JPH09288115A - Method and apparatus for manufacture of sharp probe - Google Patents

Method and apparatus for manufacture of sharp probe

Info

Publication number
JPH09288115A
JPH09288115A JP10258596A JP10258596A JPH09288115A JP H09288115 A JPH09288115 A JP H09288115A JP 10258596 A JP10258596 A JP 10258596A JP 10258596 A JP10258596 A JP 10258596A JP H09288115 A JPH09288115 A JP H09288115A
Authority
JP
Japan
Prior art keywords
probe
base material
tip
probe base
sharpened
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10258596A
Other languages
Japanese (ja)
Inventor
Masahito Tomita
雅人 富田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP10258596A priority Critical patent/JPH09288115A/en
Publication of JPH09288115A publication Critical patent/JPH09288115A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Measuring Leads Or Probes (AREA)

Abstract

PROBLEM TO BE SOLVED: To manufacture a sharp probe in which the aspect ratio of the effective part of the probe is high and which uses various chemically stable materials. SOLUTION: In a method, a thin wire or a probe 1 which is used for a scanning probe microscope, a field emission electron source, a field emission ion source, an electrode or a sensor is made sharp. In this case, at least, a process in which a substance used to form the sharp probe is ionized and a process in which a voltage is applied to ions and in which the ions are concentrated on, and stuck to, the tip part of a probe base material by concentrating an electric field are used. Thereby, a protrusion 10 whose aspect ratio is high is formed at the tip part of the probe base material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、走査型プローブ顕
微鏡、電界放射電子源、電界放射イオン源、電極または
センサ等に用いられる細線もしくは探針を先鋭化する先
鋭探針の製造方法およびそれを実施する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a sharpened probe for sharpening a fine wire or a probe used in a scanning probe microscope, a field emission electron source, a field emission ion source, an electrode or a sensor, and the like. It relates to a device to be implemented.

【0002】[0002]

【従来の技術】走査型トンネル顕微鏡の探針の作製方法
としては、タングステン、白金−イリジウム等の金属線
を電解研磨法により切断する際に、電解研磨液上の金属
線の切断部分に生じる先鋭化した部分を用いる場合が多
い。また、電界放射型電子銃のチップも上記と同様な方
法で作製される。原子間力顕微鏡の探針の代表例とし
て、LSI等の微細加工技術を用いて作製される、シリ
コン酸化物、窒化物の微細な多面体やダイヤモンドの多
面体がある(Chunli Bai,“Scanning Tunneling Micros
copy and its application”, Springer Series in Sur
face Sciences 32,Springer, Schanghai, 1995)。この
他に、一度先鋭化された探針を、イオン研磨、あるいは
加熱しながら高電界中での表面原子を移動させて、鋭化
した探針をいっそう先鋭化する方法等も提案されてい
る。このような手法により作製される探針は、その最先
端は単原子もしくは数原子のみからなり、走査型プロー
ブ顕微鏡の探針、または電界放射型電子銃のチップとし
て十分に機能する。しかし、特別に工夫された探針を除
けば、先端の曲率半径は数百nm程度あり、最先端から
少し内部に入ると急激に原子数が増え、チップの径が太
くなる。このように実効部分のアスペクト比が低いた
め、凹凸の激しい表面形状に探針が追従できないという
問題がある。さらに、探針の表面原子の酸化または汚染
物質の吸着等が生じるため、探針の再現性を良くするた
めには、先端部の原子配列を確認し、必要に応じて探針
の清浄化、先鋭化を、測定ごとに行わなくてはならない
と言われている。特に、スキャニングトネリングスペク
トロスコピ(STS)を行う際には、探針の原子の種類
や、その電子状態が判っている物質が望まれる。また、
電界放射電子源においても、チップ先端の化学的な安定
性が放射電流の安定性に直結しているので、化学的に安
定な物質が望まれている。また、磁気力顕微鏡の探針で
は、タングステンまたはシリコンの探針先端部に鉄やニ
ッケルを蒸着して薄膜磁石を形成する。微小磁石の大き
さ、磁化の大きさで決まる分解能は、現状では数十nm
程度が最高である。さらに微小な磁石を探針の先端部に
形成できれば、その分解能は向上する。また、基板上に
数nmの細線を作製する方法はあるが、これを探針の先
端部に形成させる方法はない。また、完全性の高いナノ
メートルサイズの細線として、炭素ナノチューブ〔飯島
澄夫、Nature,354(1991),p.56〕が注目されているが、
これの精製方法が確立しておらず、ハンドリングを容易
にするために、単一のナノチューブを探針の先端として
用いる技術も見出されていない。したがって、現在、ほ
とんどの材料において、探針の有効部分のアスペクト比
の高い線を加工する方法は知られていない。しかし、マ
イクロマシン等の研究分野では、できるだけ多くの材料
に応用できる微細加工技術が望まれている。また、これ
までにない極細線が実現できれば、生物・医学、電子・
電気工学、分析技術等のプローブとして、また、ナノメ
ータサイズの構造では、新しい光・電気物性が予想され
る等、さまざまな分野への展開が期待されている。
2. Description of the Related Art As a method of manufacturing a probe of a scanning tunneling microscope, when a metal wire of tungsten, platinum-iridium, etc. is cut by an electrolytic polishing method, a sharp tip generated at the cut portion of the metal wire on the electrolytic polishing liquid. In many cases, the converted part is used. A field emission electron gun chip is also manufactured by the same method as described above. As a typical example of the probe of an atomic force microscope, there are fine polyhedrons of silicon oxide and nitride and polyhedrons of diamond, which are produced by using a fine processing technology such as LSI (Chunli Bai, “Scanning Tunneling Micros
copy and its application ”, Springer Series in Sur
face Sciences 32, Springer, Schanghai, 1995). In addition to this, there has been proposed a method in which a sharpened probe is further sharpened by moving surface atoms in a high electric field while ion polishing or heating. The tip manufactured by such a method is composed of only a single atom or a few atoms at the forefront, and functions sufficiently as a tip of a scanning probe microscope or a tip of a field emission electron gun. However, except for a specially devised probe, the radius of curvature of the tip is about several hundreds of nm, and the number of atoms suddenly increases a little inside from the leading edge, and the tip diameter increases. Since the effective portion has a low aspect ratio as described above, there is a problem in that the probe cannot follow the surface shape having a large number of irregularities. Furthermore, since the surface atoms of the probe are oxidized or contaminants are adsorbed, in order to improve the reproducibility of the probe, check the atomic arrangement of the tip and clean the probe if necessary. It is said that sharpening must be done for each measurement. In particular, when performing scanning tunneling spectroscopy (STS), it is desirable to use a substance whose atom type of probe and its electronic state are known. Also,
Also in the field emission electron source, since the chemical stability of the tip of the chip is directly connected to the stability of the emission current, a chemically stable substance is desired. Further, in a probe of a magnetic force microscope, a thin film magnet is formed by depositing iron or nickel on the tip of a probe of tungsten or silicon. At present, the resolution determined by the size of the micro magnet and the size of the magnetization is several tens nm.
The degree is the highest. If a finer magnet can be formed at the tip of the probe, the resolution will be improved. Further, there is a method of forming a thin line of several nm on the substrate, but there is no method of forming this at the tip of the probe. Carbon nanotubes (Sumio Iijima, Nature, 354 (1991), p.56) are attracting attention as nanowires with high perfection.
A purification method for this has not been established, and a technique using a single nanotube as the tip of a probe has not been found in order to facilitate handling. Therefore, at present, in most materials, there is no known method for processing a high aspect ratio line of the effective portion of the probe. However, in the field of research such as micromachines, fine processing technology that can be applied to as many materials as possible is desired. In addition, if we can realize unprecedented ultrafine wire, we can
It is expected to be applied to various fields such as a probe for electrical engineering and analysis technology, and a new optical / electrical property is expected in a nanometer size structure.

