classifier. As shown in FIG. 10, since the Coanda block 26 is provided in the classification chamber,
When an airflow whose angle intersects with the jetted airflow is introduced, the inertial force at the time of jetting and the Coanda block 26
After the powder raw material is separated into coarse powder and fine powder by the centrifugal force of the curved air flow flowing along, coarse particles and fine powder are divided into two by coarse edges and fine edges 17 and 18 or coarse powder. And multi-division classification such as medium powder and fine powder is performed.

【0008】しかしながら、上記の分級機では、粉体原
料は瞬時に原料供給管16から分級機内に導入され、分
級されて分級機系外へと排出される為、精度のよい分級
を行うためには分級機へ導入される粉体原料が、原料供
給管16及び分級機の入口近傍までに十分に個々の粒子
に分散されていることが重要となる。特に、原料供給管
16の角錐筒部16b、或いはそれ以前の筒部16aで
の分散が重要となる。角錐筒部16bから分級機内へ導
入される間の筒部16aの側面図を図11(a)に示
し、その斜視図を図11(b)に示した。図11(b)
に示されている様に、筒部16aの形状は直方体であ
り、筒部16a内を流動する粉体は管壁に平行にまっす
ぐに流れる傾向を有する(図11(a)参照)。図11
(a)に示した様に、上部流れをA、下部流れをBとす
ると、夫々の流れは実質的に阻害されず、又、混合され
ることもなく、管壁に沿って平行に流れ、コアンダブロ
ック26へ噴出される。粉体原料を、原料供給管16の
上部から導入すると、上部流れAには軽い微粉が多く含
有され、下部流れBには重い粗粉が多く含有され易く、
更に夫々の粒子が独立して流れる為、分散性が悪くなる
傾向にある。
However, in the above classifier, the powder raw material is instantaneously introduced from the raw material supply pipe 16 into the classifier, classified, and discharged to the outside of the classifier system, so that accurate classification is performed. It is important that the powder raw material introduced into the classifier is sufficiently dispersed into individual particles by the vicinity of the raw material supply pipe 16 and the inlet of the classifier. In particular, dispersion in the pyramidal cylinder portion 16b of the raw material supply pipe 16 or the cylinder portion 16a before that is important. A side view of the tubular portion 16a while being introduced from the pyramidal tubular portion 16b into the classifier is shown in FIG. 11 (a), and a perspective view thereof is shown in FIG. 11 (b). FIG. 11B
As shown in FIG. 11, the cylindrical portion 16a has a rectangular parallelepiped shape, and the powder flowing in the cylindrical portion 16a tends to flow straight in parallel with the pipe wall (see FIG. 11 (a)). FIG.
As shown in (a), when the upper flow is A and the lower flow is B, the respective flows are substantially unhindered and are not mixed and flow in parallel along the pipe wall, It is jetted to the Coanda block 26. When the powder raw material is introduced from the upper part of the raw material supply pipe 16, the upper flow A contains a large amount of light fine powder and the lower flow B contains a large amount of heavy coarse powder.
Further, since each particle flows independently, the dispersibility tends to deteriorate.

【0009】又、分級機へ開口されている原料供給管1
6の開口部は、コアンダブロックの面から一定の開口高
さを有しているが、その開口部が狭すぎると導入された
粒子中の粗大粒子による原料供給管16の閉塞が生じ
る。又、逆に広すぎると、流速の低下から分散が悪くな
ることや、分級機内への導入部位によって粒子が夫々異
なる軌跡を描くことや、粗粉が微粉の軌跡を攪乱する為
に分級精度の向上に限界があり、特に20μm以上の粗
粒の多い粉体原料の分級では著しく分級精度が低下する
傾向がある。このことは、特に、角錐筒部16bの開口
の高さが高くなると顕著になるので、現状では粗大粒子
による閉塞と分級精度とのバランスから、角錐筒部16
bの開口の高さは、3〜10mmの範囲内で一般に使用
されている。しかし、上述の如き理由により、未だ十分
なものではない。
The raw material supply pipe 1 opened to the classifier
The opening of No. 6 has a constant opening height from the surface of the Coanda block, but if the opening is too narrow, the raw material supply pipe 16 is blocked by the coarse particles in the introduced particles. On the other hand, if it is too wide, dispersion will worsen due to a decrease in flow velocity, particles will draw different trajectories depending on the site where they are introduced into the classifier, and coarse powder will disturb the trajectories of fine powder, resulting in poor classification accuracy. There is a limit to the improvement, and the classification accuracy tends to be remarkably lowered particularly in the classification of powder raw materials having a large number of coarse particles of 20 μm or more. This becomes remarkable especially when the height of the opening of the pyramidal cylinder portion 16b becomes high. Therefore, at present, in view of the balance between the clogging by coarse particles and the classification accuracy, the pyramidal cylinder portion 16b is formed.
The height of the opening of b is generally within the range of 3 to 10 mm. However, it is still not sufficient for the above reasons.

【0010】又、気流中の粉塵濃度が高くなる程、上述
の如き現象が顕著になる。即ち、十分な分散がなされて
分級室に粉体原料が送られるならば理想的な分級が行わ
れるが、粉塵濃度が高い場合には、不十分な分散をもた
らし、分級精度の低下から微粉を除去する場合の製品の
収率(分級収率)の低下や、製品中の微粉の増加の原因
となり、その処理能力を抑えて使用せざるを得ない等の
問題があった。特に、複写機やプリンター等に用いられ
るトナーを製造する際に、かかる問題が顕著であった。
Further, the higher the dust concentration in the air stream, the more remarkable the above phenomenon. That is, if the powder raw material is sufficiently dispersed and sent to the classification chamber, ideal classification is performed, but if the dust concentration is high, insufficient dispersion is caused, and fine powder is generated due to a decrease in classification accuracy. There are problems that the yield (classification yield) of the product in the case of removal is reduced and the fine powder in the product is increased, so that the processing capacity is suppressed and the product must be used. In particular, such a problem has been remarkable when manufacturing a toner used in a copying machine or a printer.

【0011】一般に、トナーには数多くの異なった性質
が要求されるが、かかる要求性質を全て満足する製品を
得る為には、使用する原材料の選択は勿論のこと、製造
方法によってトナーの特性が決まることも多い。この
為、例えば、トナーの分級工程においては、分級されて
得られるトナー粒子がシャープな粒度分布を有するもの
であることが要求される。又、トナーの製造において
は、低コストで効率よく安定的に品質のよいトナーを作
り出すことが望まれる。更に近年では、複写機やプリン
ターにおける画質向上の為、使用されるトナー粒子が徐
々に微細化の方向に移ってきている。これに対し、一般
に、物質は細かくなるに従って粒子間力の働きが大きく
なっていく。樹脂粒子やトナー粒子も同様であり、微粉
体サイズになると粒子同士の凝集性が大きくなり、製造
上の困難な問題が発生している。
Generally, many different properties are required for the toner, and in order to obtain a product satisfying all the required properties, the characteristics of the toner depend on the manufacturing method as well as the selection of the raw materials used. It is often decided. Therefore, for example, in the toner classification step, it is required that the toner particles obtained by classification have a sharp particle size distribution. Further, in the production of toner, it is desired to efficiently and stably produce high quality toner at low cost. Further, in recent years, in order to improve the image quality in copying machines and printers, the toner particles used are gradually becoming finer. On the other hand, in general, as the material becomes finer, the action of interparticle force increases. The same applies to resin particles and toner particles, and when it becomes a fine powder size, the cohesiveness of the particles becomes large, causing a difficult problem in manufacturing.

