JPH09283423A - Aligner and exposing method - Google Patents

Aligner and exposing method

Info

Publication number
JPH09283423A
JPH09283423A JP8112061A JP11206196A JPH09283423A JP H09283423 A JPH09283423 A JP H09283423A JP 8112061 A JP8112061 A JP 8112061A JP 11206196 A JP11206196 A JP 11206196A JP H09283423 A JPH09283423 A JP H09283423A
Authority
JP
Japan
Prior art keywords
exposure
focus detection
detection light
wafer
focus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8112061A
Other languages
Japanese (ja)
Inventor
Kyoichi Miyazaki
恭一 宮崎
Masanori Hasegawa
雅宣 長谷川
Minoru Yoshii
実 吉井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP8112061A priority Critical patent/JPH09283423A/en
Publication of JPH09283423A publication Critical patent/JPH09283423A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To cope with a change of a projection optical system by a method wherein a forces detection light is radiated to a body via a projection optical system, a focus state is detected according to a generation state of an astigmatism of a focus detection light and a focus state is controlled. SOLUTION: A focus detection light 14 incident on an exposure lens 8 is condensed on a position which is slid slightly horizontally from a position on a wafer 11 in which a pattern image on a reticle 9 is formed by an irradiation light 13. For example, when a wafer stage 12 moves rightweardly, the focus detection light 14 is condensed more leftwardly than an image formation position by an irradiation light 13. When a face of the wafer 11 is not in an image formation position by the irradiation light 13, namely out of focus, a wafer stage 12 is driven to a Z direction (to a vertical direction) of an optical axis of an exposure lens 8 to be focused, Further, even when an angle of the face of wafer 11 is judge to be slid from a specific angle by the focus detection light 14, the wafer 11 is tilt-driven by the wafer stage 12 in a same manner as correction in a vertical direction.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は露光装置及び露光方
法に関し、特に半導体素子製造用の露光装置のように物
体に対して精密な焦点合わせを行う装置に好適なもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exposure apparatus and an exposure method, and in particular, it is suitable for an apparatus for precisely focusing an object such as an exposure apparatus for manufacturing a semiconductor element.

【0002】[0002]

【従来の技術】近年半導体集積回路はますます微細化さ
れる傾向にあるが、その製造工程の中で最も重要な工程
の一つがマスク上に形成された回路パタ−ンをウエハ上
に転写するフォト工程である。フォト工程に用いられる
装置が半導体露光装置と呼ばれるもので、現在光学的露
光方式が主力として用いられている。
2. Description of the Related Art In recent years, semiconductor integrated circuits are becoming more and more miniaturized, but one of the most important steps in the manufacturing process is to transfer a circuit pattern formed on a mask onto a wafer. It is a photo process. An apparatus used in the photo process is called a semiconductor exposure apparatus, and an optical exposure method is currently used as a main force.

【0003】光学的露光方式にはマスクとウエハを接触
させて焼き付けるコンタクト方式、マスクとウエハを数
十μmのギャップで離して影絵焼きする近接露光方式、
高解像度のレンズを用いてパタ−ンの露光転写とステッ
プ状の送り工程を繰り返すステップ&リピ−ト、あるい
はスキャン&リピ−ト方式等がある。この中でも特にス
テップ&リピ−ト、あるいはスキャン&リピ−ト方式は
現在及び次代の有力な方式として多用されている。
The optical exposure method includes a contact method in which a mask and a wafer are brought into contact with each other to print, a proximity exposure method in which a mask and a wafer are separated by a gap of several tens of μm, and a shadow is printed.
There is a step & repeat or a scan & repeat method in which a pattern exposure exposure transfer and a stepwise feeding process are repeated using a high resolution lens. Among them, the step & repeat method or the scan & repeat method is widely used as a powerful method of the present and the next generation.