【0003】[0003]

【発明が解決しようとする課題】上述したように、従来
技術において、作製される探針や極細線の構造はアスペ
クト比(縦横比)の低いものが多く、また材質も限られ
ているために、使用上の制約が大きいという問題があっ
た。
As described above, in the prior art, many of the structures of the probe and the ultrafine wire to be manufactured have a low aspect ratio (aspect ratio), and the materials are limited. However, there was a problem that there were large restrictions on usage.

【0004】本発明の目的は、上記従来技術の問題点を
解消し、探針の有効部分のアスペクト比が高く、化学的
に安定な種々の材質を用いて先鋭探針を作製することが
可能な先鋭探針の製造方法およびそれを実施する装置を
提供することにある。
An object of the present invention is to solve the above-mentioned problems of the prior art, and to manufacture a sharpened probe using various chemically stable materials having a high aspect ratio of the effective portion of the probe. To provide a method for manufacturing a sharp tip probe and an apparatus for carrying out the method.

【0005】[0005]

【課題を解決するための手段】上記本発明の目的を達成
するために、本発明は特許請求の範囲に記載のような構
成とするものである。すなわち、本発明は請求項1に記
載のように、走査プローブ顕微鏡、電界放射電子源、電
界放射イオン源、電極またはセンサに用いられる細線も
しくは探針を先鋭化する先鋭探針の製造方法であって、
先鋭探針を形成する物質をイオン化する工程と、上記イ
オンに電圧を印加して、該イオンを電界集中により探針
母材の先端部に集中して付着させる工程を少なくとも用
いて、アスペクト比の高い突起を探針母材の先端部に形
成する先鋭探針の製造方法とするものである。また、本
発明は請求項2に記載のように、請求項1に記載の先鋭
探針の製造方法を実施する装置であって、探針母材と、
該探針母材の移動を調整するアクチュエータと、先鋭探
針を形成する物質をイオン化する手段と、上記イオンに
電圧を印加して、該イオンを電界集中して探針母材の先
端部に集中して付着させる制御手段を少なくとも備えた
先鋭探針の製造装置とするものである。このように、請
求項1および請求項2に記載の先鋭探針の製造方法およ
びその装置とすることにより、細線または探針として用
いる物質を含む原子または分子もしくは固体の一部をイ
オン化し、このイオンを電界集中によって探針先端に集
めることができるので、高アスペクト比の先鋭探針を再
現性良く作製できる効果がある。また、本発明は請求項
3に記載のように、走査プローブ顕微鏡、電界放射電子
源、電界放射イオン源、電極またはセンサに用いられる
細線もしくは探針を先鋭化する先鋭探針の製造方法であ
って、イオン源によって、探針母材の先端部を先鋭化す
る物質を含む原子または分子をイオン化する工程と、上
記イオン源からのイオンの速度を上記エネルギーフィル
タにより制御する工程と、探針母材とエネルギーフィル
タとの間に電圧を印加して、上記イオンを電界集中によ
り探針母材の先端部に集中して付着する工程を少なくと
も用いて、アスペクト比の高い突起を探針母材の先端部
に形成する先鋭探針の製造方法とするものである。ま
た、本発明は請求項4に記載のように、請求項3に記載
の先鋭探針の製造方法を実施する装置であって、探針母
材と、該探針母材の移動を調整するアクチュエータと、
探針母材の先端部を先鋭化する物質をイオン化するイオ
ン源と、該イオンの速度を調整するエネルギーフィルタ
と、上記探針母材とエネルギーフィルタとの間に電圧を
印加して、上記イオンを電界集中して探針母材の先端部
に集中して付着させる制御手段を少なくとも備えた先鋭
探針の製造装置とするものである。このように、上記請
求項3および請求項4に記載の先鋭探針の製造方法およ
びその装置とすることにより、イオン源で発生したイオ
ンはエネルギーフィルタを通過すると速度がほとんどゼ
ロのイオンとなる。この時に探針母材とエネルギーフィ
ルタ間に電圧を印加すると、発生した電場によりイオン
が探針の先端部に引き寄せられ、電界の集中によってイ
オンを小さな領域に収束することができるので、探針母
材の先端部に極細の突起を歩留まり良く作製できる効果
がある。また、本発明は請求項5に記載のように、走査
プローブ顕微鏡、電界放射電子源、電界放射イオン源、
電極またはセンサに用いられる細線もしくは探針を先鋭
化する先鋭探針の製造方法であって、真空チャンバの内
部に、少なくとも探針母材と、該探針母材の移動を調整
するアクチュエータと、所定の基板を配設し、該基板上
に先鋭探針を形成する物質のガス吸着層を形成する工程
と、探針母材と上記基板の間に電圧を印加して、探針母
材から電界放射電子を引き出し、該電界放射電子により
ガス吸着層のガス成分をイオン化する工程と、該イオン
化したガス成分を電界集中により探針母材の先端部に集
中して付着する工程を少なくとも用いて、アスペクト比
の高い突起を探針母材の先端部に形成する先鋭探針の製
造方法とするものである。また、本発明は請求項6に記
載のように、請求項5に記載の先鋭探針の製造方法を実
施する装置であって、真空チャンバの内部に、少なくと
も探針母材と、該探針母材の移動を調整するアクチュエ
ータと、所定の基板を配設し、該基板上に先鋭探針を形
成する物質のガス吸着層を形成する手段と、探針母材と
上記基板の間に電圧を印加して、探針母材から電界放射
電子を引き出し、該電界放射電子によりガス吸着層のガ
ス成分をイオン化する手段と、上記探針母材と基板との
間に電圧を印加して、上記イオンを電界集中して探針母
材の先端部に集中して付着させる制御手段を少なくとも
備えた先鋭探針の製造装置とするものである。このよう
に、上記請求項5および請求項6に記載の先鋭探針の製
造方法およびその装置では、電界放射電子によって吸着
ガスが電離してイオンとなり、これが探針母材の先端部
に引き寄せられて突起が形成される。この時に突起の成
長に合わせて、突起の先端と基板の距離を所定の値に保
つように制御器でコントロールすると、安定した電界放
射電流およびイオン電流が得られるので、径が均一な極
細線を再現性良く形成できる効果がある。本発明者ら
は、アスペクト比の高い微細探針を、取扱の容易な探針
母材の先端部に形成する方法、また、アスペクト比の高
い微細探針を種々の材質で作製できる方法、さらに化学
的に安定した微細探針が得られる方法を検討した結果、
本発明を見出すに至った。すなわち、本発明は、走査プ
ローブ顕微鏡、電界放射電子源、電界放射イオン源、あ
るいは電極、センサ等に用いる細線または探針の製造に
関して、細線または探針として用いる物質を含む原子ま
たは分子もしくは固体の一部をイオン化し、このイオン
を電界集中により探針先端に集めることにより、アスペ
クト比の高い先鋭探針を作製する方法およびその装置で
ある。次に、図1(a)、(b)に基づいて、本発明の
原理を説明する。なお、図1(a)1は、先鋭探針を作
製する装置の構成を示す模式図で、図1(b)は高いア
スペクト比を有するSTM(走査型トンネル顕微鏡)の
探針の先端部を示す拡大図である。図において、1は通
常の方法で作製したSTMの探針、2はイオン源であ
る。イオン源2で発生したイオン3は、エネルギーフィ
ルタ4を通過した後は、速度がほとんどゼロのイオン6
になっている。この時、STMの探針1とエネルギーフ
ィルタ4の間に、電源5により電圧を印加すると、発生
した電場によりイオンが探針1に引き寄せられる。この
時、イオン6の軌道は、電気力線に沿うものではない
が、探針1とエネルギーフィルタ4の距離を短くすれ
ば、電界の集中によってイオン6を小さな領域に収束す
ることができる。この結果、探針1に極細の突起7を作
ることができる。この突起7の先端からの放射電子の電
流と、エネルギーフィルタ4からのイオン電流の和は、
制御器8でモニタされ、突起7の成長につれて変化する
電流を基にしたプログラムにより突起1とエネルギーフ
ィルタ4の距離Lをアクチュエータ9により移動させる
ことで、図1(b)に示すように、高いアスペクト比の
突起10を成長させることができる。本発明の第1の特
徴は、従来技術ではできなかった高アスペクト比の極細
線の突起を探針母材の先端部に形成することが可能とな
る点である。第2の特徴は、従来技術では製造できなか
った種々の材料を用いて高アスペクト比の極細線の突起
が形成できる点である。第3の特徴は化学的に安定な材
料を用いて極細線の突起を有する探針の形成できる点で
ある。このように、本発明によれば、種々の材料を用い
て、従来技術では得られなかった高アスペクト比の極微
細線の突起を持つ、高機能を有する探針を提供すること
が可能である。
In order to achieve the above-mentioned object of the present invention, the present invention has a constitution as set forth in the claims. That is, the present invention is, as described in claim 1, a method for manufacturing a sharp probe for sharpening a fine wire or a probe used for a scanning probe microscope, a field emission electron source, a field emission ion source, an electrode or a sensor. hand,