【0012】特に、重量平均粒径が10μm以下のシャ
ープな粒度分布を有するトナーを得ようとする場合に
は、従来の分級装置及び分級方法では分級収率の低下を
引き起こすという問題がある。更に、重量平均粒径が8
μm以下或いは6μm以下のシャープな粒度分布を有す
るトナーを得ようとする場合は、特に、従来の分級装置
及び分級方法では分級収率の低下が顕著になる。
In particular, when a toner having a sharp particle size distribution with a weight average particle size of 10 μm or less is to be obtained, there is a problem in that the classification yield is lowered by the conventional classifying device and classifying method. Further, the weight average particle size is 8
When it is desired to obtain a toner having a sharp particle size distribution of μm or less or 6 μm or less, the classification yield is remarkably lowered by the conventional classifying device and classifying method.

【0013】以上述べた様な点から、凝集性の強い微粉
体、低融点の微粉体、特に静電荷現像用トナーの如き樹
脂微粉体のミクロ的な分散混合を連続的に短時間で行う
ことが出来、従来の機械式混合機を使用した場合に比べ
て、装置の小型化、操作の簡素化が図れ、混合工程を省
略することが可能で、更に、これに続けて高精度の分級
をすることが可能である為、シャープな粒度分布を有す
る粉体を安定且つ効率的に得られる分散混合及び分級装
置が待望されている。
From the above-mentioned points, it is necessary to continuously carry out microscopic dispersion and mixing of fine powder having a strong cohesive property and low melting point fine powder, especially fine resin powder such as toner for electrostatic charge development. Compared to the case where a conventional mechanical mixer is used, the device can be downsized, the operation can be simplified, the mixing process can be omitted, and further, highly accurate classification can be performed. Therefore, there is a demand for a dispersion mixing and classifying apparatus that can stably and efficiently obtain a powder having a sharp particle size distribution.

【0014】[0014]

【発明が解決しようとする課題】従って、本発明の目的
は、粉粒体の分散混合、更にこれに続く気流分級におい
て、上記した従来技術の問題点を解決した分散混合及び
気流分級装置を提供することにある。又、本発明の目的
は、例えば、静電荷現像用トナーと外添剤であるシリカ
微粉体の様に、2種類以上の微粉体を均一に分散混合さ
せ、且つ一方の微粉体の表面に他方の微粉体を付着結合
させたり、凝集した微粉体を一次粒子にまで分散させ、
更にこれに続けて効率よく粉体原料を分級し、所望のシ
ャープな粒度分布を有する微細な分級品を安定且つ効率
的に得ることの出来る分散混合及び気流分級装置を提供
することにある。特に、本発明の目的は、重量平均粒子
径が10μm以下、更には8μm以下或いは6μm以下
のトナーの形成原料から2種類以上の微粉体を均一に分
散混合させ、一の微粉体の表面に別の微粉体を付着結合
させたり、凝集した微粉体を一次粒子にまで分散させる
ことが出来、且つシャープな粒度分布を有するトナー等
の効率のよい分級が可能な分散混合及び気流式分級装置
を提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a dispersive mixing and air stream classifying apparatus which solves the above-mentioned problems of the prior art in the dispersive mixing of powder and granules and the subsequent air stream classification. To do. Further, an object of the present invention is to uniformly disperse and mix two or more kinds of fine powders such as electrostatic charge developing toner and silica fine powder which is an external additive, and to make one surface of one fine powder the other. The fine powders of are adhered and bonded, or the agglomerated fine powders are dispersed to the primary particles,
A further object of the present invention is to provide a dispersion / mixing and air flow classifying apparatus which can efficiently classify powder raw materials following this and stably and efficiently obtain a fine classified product having a desired sharp particle size distribution. In particular, the object of the present invention is to uniformly disperse and mix two or more kinds of fine powders from a toner forming raw material having a weight average particle size of 10 μm or less, further 8 μm or less or 6 μm or less, and separate them on the surface of one fine powder. Provide a dispersion / mixing and airflow classifying device capable of adhering and binding the above fine powder and dispersing the agglomerated fine powder into primary particles and efficiently classifying toner particles having a sharp particle size distribution. To do.

【0015】[0015]

【課題を解決するための手段】上記目的は、以下の本発
明により達成される。即ち、本発明は、分級機の分級域
に開口された開口部を有する原料供給管が設けられてお
り、該原料供給管内を流動する気流によって2種類以上
の粉体原料が混合され且つ分散された後、連続して分級
機内の分級域へと粉体原料が噴出されて、噴出気流中の
粉体原料が、粉体原料粒子の慣性力とコアンダ効果によ
る湾曲気流の遠心力とによって分級機内で少なくとも粗
粉と微粉とに分級される分散混合及び気流式分級装置に
おいて、原料供給管内の気流と、該気流と共に流動する
2種類以上の粉体原料とからなる上部流れと下部流れと
を混合させ、且つ気流中の粉体原料を分散させる為の混
合域が原料供給管内に少なくとも1箇所設けられている
ことを特徴とする分散混合及び気流式分級装置である。
The above object is achieved by the present invention described below. That is, the present invention is provided with a raw material supply pipe having an opening opened in the classification area of a classifier, and two or more kinds of powder raw materials are mixed and dispersed by an air stream flowing in the raw material supply pipe. After that, the powder raw material is continuously ejected to the classification area in the classifier, and the powder raw material in the ejected air flow is in the classifier due to the inertia force of the powder raw material particles and the centrifugal force of the curved air flow due to the Coanda effect. In a dispersion-mixing and air-flow classifying apparatus in which at least coarse powder and fine powder are classified with, the air flow in the raw material supply pipe and an upper flow and a lower flow composed of two or more kinds of powder raw materials flowing with the air flow are mixed. The dispersion mixing and airflow classifying device is characterized in that at least one mixing area for dispersing the powder raw material in the airflow is provided in the raw material supply pipe.

【0016】[0016]

【発明の実施の形態】以下、本発明の好ましい実施の態
様を挙げて本発明を詳細に説明する。先ず、本発明によ
れば、原料供給管に混合域が設けられている為、原料供
給管内の2種類以上の粉体と該粉体と共に流れる気流と
からなる、図11(a)に示した様な上部流れと下部流
れとが混合され、且つ流路が変更されることによって、
原料供給管内の粉体の分散がより向上する結果、これに
引き続いて行われる分級処理で、より高い粉塵濃度でも
良好な分級精度が得られ、製品の収率低下の防止が可能
になる。又、同じ粉塵濃度で、より良好な分級精度と製
品の収率向上が達成される。特に、重量平均粒子径が1
0μm以下の2種類以上の微粉体を気流中に流した場合
に、均一に分散混合され、一の微粉体の表面に別の微粉
体が付着結合したり、凝集した微粉体が一次粒子にまで
分散される為、同じ粉塵濃度で、より良好な分級精度と
製品の収率の向上が可能となる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail with reference to preferred embodiments of the present invention. First, according to the present invention, since the raw material supply pipe is provided with the mixing area, it is composed of two or more kinds of powders in the raw material supply pipe and the air flow flowing with the powders, as shown in FIG. 11 (a). By mixing such upper and lower flows and changing the flow path,
As a result of further improving the dispersion of the powder in the raw material supply pipe, it is possible to obtain good classification accuracy even with a higher dust concentration in the classification treatment that is subsequently performed, and to prevent a decrease in product yield. Also, with the same dust concentration, better classification accuracy and improved product yield are achieved. In particular, the weight average particle size is 1
When two or more kinds of fine powder of 0 μm or less are flown in the air flow, they are uniformly dispersed and mixed, and another fine powder adheres to the surface of one fine powder, or aggregated fine powder becomes primary particles. Since they are dispersed, it is possible to improve the classification accuracy and the product yield with the same dust concentration.