Using at least a step of ionizing a substance forming a sharp tip and a step of applying a voltage to the ions to concentrate the ions on the tip of the probe base material by electric field concentration, This is a method for manufacturing a sharpened probe in which a high protrusion is formed on the tip of the probe base material. Further, as described in claim 2, the present invention is an apparatus for carrying out the method for manufacturing a sharpened probe according to claim 1, comprising a probe base material,
An actuator for adjusting the movement of the probe base material, a means for ionizing a substance forming a sharpened probe, a voltage is applied to the ions, and the ions are concentrated in an electric field to the tip of the probe base material. The manufacturing apparatus for a sharpened probe is provided with at least a control means for concentrating and adhering. Thus, by using the method and apparatus for manufacturing a sharpened tip according to claim 1 and claim 2, a part of atom or molecule or solid containing a substance used as a fine wire or a probe is ionized, and Ions can be collected at the tip of the probe by electric field concentration, so that a sharp probe with a high aspect ratio can be produced with good reproducibility. Further, the present invention is, as described in claim 3, a method for manufacturing a sharp probe for sharpening a fine wire or a probe used for a scanning probe microscope, a field emission electron source, a field emission ion source, an electrode or a sensor. The ion source to ionize atoms or molecules containing a substance that sharpens the tip of the probe base material; a step of controlling the velocity of ions from the ion source by the energy filter; A voltage is applied between the material and the energy filter, and at least the step of concentrating and attaching the ions to the tip portion of the probe base material by electric field concentration is used to form protrusions with a high aspect ratio on the probe base material. This is a method for manufacturing a sharpened probe formed at the tip. Further, as described in claim 4, the present invention is an apparatus for carrying out the method for manufacturing a sharpened probe according to claim 3, wherein the probe base material and the movement of the probe base material are adjusted. An actuator,
An ion source that ionizes a substance that sharpens the tip portion of the probe base material, an energy filter that adjusts the velocity of the ions, and a voltage is applied between the probe base material and the energy filter to generate the ions. Is a sharpened probe manufacturing apparatus including at least a control means for concentrating the electric field and concentrating and adhering it to the tip of the probe base material. As described above, by using the sharpened probe manufacturing method and the apparatus thereof according to the third and fourth aspects, when the ions generated by the ion source pass through the energy filter, the ions become almost zero in velocity. At this time, if a voltage is applied between the probe base material and the energy filter, the generated electric field attracts the ions to the tip of the probe, and the concentration of the electric field allows the ions to converge to a small area. There is an effect that ultrafine protrusions can be produced at the tip of the material with a high yield. The present invention also provides a scanning probe microscope, a field emission electron source, a field emission ion source,
A method of manufacturing a sharpened probe for sharpening a fine wire or a probe used for an electrode or a sensor, wherein at least a probe base material and an actuator for adjusting movement of the probe base material are provided inside a vacuum chamber, A step of disposing a predetermined substrate and forming a gas adsorption layer of a substance forming a sharpened probe on the substrate, applying a voltage between the probe base material and the substrate, At least using the steps of extracting field emission electrons and ionizing the gas component of the gas adsorption layer by the field emission electrons, and concentrating and attaching the ionized gas component to the tip of the probe base material by electric field concentration. A method for manufacturing a sharpened probe in which a protrusion having a high aspect ratio is formed at the tip of the probe base material. The present invention is also an apparatus for carrying out the method for manufacturing a sharpened probe according to claim 5 as described in claim 6, wherein at least the probe base material and the probe are provided inside the vacuum chamber. An actuator for adjusting the movement of the base material, a means for arranging a predetermined substrate and forming a gas adsorption layer of a substance forming a sharp probe on the substrate, and a voltage between the probe base material and the substrate. Is applied to extract field emission electrons from the probe base material, and a voltage is applied between the means for ionizing the gas component of the gas adsorption layer by the field emission electrons and the probe base material and the substrate, The sharpened probe manufacturing apparatus is provided with at least control means for concentrating the ions in the electric field and concentrating them on the tip of the probe base material. As described above, in the method and apparatus for manufacturing a sharpened probe according to claims 5 and 6, the adsorbed gas is ionized by the field emission electrons to become ions, which are attracted to the tip of the probe base material. A protrusion is formed. At this time, if the controller controls the distance between the tip of the protrusion and the substrate to a predetermined value in accordance with the growth of the protrusion, a stable field emission current and ion current can be obtained. It has the effect of forming with good reproducibility. The present inventors have formed a high aspect ratio microprobe on the tip of a probe base material that is easy to handle, and a method that can produce a high aspect ratio microprobe with various materials. As a result of examining the method of obtaining a chemically stable fine probe,
The present invention has been discovered. That is, the present invention relates to the production of a thin wire or probe used for a scanning probe microscope, a field emission electron source, a field emission ion source, or an electrode, a sensor, etc. A method and an apparatus for producing a sharp tip having a high aspect ratio by ionizing a part of the ions and collecting the ions at the tip of the probe by concentrating an electric field. Next, the principle of the present invention will be described based on FIGS. 1 (a) and 1 (b). 1A is a schematic diagram showing the configuration of an apparatus for producing a sharpened probe, and FIG. 1B shows the tip of the STM (scanning tunneling microscope) probe having a high aspect ratio. FIG. In the figure, 1 is an STM probe manufactured by a normal method, and 2 is an ion source. After passing through the energy filter 4, the ions 3 generated by the ion source 2 have a velocity of almost zero.
It has become. At this time, when a voltage is applied from the power source 5 between the STM probe 1 and the energy filter 4, ions are attracted to the probe 1 by the generated electric field. At this time, the trajectories of the ions 6 are not along the lines of electric force, but if the distance between the probe 1 and the energy filter 4 is shortened, the ions 6 can be converged into a small area by the concentration of the electric field. As a result, the fine protrusion 7 can be formed on the probe 1. The sum of the current of the emitted electrons from the tip of the protrusion 7 and the ion current from the energy filter 4 is
The distance L between the protrusion 1 and the energy filter 4 is moved by the actuator 9 according to a program that is monitored by the controller 8 and changes as the protrusion 7 grows. The protrusion 10 having an aspect ratio can be grown. The first feature of the present invention is that it becomes possible to form a very fine wire projection having a high aspect ratio on the tip portion of the probe base material, which has not been possible with the prior art. The second feature is that it is possible to form protrusions of ultrafine wires with a high aspect ratio by using various materials that cannot be manufactured by the conventional technology. The third feature is that a probe having an extra fine wire protrusion can be formed using a chemically stable material. As described above, according to the present invention, it is possible to provide a highly functional probe having projections of ultrafine lines having a high aspect ratio, which cannot be obtained by the conventional technique, by using various materials.