【0017】以下、本発明の分散混合及び気流式分級装
置について、図面を参照しながら説明する。本発明の分
散混合及び気流式分級装置は、大きくは、2種類以上の
粉体原料を分級する気流分級機の部分と、該分級機内へ
と粉体原料を分散混合させながら導入する為の原料供給
管とからなる。図1に、本発明の一例の分散混合及び気
流式分級装置の断面図を示す。図1に示した様に、本発
明の分散混合及び気流式分級装置は、図面の左側にある
気流分級機と、該分級機の分級域に開口された開口部
を有し、分級域に粉体原料を噴出させる原料供給管11
6とからなる。図1の例では、分級機によって粉体原
料は、粒度別に微粉、中粉及び粗粉に3分割される。以
下、図1に基づいて詳細に説明する。
The dispersing and mixing and airflow type classifying apparatus of the present invention will be described below with reference to the drawings. The dispersion-mixing and air-flow classifying apparatus of the present invention is mainly composed of a part of an air-flow classifier for classifying two or more kinds of powder raw materials, and a raw material for introducing the powder raw materials into the classifier while dispersing and mixing them. It consists of a supply pipe. FIG. 1 shows a cross-sectional view of an example of the dispersion mixing and airflow type classifying device of the present invention. As shown in FIG. 1, the dispersion-mixing and airflow-type classification apparatus of the present invention has an airflow classifier 1 on the left side of the drawing and an opening opened in the classification area of the classifier, Raw material supply pipe 11 for ejecting powder raw material
6 In the example of FIG. 1, the classifier 1 divides the powder raw material into three fine powders, medium powders and coarse powders according to particle size. Hereinafter, it will be described in detail with reference to FIG.

【0018】図1において、側壁22、23、24、及
び下部壁は25は、図中に示されている夫々の形状を有
し、側壁23と下部壁25には夫々、ナイフエッジ型の
分級エッジ17及び18が具備されており、この分級エ
ッジ17及び18よって分級域が3分画されている。側
壁22の下の部分には、分級室に開口した開口部を有す
る供給ノズル部32と管状部分33とからなる原料供給
管116が設けられている。供給ノズル部32の下に
は、その底部接線の延長方向に対して下方に折り曲げた
長楕円弧を描いた形状のコアンダブロック26が設けら
れている。分級室上部壁27は、分級室下部方向にナイ
フエッジ型の入気エッジ19を具備し、更に分級室上部
には分級室に開口している入気管14及び15が設けら
れている。又、入気管14及び15には、ダンパーの如
き第1及び第2気体導入調節手段20及び21と、静圧
計28及び29とが設けられている。尚、分級エッジ1
7及び18と入気エッジ19の位置は、分散処理を行う
粉体原料の種類により、或いは、所望する粒子径により
異なる。又、分級室底面には、夫々の分画域に対応させ
て、分級室内に開口している排出口11、12及び13
が設けられている。排出口11、12及び13には、夫
々バルブ手段の如き開閉手段を設けておいてもよい。
In FIG. 1, the side walls 22, 23, 24 and the lower wall 25 have the respective shapes shown in the figure, and the side wall 23 and the lower wall 25 respectively have a knife edge type classification. Edges 17 and 18 are provided, and the classification areas 17 and 18 divide the classification area into three. A raw material supply pipe 116 including a supply nozzle portion 32 having an opening opening to the classification chamber and a tubular portion 33 is provided below the side wall 22. Below the supply nozzle portion 32, a Coanda block 26 having a shape of an elliptical arc bent downward with respect to the extension direction of the bottom tangent line is provided. The upper wall 27 of the classification chamber is provided with a knife-edge type air intake edge 19 in the lower direction of the classification chamber, and furthermore, air intake pipes 14 and 15 opening to the classification chamber are provided at the upper part of the classification chamber. Further, the intake pipes 14 and 15 are provided with first and second gas introduction adjusting means 20 and 21 such as dampers, and static pressure gauges 28 and 29. In addition, classification edge 1
The positions of 7 and 18 and the air intake edge 19 differ depending on the type of powder raw material to be subjected to the dispersion treatment or the desired particle size. Further, on the bottom of the classification chamber, discharge ports 11, 12 and 13 opened in the classification chamber corresponding to respective fractionation areas.
Is provided. The discharge ports 11, 12 and 13 may be provided with opening / closing means such as valve means.

【0019】次に、原料供給管116について、図面を
参照しながら更に詳しく説明する。本発明の分散混合及
び気流式分級装置は、図1に示した様に、上記した気流
分級機の分級域に開口部を有する原料供給管116が設
けられており、該原料供給管116は、図1に示した様
に、分級機への開口部が狭くなっている供給ノズル部で
ある角錐筒部32(以下、単に、角錐筒部又は筒部と呼
ぶ)と均一な管状部分である変形筒部33(以下、単に
変形筒部と呼ぶ)とからなる。本発明においては、変形
筒部33の内径と、角錐筒部32の最も狭まくなってい
る箇所の内径の比を、20:1〜1:1、好ましくは1
0:1〜2:1に設定する。この様に構成すると、一度
発散した流れを収束させて流速向上を図り、分級機本体
に推進力を維持して導入させることができる結果、混合
分散された粉体原料の分級機内への良好な噴出速度が得
られる。
Next, the raw material supply pipe 116 will be described in more detail with reference to the drawings. As shown in FIG. 1, the dispersion / mixing and airflow type classifier of the present invention is provided with a raw material supply pipe 116 having an opening in the classification area of the above-described airflow classifier, and the raw material supply pipe 116 is As shown in FIG. 1, a pyramidal cylinder portion 32 (hereinafter simply referred to as a pyramid cylinder portion or a cylinder portion) which is a supply nozzle portion having a narrow opening to the classifier and a deformation which is a uniform tubular portion. And a tubular portion 33 (hereinafter, simply referred to as a deformed tubular portion). In the present invention, the ratio of the inner diameter of the deforming tubular portion 33 to the inner diameter of the narrowest part of the pyramidal tubular portion 32 is 20: 1 to 1: 1, preferably 1
Set to 0: 1 to 2: 1. With this configuration, the once diverged flow can be converged to improve the flow velocity, and the propulsive force can be maintained and introduced into the classifier body. As a result, the mixed and dispersed powder raw material can be easily introduced into the classifier. Ejection velocity is obtained.

【0020】本発明の装置は、上記した原料供給管11
6に、該原料供給管内を流動する気流及び粉体原料から
なる上部流れと下部流れとを混合させて、これらの流れ
の中にある粉体原料を分散させることを可能とする混合
域が少なくとも1箇所設けられていることを特徴とす
る。本発明において、混合域は、原料供給管116の変
形筒部33に少なくとも1箇所設けるのが好ましい。以
下、本発明を特徴づける原料供給管116に設ける混合
域について説明する。図3(a)に、本発明の装置の原
料供給管116の変形筒部33の一例を示す側面図を示
し、その斜視図を図3(b)に示す。この例では変形筒
部33の管の形状は、図3に示す様に曲管であり、上下
方向にジグザグな形状をしている。この結果、粉体の流
路は、図3(a)中に矢印で示した様に、管壁に沿って
流れ、且つ混合域で方向が変更されながら流動する。
The apparatus of the present invention comprises the above-mentioned raw material supply pipe 11
In FIG. 6, there is at least a mixing area that allows the air flow flowing in the raw material supply pipe and the upper and lower flows of the powder raw material to be mixed to disperse the powder raw material in these streams. It is characterized in that it is provided at one place. In the present invention, it is preferable that at least one mixing region is provided in the deforming cylindrical portion 33 of the raw material supply pipe 116. Hereinafter, the mixing region provided in the raw material supply pipe 116, which characterizes the present invention, will be described. FIG. 3 (a) is a side view showing an example of the deformed cylinder portion 33 of the raw material supply pipe 116 of the apparatus of the present invention, and a perspective view thereof is shown in FIG. 3 (b). In this example, the shape of the tube of the deformable tubular portion 33 is a curved tube as shown in FIG. 3, and has a zigzag shape in the vertical direction. As a result, the flow path of the powder flows along the tube wall as shown by the arrow in FIG. 3 (a), and flows while the direction is changed in the mixing zone.