【0006】[0006]

【発明の実施の形態】以下に、本発明の実施の形態につ
いて説明する。本実施の形態では、細線の母材としてタ
ングステンを用いているが、これ以外に、炭素ファイ
バ、鉄、ニッケル、コバルト、白金−イリジウム、シリ
コン等を用いても、タングステンと同様の細線を作製で
きることを確認している。また、本実施の形態では、吸
着ガスのイオン化には電界放射電子のみを使っている
が、熱電子、あるいは別途に用意された線源からの可視
光線、紫外線、X線、電子線、イオン線による励起のう
ちの、いずれかまたはその組み合わせによっても吸着ガ
スのイオン化は可能である。これらの荷電粒子や光は、
イオン化のみではなく、製造中、または製造後に細線を
加熱するためにも用いることができる。この加熱によ
り、細線に飛来したイオンの線状の結晶成長を促進させ
ることができる。さらに、本実施の形態では、ガスとし
てメタンを用いているが、これ以外の炭化水素、有機金
属や、シラン等の水素化した半導体のガスなどを用いて
も、金属あるいは半導体からなる細線を作製することが
できる。さらに、これらの複数のガス種を交互に組み合
わせることにより、複合材料からなる極細線の探針を作
製することができる。図2に、本実施の形態で例示する
先鋭探針の製造装置の構成の一例を示す。図において、
真空チャンバ12中に、探針へのガス吸着を制御するた
めに、冷却器13に固定した金の基板14が設けられて
いる。これに対向して、アクチュエータ15に固定した
タングステンの探針母材16を配設する。稀ガスボンベ
17とメタンガスボンベ18から流量調整器19、21
で所定の混合比の稀ガス:メタン=0〜100:1に設
定した混合ガスをチャンバに導入し、基板表面に吸着ガ
ス層22を作る。コントローラ(制御器)23で制御さ
れた電源24で電圧を印加し(10〜10000V)、
電界放射電子25を引き出すと、この電界放射電子25
により吸着ガスが電離してイオン26となり、これが探
針母材16の先端に引き寄せられて、炭化物の突起27
が形成される。この時、探針母材16を走査すると同時
に、突起27の成長に合わせて、突起27の先端と基板
14の距離(1nm〜1mm)を所定の値に保つように
制御器23でコントロールすることで、安定した電界放
射電流およびイオン電流が得られるので、径が均一な極
細線を形成することができる。得られた極細線の径は5
〜1000nm、アスペクト比は、0.2:1から10
0:1であった。
Embodiments of the present invention will be described below. Although tungsten is used as the base material of the thin wire in the present embodiment, the same thin wire as tungsten can be produced by using carbon fiber, iron, nickel, cobalt, platinum-iridium, silicon, or the like. Have confirmed. Further, in the present embodiment, only field emission electrons are used for ionization of the adsorbed gas, but thermions or visible rays, ultraviolet rays, X-rays, electron rays, ion rays from a separately prepared radiation source are used. The ionization of the adsorbed gas is possible by any one or a combination of the above-mentioned excitations. These charged particles and light
It can be used not only for ionization, but also for heating the thin wire during or after manufacturing. By this heating, it is possible to promote the linear crystal growth of the ions flying to the thin wire. Further, although methane is used as a gas in the present embodiment, a fine wire made of a metal or a semiconductor can be produced by using a gas of a hydrocarbon, an organic metal, or a hydrogenated semiconductor such as silane other than this. can do. Furthermore, an ultrafine wire probe made of a composite material can be manufactured by alternately combining these plural gas species. FIG. 2 shows an example of the configuration of the manufacturing apparatus for the sharpened probe illustrated in the present embodiment. In the figure,
In the vacuum chamber 12, a gold substrate 14 fixed to a cooler 13 is provided in order to control gas adsorption on the probe. A tungsten probe base material 16 fixed to the actuator 15 is arranged opposite to this. Flow control devices 19, 21 from rare gas cylinder 17 and methane gas cylinder 18
Then, a mixed gas having a predetermined mixing ratio of rare gas: methane = 0 to 100: 1 is introduced into the chamber to form the adsorption gas layer 22 on the substrate surface. A voltage is applied from a power source 24 controlled by a controller (controller) 23 (10 to 10000 V),
When the field emission electrons 25 are extracted, the field emission electrons 25
As a result, the adsorbed gas is ionized to form ions 26, which are attracted to the tip of the probe base material 16 to cause carbide protrusions 27.
Is formed. At this time, the probe base material 16 is scanned, and at the same time, the controller 23 controls the distance (1 nm to 1 mm) between the tip of the protrusion 27 and the substrate 14 to a predetermined value in accordance with the growth of the protrusion 27. Since a stable field emission current and ion current can be obtained, an ultrafine wire with a uniform diameter can be formed. The diameter of the obtained ultrafine wire is 5
~ 1000 nm, aspect ratio 0.2: 1 to 10
0: 1.

【0007】[0007]

【発明の効果】本発明の先鋭探針の製造方法によれば、
従来技術では得られなかった5〜1000nmの径を持
つ高アスペクト比の極微細線を有する探針を実現するこ
とができ、また化学的に安定した材質、例えば炭素等の
極微細線を有する探針を作製することができ、走査プロ
ーブ顕微鏡、電界放射電子銃等の電極もしくはセンサに
用いることにより、生物・医学、電子・電気工学、分析
技術等のプローブとして、また、ナノメータサイズの新
しい光・電気物性が予想される種々の分野への応用が期
待できる。
According to the method for manufacturing the sharpened tip of the present invention,
A probe having a high aspect ratio ultrafine wire having a diameter of 5 to 1000 nm, which cannot be obtained by the conventional technique, can be realized, and a probe having a chemically stable material, for example, an ultrafine wire of carbon or the like can be provided. It can be fabricated and used as an electrode or sensor for scanning probe microscopes, field emission electron guns, etc., as a probe for biological / medical, electronic / electrical engineering, analytical technology, and new optical and electrical properties of nanometer size. It can be expected to be applied to various fields where is expected.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の先鋭探針の製造装置の代表的な構成の
一例を示す模式図。
FIG. 1 is a schematic diagram showing an example of a typical configuration of a manufacturing apparatus for a sharpened probe according to the present invention.

【図2】本発明の実施の形態で例示した先鋭探針の製造
装置の構成を示す模式図。
FIG. 2 is a schematic diagram showing a configuration of a manufacturing apparatus of a sharpened tip probe exemplified in the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…STM(走査型トンネル顕微鏡)の探針 2…イオン源 3…イオン 4…エネルギーフィルタ 5…電源 6…エネルギーフィルタを通過したイオン 7…極細の突起 8…制御器 9…アクチュエータ 10…高いアスペクト比の突起 12…真空チャンバ 13…冷却器 14…金の基板 15…アクチュエータ 16…タングステンの探針母材 17…稀ガスボンベ 18…メタンガスボンベ 19…流量調整器 20…バルブ 21…流量調整器 22…吸着ガス層 23…コントローラ(制御器) 24…電源 25…電界放射電子 26…イオン 27…炭化物の突起 L…距離 DESCRIPTION OF SYMBOLS 1 ... STM (scanning tunneling microscope) probe 2 ... Ion source 3 ... Ion 4 ... Energy filter 5 ... Power supply 6 ... Ions that have passed through the energy filter 7 ... Extra fine protrusion 8 ... Controller 9 ... Actuator 10 ... High aspect Ratio protrusion 12 ... Vacuum chamber 13 ... Cooler 14 ... Gold substrate 15 ... Actuator 16 ... Tungsten probe base material 17 ... Rare gas cylinder 18 ... Methane gas cylinder 19 ... Flow rate regulator 20 ... Valve 21 ... Flow rate regulator 22 ... Adsorbed gas layer 23 ... Controller (controller) 24 ... Power supply 25 ... Field emission electron 26 ... Ion 27 ... Carbide protrusion L ... Distance