【0021】先ず、変形筒部33に導入された粉体は、
図3(a)に示す様に、気流に乗って管壁に沿った方向
にまっすぐに進み、管壁の方向が変わる混合域xで上部
流れAの微粉と下部流れBの粗粉が交差して混合され、
分散される。その後、混合された粉体は、再び混合域y
で、更に混合域zで同様にして混合され、凝集していた
粉粒体は、粒子同士が衝突し或いは管壁に衝突すること
によって、より一層分散される。この結果、原料供給管
116で混合される。この結果、分散された粒子群は均
一の粉塵濃度で、分級機の分級域へと導入される。こ
の原料供給管116の変形筒部33の分級域への導入方
向に対する角度θは5〜60°に設定され、特に15〜
45°でその効果が顕著となる。この角度θは、この範
囲内で、粉体と粉体と共に流れる気体の流れに対して任
意に設定すればよい。本発明において、上記の様な作用
を有する混合域の数は、少なくとも1箇所設けられてい
ればよいが、好ましくは、2箇所以上とすると分散性が
向上する。但し、混合域の数が多過ぎると、粉体の流れ
が阻害され、逆に圧力損失が大きくなり好ましくない。
本発明においては、特に、混合域が2〜5箇所の場合に
高い粉体の分散性が得られる。
First, the powder introduced into the deformable cylinder portion 33 is
As shown in FIG. 3 (a), the fine powder of the upper flow A and the coarse powder of the lower flow B intersect with each other in the mixing zone x where the air flow advances straight in the direction along the pipe wall and the direction of the pipe wall changes. Mixed and
Distributed. Then, the mixed powder is mixed in the mixing area y again.
Then, the powder particles that have been mixed and similarly agglomerated in the mixing zone z are further dispersed by the particles colliding with each other or colliding with the tube wall. As a result, the raw material supply pipes 116 mix. As a result, the dispersed particle group is introduced into the classification area of the classifier 1 with a uniform dust concentration. The angle θ of the raw material supply pipe 116 with respect to the introduction direction into the classification area of the deformable cylinder portion 33 is set to 5 to 60 °, and particularly 15 to
The effect becomes remarkable at 45 °. This angle θ may be arbitrarily set within this range with respect to the powder and the flow of gas flowing together with the powder. In the present invention, the number of the mixing zones having the above-mentioned effects may be at least one, but preferably two or more to improve the dispersibility. However, if the number of mixing regions is too large, the flow of powder is hindered, and conversely pressure loss increases, which is not preferable.
In the present invention, a high powder dispersibility is obtained particularly when the mixing area is 2 to 5 places.

【0022】上記で説明した図3は混合域が3箇所設け
られている場合の一例であるが、図4にその混合域の数
が2箇所の場合の一例を示した。図4(a)に側面図
を、図4(b)にその斜視図を示す。図中、混合域をx
及びyで示したが、図3の場合と同様に、ここで上部流
れAと下部流れBとは交差し、凝集している粉粒体は粒
子同士の衝突、或いは管壁への衝突によって混合され、
分散される。この様にして得られた良好な分散性を有す
る粉体原料は、連続して原料供給管116の開口部を介
して分級機1の分級域へと噴出され、分級処理される。
この為、より高い粉塵濃度でも良好な分級精度が得ら
れ、製品の収率低下の防止が可能になる。
Although FIG. 3 described above is an example of the case where three mixing areas are provided, FIG. 4 shows an example when the number of mixing areas is two. FIG. 4A shows a side view and FIG. 4B shows a perspective view thereof. In the figure, the mixed area is x
3 and y, as in the case of FIG. 3, the upper flow A and the lower flow B intersect with each other, and the aggregated particles are mixed by the collision of particles with each other or the collision with the pipe wall. Is
Distributed. The powder raw material having good dispersibility obtained in this way is continuously ejected into the classification area of the classifier 1 through the opening of the raw material supply pipe 116, and is classified.
Therefore, good classification accuracy can be obtained even at a higher dust concentration, and it is possible to prevent a decrease in product yield.

【0023】次に、原料供給管116の変形筒部33の
他の一例を図5に示したが、その側面図を図5(a)
に、その斜視図を図5(b)に夫々示す。図5の原料供
給管の変形筒部33の形状は、滑らかに曲げられた曲管
であり、原料供給管に導入された凝集している粉粒体は
矢印で示した様に管壁に沿って流れ、混合域x及びyの
2箇所の混合域で混合され、粒子同士の衝突、或いは壁
面へとぶつかって良好に分散される。この様に、変形筒
部33の形状を滑らかに曲げられた曲管とすると、流速
の低減を抑えることができ、粒子に推進力を持たせられ
る点で好ましい。
Next, another example of the deformed cylinder portion 33 of the raw material supply pipe 116 is shown in FIG. 5, a side view of which is shown in FIG.
The perspective views are shown in FIG. The shape of the deformed cylindrical portion 33 of the raw material supply pipe in FIG. 5 is a smoothly bent curved pipe, and the agglomerated powder particles introduced into the raw material supply pipe are along the pipe wall as indicated by arrows. Flow and are mixed in two mixing zones of mixing zones x and y, and the particles collide with each other or collide with the wall surface and are well dispersed. As described above, it is preferable to use a curved tube in which the shape of the deformable tubular portion 33 is smoothly bent, because the flow velocity can be suppressed from being reduced and the particles can have a propulsive force.

【0024】図6に、原料供給管116の変形筒部33
に設けられた混合域の数が1箇所の場合を示す。その側
面図を図6(a)に、その斜視図を図6(b)に示す。
本発明では、この様に、原料供給管に粉体原料を分散さ
せる為の混合域が1箇所設けられていれば、かなり分散
性が向上するが、先に述べた様に混合域を2〜5箇所と
すると更に分散性が良好となる。
FIG. 6 shows a deformed cylindrical portion 33 of the raw material supply pipe 116.
The case where the number of mixing zones provided in 1 is 1 is shown. A side view thereof is shown in FIG. 6 (a), and a perspective view thereof is shown in FIG. 6 (b).
In the present invention, if the raw material supply pipe is provided with one mixing region for dispersing the powder raw material, the dispersibility is considerably improved. The dispersibility is further improved by setting the number of points to 5.

【0025】図7に原料供給管116の変形筒部33の
形状がV字形となっている場合の例を示す。その側面図
を図7(a)に、その斜視図を図7(b)に示す。この
例では、図7(a)に示した様に、混合域が、図中x、
y及びzで表された3箇所となる。又、この例では、変
形筒部33をV字形状としている為、図3に示したジグ
ザグな曲管とした場合よりも、流速の低減を抑えること
ができ、粒子に推進力を持たせられる点で好ましい。
FIG. 7 shows an example in which the deforming cylinder portion 33 of the raw material supply pipe 116 is V-shaped. A side view thereof is shown in FIG. 7 (a), and a perspective view thereof is shown in FIG. 7 (b). In this example, as shown in FIG. 7 (a), the mixing region is represented by x,
There are three locations represented by y and z. Further, in this example, since the deforming cylinder portion 33 has a V-shape, it is possible to suppress the reduction of the flow velocity and to give propulsive force to the particles, as compared with the case of the zigzag curved pipe shown in FIG. It is preferable in terms.

【0026】上記した例では、いずれも、原料供給管内
を流動する気流及び粉体原料からなる上部流れと下部流
れとを混合させ、粉体原料を分散させる為の混合域を、
原料供給管の変形筒部33の形状を曲管とすることによ
って形成したものであるが、図8及び図9に示した様
に、原料供給管の変形筒部33の管内に流路制御板40
を設けることによって、粉体原料を分散させる為の混合
域を設けてもよい。図8に示した例では、原料供給管1
16の変形筒部33の部分を、従来のものと同様に直管
で形成し(図10参照)、その上部内壁及び下部内壁に
流路制御板40を交互に設けることによって混合域を形
成する。図8(a)は、その側面図であり、図8(b)
は斜視図を示す。
In each of the above-mentioned examples, an air flow flowing in the raw material supply pipe and an upper flow and a lower flow made of the powder raw material are mixed to form a mixing region for dispersing the powder raw material.
Although it is formed by forming the deformed cylindrical portion 33 of the raw material supply pipe into a curved pipe, as shown in FIGS. 8 and 9, a flow path control plate is provided in the deformed cylindrical portion 33 of the raw material supply pipe. 40
By providing, a mixing zone for dispersing the powder raw material may be provided. In the example shown in FIG. 8, the raw material supply pipe 1
A portion of the 16 deformed cylindrical portions 33 is formed of a straight pipe as in the conventional case (see FIG. 10), and a flow path control plate 40 is alternately provided on the upper inner wall and the lower inner wall to form a mixing region. . FIG. 8A is a side view thereof, and FIG.
Shows a perspective view.

【0027】図8(a)に示した様に、粉体と粉体と共
に流れる気体の流れは、流路制御板40に衝突すること
によって変更され、その際に上部流れAと下部流れBと
に分かれている粉粒体は、混合域x、y及びzで混合さ
れて分散される。本発明においては、図8に示す様に、
流路制御板40の長さをL1、変形筒部33の高さをL2
とした時、L1及びL2が下記式を満足する様な流路制御
板40を設けることが好ましい。 この様にすれば、原料粉体を含む気流は、強制的に流路
をジグザグ状に変更させられることによって原料粉体が
混合され、分散される。又、流路制御板40に対する衝
突効果により粉体は解砕され、十分に分散される。
As shown in FIG. 8A, the flow of the powder and the gas flowing with the powder is changed by colliding with the flow path control plate 40, and at that time, the upper flow A and the lower flow B are changed. The powder and granules divided into are mixed and dispersed in the mixing zones x, y and z. In the present invention, as shown in FIG.
The length of the flow path control plate 40 is L 1 , and the height of the deformable tubular portion 33 is L 2.
In this case, it is preferable to provide the flow path control plate 40 such that L 1 and L 2 satisfy the following formula. With this configuration, the air flow containing the raw material powder is forcibly changed to the zigzag shape in the flow path, so that the raw material powder is mixed and dispersed. Further, the powder is crushed and sufficiently dispersed by the effect of collision with the flow path control plate 40.

【0028】又、図9に、流路制御板40が設けられて
いる変形筒部33の形状が上記例と異なる場合の一例を
示す。図9(a)は、その側面図であり、図9(b)は
斜視図を示す。図8に示した例と同様に、図9(a)に
示す様に、流路制御板40によって流路が変更され、粉
粒体は、上部内壁の混合域x、y、z、及び下部内壁の
α及びβの5箇所の混合域で上部流れAと下部流れBが
混合され、粗粉と微粉が混ざって粉塵濃度が一様とな
り、分級域へ噴出される。この際、流路制御板40の枚
数及び高さは使用される粉体の性状によって適宜に決定
される。又、その設定位置及び設定個数は、内壁面の任
意の位置に、任意の個数設けてよく、特に限定されるも
のではない。しかし、この場合も、混合域の数は、1箇
所より2箇所以上あった方がより分散性が良好となる。
又、粉体原料の粒子径が微細な程その効果が顕著であ
り、特に、重量平均粒子径8μm以下或いは6μm以下
の場合に顕著に効果が現れる。
Further, FIG. 9 shows an example in which the shape of the deformable cylindrical portion 33 provided with the flow path control plate 40 is different from the above example. 9 (a) is a side view thereof, and FIG. 9 (b) is a perspective view thereof. As in the example shown in FIG. 8, as shown in FIG. 9 (a), the flow path is changed by the flow path control plate 40, and the particles are mixed in the mixing regions x, y, z of the upper inner wall and the lower part. The upper flow A and the lower flow B are mixed in five mixing regions of α and β on the inner wall, the coarse powder and the fine powder are mixed, the dust concentration becomes uniform, and the mixture is ejected to the classification region. At this time, the number and height of the flow path control plates 40 are appropriately determined according to the properties of the powder used. Further, the set position and the set number may be provided at an arbitrary position on the inner wall surface, and are not particularly limited. However, also in this case, the dispersibility becomes better when the number of mixing regions is two or more than one.
Further, the effect is more remarkable as the particle diameter of the powder raw material is finer, and particularly when the weight average particle diameter is 8 μm or less or 6 μm or less.

【0029】以上述べた様に、本発明の分散混合及び気
流式分級装置においては、原料供給管内に、気流と気流
と共に流動する粉体原料とからなる上部流れと下部流れ
とを混合させ、粉体原料を分散させる為の混合域が少な
くとも1箇所設けられ、分級機内へ導入させる粉体原料
の分散性を向上させればよい。従って、原料供給管11
6の変形筒部33の形状や、その内壁に設ける流路制御
板40の形状及び設置方法は、処理される粉体の性状に
より決定すればよく、限定されるものではない。本発明
の分散混合及び気流式分級装置を用い、2種類の粉体原
料を分散混合させ、一の微粉体の周囲に別の微粉体を均
一に付着させ、且つこれを分級する例としては、例え
ば、トナー原料の表面に、シリカ等の無機物質或いは有
機微粉体を付着混合させる表面処理を行い連続的に分級
する場合が挙げられるが、この際、トナー原料粉体の重
量平均粒子径が10μm以下の場合に効果的であり、特
に、6μm以下の場合に一層効果的である。
As described above, in the dispersion mixing and air flow type classifying apparatus of the present invention, the upper flow and the lower flow of the air current and the powder raw material flowing together with the air flow are mixed in the raw material supply pipe to produce the powder. It suffices to provide at least one mixing zone for dispersing the body raw material so as to improve the dispersibility of the powder raw material introduced into the classifier. Therefore, the raw material supply pipe 11
The shape of the deformed cylindrical portion 33 of No. 6 and the shape and installation method of the flow path control plate 40 provided on the inner wall thereof may be determined according to the property of the powder to be treated, and are not limited. As an example of dispersing and mixing two kinds of powder raw materials using the dispersion mixing and airflow classifying device of the present invention, uniformly adhering another fine powder around one fine powder, and classifying this For example, there is a case where the surface of the toner raw material is subjected to a surface treatment of adhering and mixing an inorganic substance such as silica or an organic fine powder for continuous classification. At this time, the weight average particle diameter of the toner raw material powder is 10 μm. It is effective in the following cases, and is particularly effective in the case of 6 μm or less.

【0030】粉体原料を気流と共に原料供給管116内
へと投入する手段としては、0.09〜0.59MPa
の圧を加えて送る方法、分級域の下流側にある送風機を
大型化して分級域の負圧をより大きくすることで外気と
粉体とを自然に吸引する方法、或いは、原料投入口にイ
ンジェクションフィーダーを装着し、これによって外気
と粉体とを吸引せしめると共に原料供給管116を経て
分級域へ送る方法等がある。本発明においては、上記に
挙げたら3つの投入手段のうち、装置面及び運転条件の
観点からも、特に、分級域の負圧を大きくして外気と粉
体とを自然に吸引する方法及びインゼクションフィーダ
ーによる方法が好ましい。
Means for charging the powder raw material into the raw material supply pipe 116 together with the air flow is 0.09 to 0.59 MPa.
Pressure, the air is blown in the downstream of the classification area and the negative pressure in the classification area is increased to naturally suck the outside air and powder, or the raw material is injected into the inlet. There is a method in which a feeder is mounted so that outside air and powder are sucked by the feeder, and at the same time, the powder is sent to the classification area through the raw material supply pipe 116. In the present invention, among the above-mentioned three charging means, from the viewpoint of the apparatus surface and the operating conditions, in particular, the method and the method of increasing the negative pressure in the classification area to naturally suck the outside air and the powder are used. A method using a zection feeder is preferable.

【0031】又、本発明は、特に粒子径20μm以下の
粒子を50個数%以上含有する様なシャープな粒度分
布、高精度な分級精度が要求される静電荷現像用トナー
の分級をより効果的にならしめ、2分割分級のみならず
多分割分級でもより好ましい効果が得られる。更に、重
量平均粒子径が8μm以下のトナーを分散混合した後、
これに引き続いて連続的に分級処理することにおいて、
より一層の効果が得られる。
Further, the present invention is more effective in classifying the toner for electrostatic charge development, which is required to have a sharp particle size distribution such as containing 50% by number or more of particles having a particle size of 20 μm or less and a highly accurate classification accuracy. In addition to the two-division classification, more preferable effects can be obtained by the multi-division classification. Furthermore, after dispersing and mixing a toner having a weight average particle size of 8 μm or less,
In the subsequent continuous classification process,
Further effects can be obtained.