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】走査プローブ顕微鏡、電界放射電子源、電
界放射イオン源、電極またはセンサに用いられる細線も
しくは探針を先鋭化する先鋭探針の製造方法であって、
先鋭探針を形成する物質をイオン化する工程と、上記イ
オンに電圧を印加して、該イオンを電界集中により探針
母材の先端部に集中して付着させる工程を少なくとも用
いて、アスペクト比の高い突起を探針母材の先端部に形
成することを特徴とする先鋭探針の製造方法。
1. A method of manufacturing a sharpened probe for sharpening a fine wire or a probe used for a scanning probe microscope, a field emission electron source, a field emission ion source, an electrode or a sensor,
Using at least a step of ionizing a substance forming a sharp tip and a step of applying a voltage to the ions to concentrate the ions on the tip of the probe base material by electric field concentration, A method for manufacturing a sharpened probe, characterized in that a high protrusion is formed on a tip portion of a probe base material.
【請求項2】請求項1に記載の先鋭探針の製造方法を実
施する装置であって、探針母材と、該探針母材の移動を
調整するアクチュエータと、先鋭探針を形成する物質を
イオン化する手段と、上記イオンに電圧を印加して、該
イオンを電界集中して探針母材の先端部に集中して付着
させる制御手段を少なくとも備えたことを特徴とする先
鋭探針の製造装置。
2. An apparatus for carrying out the method for manufacturing a sharpened probe according to claim 1, wherein the probe base material, an actuator for adjusting the movement of the probe base material, and a sharpened probe are formed. A sharp tip probe comprising at least a means for ionizing a substance and a control means for applying a voltage to the ions to concentrate the ions in an electric field to concentrate the ions on the tip of the probe base material. Manufacturing equipment.
【請求項3】走査プローブ顕微鏡、電界放射電子源、電
界放射イオン源、電極またはセンサに用いられる細線も
しくは探針を先鋭化する先鋭探針の製造方法であって、
イオン源によって、探針母材の先端部を先鋭化する物質
を含む原子または分子をイオン化する工程と、上記イオ
ン源からのイオンの速度を上記エネルギーフィルタによ
り制御する工程と、探針母材とエネルギーフィルタとの
間に電圧を印加して、上記イオンを電界集中により探針
母材の先端部に集中して付着する工程を少なくとも用い
て、アスペクト比の高い突起を探針母材の先端部に形成
することを特徴とする先鋭探針の製造方法。
3. A method of manufacturing a sharpened probe for sharpening a fine wire or a probe used for a scanning probe microscope, a field emission electron source, a field emission ion source, an electrode or a sensor,
By the ion source, a step of ionizing atoms or molecules containing a substance that sharpens the tip of the probe base material, a step of controlling the velocity of ions from the ion source by the energy filter, and a probe base material A voltage having a high aspect ratio is applied to the tip of the probe base material by applying a voltage between the tip and the tip of the probe base material by applying a voltage between the energy filter and the electric field. A method for manufacturing a sharpened probe, which is characterized in that:
【請求項4】請求項3に記載の先鋭探針の製造方法を実
施する装置であって、探針母材と、該探針母材の移動を
調整するアクチュエータと、探針母材の先端部を先鋭化
する物質をイオン化するイオン源と、該イオンの速度を
調整するエネルギーフィルタと、上記探針母材とエネル
ギーフィルタとの間に電圧を印加して、上記イオンを電
界集中して探針母材の先端部に集中して付着させる制御
手段を少なくとも備えたことを特徴とする先鋭探針の製
造装置。
4. An apparatus for carrying out the method for manufacturing a sharpened probe according to claim 3, wherein the probe base material, an actuator for adjusting the movement of the probe base material, and a tip of the probe base material. An ion source that ionizes a substance that sharpens the part, an energy filter that adjusts the velocity of the ion, a voltage is applied between the probe base material and the energy filter, and the ions are concentrated by an electric field to search. An apparatus for manufacturing a sharpened probe, comprising at least control means for concentrating and adhering to a tip portion of a needle base material.
【請求項5】走査プローブ顕微鏡、電界放射電子源、電
界放射イオン源、電極またはセンサに用いられる細線も
しくは探針を先鋭化する先鋭探針の製造方法であって、
真空チャンバの内部に、少なくとも探針母材と、該探針
母材の移動を調整するアクチュエータと、所定の基板を
配設し、該基板上に先鋭探針を形成する物質のガス吸着
層を形成する工程と、探針母材と上記基板の間に電圧を
印加して、探針母材から電界放射電子を引き出し、該電
界放射電子によりガス吸着層のガス成分をイオン化する
工程と、該イオン化したガス成分を電界集中により探針
母材の先端部に集中して付着する工程を少なくとも用い
て、アスペクト比の高い突起を探針母材の先端部に形成
することを特徴とする先鋭探針の製造方法。
5. A method of manufacturing a sharpened probe for sharpening a fine wire or a probe used in a scanning probe microscope, a field emission electron source, a field emission ion source, an electrode or a sensor,
Inside the vacuum chamber, at least the probe base material, an actuator for adjusting the movement of the probe base material, and a predetermined substrate are arranged, and a gas adsorption layer of a substance forming a sharp probe is formed on the substrate. A step of forming, a step of applying a voltage between the probe base material and the substrate to extract field emission electrons from the probe base material, and ionizing the gas component of the gas adsorption layer by the field emission electrons, A sharpened probe characterized by forming a projection with a high aspect ratio on the tip of the probe base material by using at least the step of concentrating and attaching the ionized gas component to the tip of the probe base material by electric field concentration. Needle manufacturing method.
【請求項6】請求項5に記載の先鋭探針の製造方法を実
施する装置であって、真空チャンバの内部に、少なくと
も探針母材と、該探針母材の移動を調整するアクチュエ
ータと、所定の基板を配設し、該基板上に先鋭探針を形
成する物質のガス吸着層を形成する手段と、探針母材と
上記基板の間に電圧を印加して、探針母材から電界放射
電子を引き出し、該電界放射電子によりガス吸着層のガ
ス成分をイオン化する手段と、上記探針母材と基板との
間に電圧を印加して、上記イオンを電界集中して探針母
材の先端部に集中して付着させる制御手段を少なくとも
備えたことを特徴とする先鋭探針の製造装置。
6. An apparatus for carrying out the method for manufacturing a sharpened probe according to claim 5, wherein at least a probe base material and an actuator for adjusting the movement of the probe base material are provided inside a vacuum chamber. , A means for forming a gas adsorption layer of a substance for forming a sharpened probe on the substrate, and applying a voltage between the probe base material and the substrate to form a probe base material A field emission electron is extracted from the probe, and a voltage is applied between the means for ionizing the gas component of the gas adsorption layer by the field emission electron and the probe base material and the substrate so that the ions are concentrated in the electric field. An apparatus for manufacturing a sharpened probe, comprising at least control means for concentrating and adhering to a tip portion of a base material.
JP10258596A 1996-04-24 1996-04-24 Method and apparatus for manufacture of sharp probe Pending JPH09288115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10258596A JPH09288115A (en) 1996-04-24 1996-04-24 Method and apparatus for manufacture of sharp probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10258596A JPH09288115A (en) 1996-04-24 1996-04-24 Method and apparatus for manufacture of sharp probe