【0032】次に、上記した様な原料供給管116内に
おける良好な分散性を有する粉体原料が得られる分散混
合後に、引き続いて行われる分級処理について述べる。
例えば、3分割分級域での分級操作は、次の様にして行
われる。先ず、図1で示す分級機の排出口11、12及
び13の少なくとも1つを介して分級域内を減圧し、こ
の減圧により生じる原料供給管116中の流動気流によ
って、良好な分散性を有する粉体原料を、分級機内の分
級域へと流速50〜300m/秒で、分級域に開口する
開口部を有する原料供給管116の角錐筒部32を介し
て供給する。本発明においては、上記で述べた様に、原
料供給管116の変形筒部33の形状及び管内の状態を
変えることにより、上部流れと下部流れとが混合し、且
つ気流及び該気流と共に流動する原料粉体の流路が変更
されることにより、粉粒体の凝集性が低下し、分散性が
向上する結果、最終的な分級効率がよくなる。
Next, the classification treatment which is carried out subsequently after the dispersion and mixing to obtain the powder raw material having the good dispersibility in the raw material supply pipe 116 as described above will be described.
For example, the classification operation in the three-division classification area is performed as follows. First, the inside of the classification area is decompressed through at least one of the outlets 11, 12 and 13 of the classifier shown in FIG. 1, and the powder having good dispersibility is obtained by the flowing air flow in the raw material supply pipe 116 caused by this decompression. The body raw material is supplied to the classification area in the classifier at a flow rate of 50 to 300 m / sec through the pyramidal cylinder portion 32 of the raw material supply pipe 116 having an opening opening to the classification area. In the present invention, as described above, by changing the shape of the deforming cylinder portion 33 of the raw material supply pipe 116 and the state inside the pipe, the upper flow and the lower flow are mixed and flow with the air flow and the air flow. By changing the flow path of the raw material powder, the cohesiveness of the powder and granules is reduced and the dispersibility is improved. As a result, the final classification efficiency is improved.

【0033】以上の様にして分級機内に供給された粉体
原料は、分級機内の分級域にあるコアンダブロック26
の作用によるコアンダ効果と、その際に流入される空気
の如き気体の作用とにより湾曲線30を描いて移動し、
夫々粒径の大小に応じて分級される。即ち、大きい粒子
(粗粒子)は気流の外側である分級エッジ18の外側の
分画に、中間の粒子(規格内粒子径の粒子)は分級エッ
ジ17と18との間の分画に、小さい粒子(規格粒子径
未満の粒子)は分級エッジ17の内側の分画に夫々分割
される。そして、大きい粒子は排出口11より、中間の
粒子は排出口12より、小さい粒子は排出口13より夫
々排出される。
The powder raw material supplied into the classifier as described above is in the classifying zone in the classifier and is the Coanda block 26.
The Coanda effect due to the action of and the action of gas such as air that flows in at that time move along the curved line 30,
Each is classified according to the size of the particle size. That is, large particles (coarse particles) are in the fraction outside the classification edge 18, which is the outside of the air flow, and intermediate particles (particles with a standard particle size) are small in the fraction between the classification edges 17 and 18. The particles (particles with a size smaller than the standard particle size) are divided into fractions inside the classification edge 17, respectively. The large particles are discharged through the discharge port 11, the intermediate particles are discharged through the discharge port 12, and the small particles are discharged through the discharge port 13.

【0034】本発明の装置によって上述の分散混合及び
分級方法を実施する場合には、通常、相互の機器をパイ
プの如き連通手段で連結してなる一体装置システムとし
て使用する。この様な一体装置システムの好ましい例を
図2に示す。図2中、1は図1に示したものと同様の本
発明の分散混合及び気流式分級装置を構成する3分割分
級機であり、詳細は先に説明した通りである。116は
原料供給管であり、先に説明した様に、分級機1に開口
する開口部を有する角錐筒部32と、変形筒部33とか
ら形成されており、変形筒部33は、図1で示した例と
同様にジグザグの曲管からなる。2は粉体原料の定量供
給機、3は振動フィーダーであり、分級機1には捕集サ
イクロン4、5及び6が連通手段で連結されている。
When the above-mentioned dispersion mixing and classification method is carried out by the apparatus of the present invention, it is usually used as an integrated apparatus system in which mutual devices are connected by a communicating means such as a pipe. A preferred example of such an integrated device system is shown in FIG. In FIG. 2, reference numeral 1 is a three-division classifier which constitutes the same dispersing and mixing and airflow type classifying apparatus of the present invention as shown in FIG. 1, and the details are as described above. Reference numeral 116 denotes a raw material supply pipe, and as described above, it is formed of the pyramidal cylinder portion 32 having the opening portion that opens to the classifier 1 and the deforming cylinder portion 33. The deforming cylinder portion 33 is shown in FIG. It consists of a zigzag bent tube as in the example shown in. Reference numeral 2 is a powder material quantitative supply device, 3 is a vibrating feeder, and the collecting cyclones 4, 5 and 6 are connected to the classifier 1 by a communicating means.

【0035】上記の装置システムにおいて、粉体原料
は、適宜な手段により、定量供給機2に送り込まれ、次
いで振動フィーダー3を介して原料供給管116により
3分割分級機1内に導入される。導入に際しては、粒子
を分散混合し、粒子をほぐしつつ推進力をもたせて効率
のよい分級が行われる様に50〜300m/秒の流速で
3分割分級機1内に粉体原料が導入することが好まし
い。この様な流速で粉体原料を導入した場合には、3分
割分級機1の分級域の大きさは通常[10〜50cm]
×[10〜50cm]程度あるので、粉体原料は、0.
1秒以下、或いは0.01秒以下の瞬時に3種以上の粒
子群に分級し得る。図2に示した例では3分割分級機1
によって、大きい粒子(粗粒子)、中間の粒子(規定内
粒子径の粒子)、小さい粒子(規定粒子径未満の粒子)
に分割される。その後、大きい粒子は排出導管11’を
介して系外に排出され、捕集サイクロン6に送られて回
収される。中間の粒子は排出導管12’を介して系外に
排出され、捕集サイクロン5で製品51となるべく回収
される。小さい粒子は排出導管13’を介して系外に排
出され捕集サイクロン4で規定外粒子径の微小粉41と
して回収される。捕集サイクロン4、5及び6は、粉体
原料を原料導入管を介して分級域に吸引導入する際の吸
引減圧手段ともなる。
In the above-mentioned apparatus system, the powder raw material is fed to the constant amount feeder 2 by an appropriate means, and then introduced into the three-division classifier 1 through the vibrating feeder 3 by the raw material feed pipe 116. At the time of introduction, the powder raw material should be introduced into the three-division classifier 1 at a flow rate of 50 to 300 m / sec so that the particles are dispersed and mixed, and the particles are disentangled and a propulsive force is exerted to achieve efficient classification. Is preferred. When the powder raw material is introduced at such a flow rate, the size of the classification area of the three-division classifier 1 is usually [10 to 50 cm].
X [10 to 50 cm], the powder raw material was
It is possible to classify into 3 or more types of particle groups at an instant of 1 second or less, or 0.01 seconds or less. In the example shown in FIG. 2, a three-division classifier 1
Depending on the size, large particles (coarse particles), intermediate particles (particles with a specified particle size), small particles (particles with a particle size less than the specified size)
Is divided into After that, the large particles are discharged to the outside of the system through the discharge conduit 11 ′, sent to the collecting cyclone 6 and collected. The intermediate particles are discharged to the outside of the system through the discharge conduit 12 ', and are collected as much as the product 51 by the collection cyclone 5. The small particles are discharged to the outside of the system via the discharge conduit 13 'and collected by the collection cyclone 4 as fine powder 41 having a non-regulated particle diameter. The collection cyclones 4, 5 and 6 also serve as suction decompression means when suctioning and introducing the powder raw material into the classification area through the raw material introduction pipe.

【0036】上記の装置システムにおいて、粉体原料
は、粉体原料の定量供給機2、振動フィーダー3を介し
て原料供給管116内へと導入され、スロート部に続く
原料供給管116内のディフューザー部で膨張させ、粉
体粒子に推進力をもたせつつ粒子を上下流に分散させ、
更に上下流を混合流にし、凝集性の強い微粉体、低融点
の微粉体等のミクロ的な分散混合が連続的に短時間で行
うことが出来、図13〜図16に示した様な従来の機械
式混合機に比べて、装置の小型化、操作の簡素化が図
れ、混合工程が省略可能になることから、設備投資を減
らすことが出来、低コストでの生産が可能となる。
In the above apparatus system, the powder raw material is introduced into the raw material supply pipe 116 via the powder raw material quantitative feeder 2 and the vibration feeder 3, and the diffuser in the raw material supply pipe 116 following the throat portion. The particles are expanded, and the particles are dispersed upstream and downstream while giving a propulsive force to the particles,
Further, the upper and lower streams are mixed to make it possible to continuously perform microscopic dispersion mixing of fine powder having a strong cohesive property, fine powder having a low melting point, etc. in a short time, and the conventional method as shown in FIGS. Compared with the mechanical mixer of (1), the apparatus can be downsized, the operation can be simplified, and the mixing process can be omitted, so that the equipment investment can be reduced and the production can be performed at low cost.

【0037】上記の様な本発明の分散混合及び気流式分
級装置が用いられている装置システムにおいて、粉体原
料として静電荷現像用トナーとシリカ微粉体の2種類の
微粉体を投入し、重量平均粒子径20μm以下の粒子を
50個数%以上含有するトナー原料を分級したところ、
従来に比べ効率よく分級を行うことが出来た。更に、得
られた分級品を電子顕微鏡で観察したところ、トナー粒
子表面に均一にシリカが付着しているのが確認された。
In an apparatus system in which the dispersion / mixing and air flow type classifying apparatus of the present invention as described above is used, two kinds of fine powders of electrostatic charge developing toner and silica fine powder are charged as powder raw materials and weighted. When a toner raw material containing 50% by number or more of particles having an average particle diameter of 20 μm or less was classified,
We were able to classify more efficiently than before. Further, when the obtained classified product was observed with an electron microscope, it was confirmed that silica was uniformly attached to the surface of the toner particles.

【0038】特に、重量平均粒子径が10μm以下のト
ナー原料から、シャープな粒度分布を有し、且つトナー
粒子表面に均一にシリカが付着しているのが確認された
トナーを得ることが可能であった。更に、重量平均粒子
径が6μm以下のトナー原料からも、シャープな粒度分
布を有し、且つ粒子表面に均一にシリカが付着している
のが確認されるトナーを得ることが出来た。
In particular, it is possible to obtain a toner having a sharp particle size distribution and confirmed to have silica uniformly attached to the surface of the toner particles, from a toner raw material having a weight average particle diameter of 10 μm or less. there were. Further, even from a toner raw material having a weight average particle diameter of 6 μm or less, a toner having a sharp particle size distribution and having silica uniformly adhered to the particle surface could be obtained.

【0039】[0039]

【発明の効果】以上説明した様に、本発明によれば、例
えば、重量平均粒子径が10μm以下のトナー原料から
シャープな粒度分布を有するトナー粒子を効率よく得る
ことが可能であり、更には重量平均粒子径が8μm以
下、或いは6μm以下のトナー原料からシャープな粒度
分布を有するトナー粒子を効率よく得ることが可能とな
り、得られるトナーの品質向上と同時に安定な生産が可
能となる。又、本発明によれば、例えば、静電荷現像用
トナーとシリカ微粉体の2種類を粉体原料とした場合
に、2種類の微粉体を均一に分散混合させ、微粉体を一
次粒子にまで分散させることが出来、且つトナー表面に
均一にシリカが付着し、更にこれに続けて高精度の分級
が可能となる結果、シャープな粒度分布を有するトナー
が得られる。特に、重量平均粒子径20μm以下の粒子
を50個数%以上含有するトナーを、効率よく分散混合
させた後、分級処理することによって生成することが可
能となる。更に、本発明によれば、従来の機械式混合機
を使用する場合に比べて、装置の小型化が図れ、且つ気
流分級機への原料供給管を特定の構成とするのみで混合
工程を省略することができる為、操作の簡素化が図れ、
例えば、トナー製造における設備投資を減らすことが出
来、低コストでのトナーの生産が可能となる。
As described above, according to the present invention, for example, it is possible to efficiently obtain toner particles having a sharp particle size distribution from a toner raw material having a weight average particle diameter of 10 μm or less. It is possible to efficiently obtain toner particles having a sharp particle size distribution from a toner raw material having a weight average particle diameter of 8 μm or less, or 6 μm or less, and it is possible to improve the quality of the obtained toner and to perform stable production. Further, according to the present invention, for example, when two kinds of electrostatic charge developing toner and silica fine powder are used as powder raw materials, the two kinds of fine powder are uniformly dispersed and mixed, and the fine powder is converted into primary particles. As a result of being able to disperse and silica uniformly adhering to the surface of the toner, followed by high-precision classification, a toner having a sharp particle size distribution can be obtained. In particular, a toner containing 50 number% or more of particles having a weight average particle diameter of 20 μm or less can be efficiently dispersed and mixed, and then classified by a classification treatment. Further, according to the present invention, the apparatus can be downsized as compared with the case of using the conventional mechanical mixer, and the mixing step can be omitted only by forming the raw material supply pipe to the airflow classifier into a specific configuration. It is possible to simplify the operation,
For example, it is possible to reduce the capital investment in toner manufacturing and to manufacture toner at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の分散混合及び気流式分級装置の一例を
示すの断面図である。
FIG. 1 is a cross-sectional view showing an example of a dispersion / mixing and airflow type classification device of the present invention.

【図2】図1に示す装置を用いた一体装置システムを示
す図である。
2 is a diagram showing an integrated device system using the device shown in FIG. 1. FIG.

【図3】原料供給管の変形筒部の一例を示す側面の断面
図及び斜視図である。
FIG. 3 is a side cross-sectional view and a perspective view showing an example of a deformed cylinder portion of a raw material supply pipe.

【図4】原料供給管の変形筒部の別の例を示す側面の断
面図及び斜視図である。
FIG. 4 is a side cross-sectional view and a perspective view showing another example of the modified cylinder portion of the raw material supply pipe.

【図5】原料供給管の変形筒部の別の例を示す側面の断
面図及び斜視図である。
5A and 5B are a side sectional view and a perspective view showing another example of the deformed cylinder portion of the raw material supply pipe.

【図6】原料供給管の変形筒部の別の例を示す側面の断
面図及び斜視図である。
FIG. 6 is a side cross-sectional view and a perspective view showing another example of the deformed cylinder portion of the raw material supply pipe.

【図7】原料供給管の変形筒部の別の例を示す側面の断
面図及び斜視図である。
7A and 7B are a side sectional view and a perspective view showing another example of the modified cylinder portion of the raw material supply pipe.

【図8】原料供給管の変形筒部の別の例を示す側面の断
面図及び斜視図である。
8A and 8B are a side sectional view and a perspective view showing another example of the deformed cylinder portion of the raw material supply pipe.

【図9】原料供給管の変形筒部の別の例を示す側面の断
面図及び斜視図である。
9A and 9B are a side sectional view and a perspective view showing another example of the deformed cylinder portion of the raw material supply pipe.