Publications (1)

Publication Number Publication Date
JPH09288115A true JPH09288115A (en) 1997-11-04

Family

ID=14331316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10258596A Pending JPH09288115A (en) 1996-04-24 1996-04-24 Method and apparatus for manufacture of sharp probe

Country Status (1)

Country Link
JP (1) JPH09288115A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000070325A1 (en) * 1999-05-13 2000-11-23 Japan Science And Technology Corporation Scanning tunneling microscope, its probe, processing method for the probe and production method for fine structure
WO2007077842A1 (en) * 2005-12-28 2007-07-12 Japan Science And Technology Agency Nano probe and fabrication method thereof
US7569847B2 (en) 2001-03-30 2009-08-04 The Regents Of The University Of California Methods of fabricating nanostructures and nanowires and devices fabricated therefrom
JP2010046788A (en) * 2008-08-21 2010-03-04 Seoul National Univ Industry Foundation Catalyst particle on tip

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000070325A1 (en) * 1999-05-13 2000-11-23 Japan Science And Technology Corporation Scanning tunneling microscope, its probe, processing method for the probe and production method for fine structure
US7569847B2 (en) 2001-03-30 2009-08-04 The Regents Of The University Of California Methods of fabricating nanostructures and nanowires and devices fabricated therefrom
US7569941B2 (en) 2001-03-30 2009-08-04 The Regents Of The University Of California Methods of fabricating nanostructures and nanowires and devices fabricated therefrom
US7834264B2 (en) 2001-03-30 2010-11-16 The Regents Of The University Of California Methods of fabricating nanostructures and nanowires and devices fabricated therefrom
US9881999B2 (en) 2001-03-30 2018-01-30 The Regents Of The University Of California Methods of fabricating nanostructures and nanowires and devices fabricated therefrom
WO2007077842A1 (en) * 2005-12-28 2007-07-12 Japan Science And Technology Agency Nano probe and fabrication method thereof
JP2010046788A (en) * 2008-08-21 2010-03-04 Seoul National Univ Industry Foundation Catalyst particle on tip

Similar Documents

Publication Publication Date Title
DE60122747T2 (en) FIELD EMISSIONING DEVICE WITH CARBONATED PEAKS
Terranova et al. Nanodiamonds for field emission: state of the art
Xu et al. Novel cold cathode materials and applications
US6057637A (en) Field emission electron source
TWI233161B (en) Method of forming nanotip arrays
Spindt Microfabricated field-emission and field-ionization sources
KR20050084226A (en) Methods for assembly and sorting of nanostructure-containing materials and related articles
US8252115B2 (en) System and method for growing nanotubes with a specified isotope composition via ion implantation using a catalytic transmembrane
US7544523B2 (en) Method of fabricating nanodevices
US20030029996A1 (en) Probe for scanning microscope produced by focused ion beam machining
KR19980025108A (en) Electron Emissive Films and Methods
CN1801425A (en) Method for fabricating electrode device
EP1190206A2 (en) Tip structures, devices on their basis, and methods for their preparation
US6892432B2 (en) Nanotube cartridge and a method for manufacturing the same
JPH09288115A (en) Method and apparatus for manufacture of sharp probe
Merkulov et al. Field emission properties of different forms of carbon
Carey et al. Carbon based electronic materials: applications in electron field emission
KR20010006238A (en) Electron emitting device and method of manufacturing the same
Kang et al. Recent development of diamond microtip field emitter cathodes and devices
Xavier et al. Stable field emission from arrays of vertically aligned free-standing metallic nanowires
Minh et al. Selective growth of carbon nanotubes on Si microfabricated tips and application for electron field emitters
Albin et al. Microwave plasma chemical vapor deposited diamond tips for scanning tunneling microscopy
Lee et al. Vertically aligned carbon nanopillars with size and spacing control for a transparent field emission display
Jiao et al. Fabrication and characterization of carbon nanotube field emitters
Sekhon et al. An efficient novel low voltage field electron emitter with cathode consisting of template synthesized copper microarrays