【図10】従来の原料供給管を有する気流分級機を示す
断面図である。
FIG. 10 is a cross-sectional view showing an airflow classifier having a conventional raw material supply pipe.

【図11】従来の原料供給管の直管状の筒部を示す側面
の断面図及び斜視図である。
FIG. 11 is a side sectional view and a perspective view showing a straight tubular portion of a conventional raw material supply pipe.

【図12】従来の原料供給管を有する一体装置システム
を示す図である。
FIG. 12 is a view showing an integrated device system having a conventional raw material supply pipe.

【図13】従来の混合機を示す断面図である。FIG. 13 is a cross-sectional view showing a conventional mixer.

【図14】従来の混合機を示す断面図である。FIG. 14 is a sectional view showing a conventional mixer.

【図15】従来の混合機を示す断面図である。FIG. 15 is a cross-sectional view showing a conventional mixer.

【図16】従来の混合機を示す断面図である。FIG. 16 is a cross-sectional view showing a conventional mixer.

【符号の説明】[Explanation of symbols]

1:3分割分級装置 2:定量供給機 3:振動フィーダー 4、5、6:捕集サイクロン 11、12、13:排出口 11’、12’、13’:排出導管 14、15:入気口 16、116:原料供給管 16a:筒部 16b:角錐筒部 17、18:分級エッジ 19:入気エッジ 20:第1気体導入調節手段 21:第2気体導入調節手段 22、23、24:側壁 25:下部壁 26:コアンダブロック 27:上部壁 28、29:静圧計 30:固体粒子飛散方向 31:インゼクションフィーダー 32:原料供給管の角錐筒部 33:原料供給管の変形筒部 40:流路制御板 1: 3 division classifier 2: Fixed amount feeder 3: Vibratory feeder 4, 5, 6: Collection cyclone 11, 12, 13: Discharge port 11 ', 12', 13 ': Discharge conduit 14, 15: Inlet port 16, 116: Raw material supply pipe 16a: Cylindrical part 16b: Pyramidal cylinder part 17, 18: Classification edge 19: Inlet edge 20: First gas introduction adjusting means 21: Second gas introduction adjusting means 22, 23, 24: Side wall 25: Lower wall 26: Coanda block 27: Upper wall 28, 29: Static pressure gauge 30: Solid particle scattering direction 31: Injection feeder 32: Pyramidal cylinder of raw material supply pipe 33: Deformation cylindrical portion of raw material supply pipe 40: Flow control plate

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 分級機の分級域に開口された開口部を有
する原料供給管が設けられており、該原料供給管内を流
動する気流によって2種類以上の粉体原料が混合され且
つ分散された後、連続して分級機内の分級域へと粉体原
料が噴出されて、噴出気流中の粉体原料が、粉体原料粒
子の慣性力とコアンダ効果による湾曲気流の遠心力とに
よって分級機内で少なくとも粗粉と微粉とに分級される
分散混合及び気流式分級装置において、原料供給管内の
気流と、該気流と共に流動する2種類以上の粉体原料と
からなる上部流れと下部流れとを混合させ、且つ気流中
の粉体原料を分散させる為の混合域が原料供給管内に少
なくとも1箇所設けられていることを特徴とする分散混
合及び気流式分級装置。
1. A raw material supply pipe having an opening opened in a classification area of a classifier is provided, and two or more kinds of powder raw materials are mixed and dispersed by an air stream flowing in the raw material supply pipe. After that, the powder raw material is continuously ejected to the classification area in the classifier, and the powder raw material in the jet stream is generated in the classifier by the inertia force of the powder raw material particles and the centrifugal force of the curved air flow due to the Coanda effect. In a dispersion-mixing and air-flow classifying device in which at least coarse powder and fine powder are classified, an air flow in a raw material supply pipe and an upper flow and a lower flow composed of two or more kinds of powder raw materials flowing with the air flow are mixed. A dispersion / mixing and airflow type classification device, characterized in that at least one mixing area for dispersing the powder raw material in the airflow is provided in the raw material supply pipe.
【請求項2】 原料供給管が、変形筒部と管部とからな
り、変形筒部に少なくとも1箇所の混合域が設けられて
いる請求項1に記載の分散混合及び気流式分級装置。
2. The dispersive mixing and airflow classifying apparatus according to claim 1, wherein the raw material supply pipe is composed of a deforming cylinder portion and a pipe portion, and at least one mixing zone is provided in the deforming cylinder portion.
【請求項3】 変形筒部が、曲管で形成されている請求
項2に記載の分散混合及び気流式分級装置。
3. The dispersive mixing and airflow type classifying device according to claim 2, wherein the deformable cylinder portion is formed of a curved pipe.
【請求項4】 変形筒部が、直管であり、且つ上部内壁
及び下部内壁に複数の流路制御板が設けられている請求
項2に記載の分散混合及び気流式分級装置。
4. The dispersive mixing and airflow classifying device according to claim 2, wherein the deformable cylinder is a straight pipe, and a plurality of flow path control plates are provided on the upper inner wall and the lower inner wall.
JP12770796A 1996-04-25 1996-04-25 Dispersion mixing and air flow type classifying device Pending JPH09290218A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12770796A JPH09290218A (en) 1996-04-25 1996-04-25 Dispersion mixing and air flow type classifying device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12770796A JPH09290218A (en) 1996-04-25 1996-04-25 Dispersion mixing and air flow type classifying device

Publications (1)

Publication Number Publication Date
JPH09290218A true JPH09290218A (en) 1997-11-11

Family

ID=14966727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12770796A Pending JPH09290218A (en) 1996-04-25 1996-04-25 Dispersion mixing and air flow type classifying device

Country Status (1)

Country Link
JP (1) JPH09290218A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008018321A (en) * 2006-07-12 2008-01-31 Ricoh Co Ltd Classifier, classification method, toner, and its manufacturing method
CN101912845A (en) * 2010-07-26 2010-12-15 浙江节尔煤田技改有限公司 Adjustable air impact non-lump coal kicking out machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008018321A (en) * 2006-07-12 2008-01-31 Ricoh Co Ltd Classifier, classification method, toner, and its manufacturing method
CN101912845A (en) * 2010-07-26 2010-12-15 浙江节尔煤田技改有限公司 Adjustable air impact non-lump coal kicking out machine

Similar Documents

Publication Publication Date Title
US5016823A (en) Air current classifier, process for preparing toner, and apparatus for preparing toner
KR940007338B1 (en) Process for producing toner for developing electrostatic image and apparatus therefor
JPH0619586B2 (en) Method for manufacturing toner for developing electrostatic image
US5934478A (en) Gas stream classifier and process for producing toner
JPH09290218A (en) Dispersion mixing and air flow type classifying device
JPH06230606A (en) Production of toner and producing equipment system used therefor
JP2000042494A (en) Air-current classification
JP3176779B2 (en) Airflow classifier and airflow classification method
JP2727245B2 (en) Airflow classifier and airflow classification method
KR930004694B1 (en) Air current classifier process for preparing toner and apparatus for preparing toner
JP3327773B2 (en) Manufacturing method of toner for electrostatic charge development
JPH0574681U (en) Multi-stage classifier
JP3278326B2 (en) Airflow classifier and toner manufacturing method
JPH09187733A (en) Air current-utilizing type classifying apparatus
JP3347551B2 (en) Airflow classifier and method for producing toner
JPH08141509A (en) Air flow type classifying apparatus and preparation of toner
JP3278325B2 (en) Airflow classifier and toner manufacturing method
JP2001201890A (en) Manufacturing method of toner
JPH0780415A (en) Air classifier and air classification
JP2715338B2 (en) Airflow classifier and airflow classification method
JP2984505B2 (en) Airflow classifier and airflow classification method
JPH0760195A (en) Pneumatic classifier and pneumatic classifying method
JP3295793B2 (en) Airflow classifier and toner manufacturing method
JP2715325B2 (en) Airflow classifier and airflow classification method
JPH09314060A (en) Air-flow type classifying device and production of electrostatic charge image developing toner