【0004】光学露光方式におけるフォ−カス方向の位
置合わせではウエハ焼き付け位置と別の場所で基準から
ウエハまでの距離を計測し、それに基づいてウエハ焼き
付け位置で位置出しを行う方法が用いられている。この
方式はフォ−カスの検出に投影光学系を介在させないの
でオフアクシス方式とでも言うべきものである。その際
の計測法には空気流をウエハに噴射し空気の背圧を測っ
てウエハまでの距離を検出するエアセンサ方式、ウエハ
と検出装置間の電気容量を測る方式、超音波を使用して
測距する方式、ウエハ表面へ斜めに光線を投射し、反射
光の位置ずれを検出する方式などがある。
In the alignment in the focus direction in the optical exposure system, a method is used in which the distance from the reference to the wafer is measured at a place different from the wafer baking position and the position is set at the wafer baking position based on the measured distance. . This system does not require a projection optical system to detect the focus, so it should be called an off-axis system. At that time, the measurement method uses an air sensor method in which an air flow is jetted to the wafer to measure the back pressure of the air to detect the distance to the wafer, a method to measure the electrical capacitance between the wafer and the detection device, and ultrasonic measurement. There are a distance method, a method of obliquely projecting a light beam on the wafer surface, and a method of detecting a positional deviation of reflected light.

【0005】[0005]

【発明が解決しようとする課題】しかしながらオフアク
シス方式の場合、装置に対するウエハの光軸方向の位置
は原理的に管理することができるが、マスク像の真にピ
ントのあった位置にウエハ表面が位置しているか否かの
検出を行うことはできない。これはウエハ焼き付け中の
照明光の熱蓄積や周囲の環境温度の変動で投影光学系の
ピント位置が基準に対し一定ではなく移動するからであ
る。これらの外的要因によって投影光学系自体が変化を
起こした場合は、ウエハをオフアクシス方式でしかるべ
き位置に設定しても、実際にはデフォ−カスした像しか
形成されないのである。
However, in the case of the off-axis method, the position of the wafer in the optical axis direction with respect to the apparatus can be managed in principle, but the wafer surface is located at the position where the mask image is truly in focus. It is not possible to detect whether or not it is located. This is because the focus position of the projection optical system is not constant with respect to the reference but moves due to heat accumulation of illumination light during wafer baking and fluctuations in the ambient environmental temperature. When the projection optical system itself changes due to these external factors, only a defocused image is actually formed even if the wafer is set at an appropriate position by the off-axis method.

【0006】従ってこのような投影光学系の変化にも対
処できるように、焼き付け位置で、投影光学系を通して
ウエハ面をフォ−カシングすることが可能な方法が求め
られている。このような観点から見ると、例えばエアセ
ンサ方式は測定対象物の角度特性があり、対象物表面に
凹凸があった場合、その測定値にばらつきが出る。従っ
てウエハ表面のように数ミクロン程度の凹凸がある場合
には正確にフォ−カスできない可能性があり、精密なフ
ォ−カス方式の候補からは除外される。
Therefore, in order to cope with such changes in the projection optical system, there is a demand for a method capable of focusing the wafer surface through the projection optical system at the printing position. From this point of view, for example, the air sensor method has angular characteristics of the object to be measured, and if the surface of the object has irregularities, the measured values vary. Therefore, if the surface of the wafer has irregularities of about several microns, accurate focusing may not be possible, and it is excluded from the candidates for the precise focusing method.

【0007】更に今後回路の大型化が進むと1チップ分
の面積が大きくなるため、従来のステップ&リピ−ト方
式ではなく、レチクルとウエハをスキャンしながら露光
するスキャン露光方式が主流になるといわれている。そ
の場合、ウエハの全面にわたって高速でピントを合わせ
なければならない。
[0007] Further, as the size of the circuit further increases in the future, the area for one chip will increase, so that it is said that the scan exposure method for exposing while scanning the reticle and the wafer will become the mainstream, instead of the conventional step & repeat method. ing. In that case, the entire surface of the wafer must be focused at high speed.

【0008】[0008]

【課題を解決するための手段】上記問題を解決するため
本発明ではフォ−カス検出に非点収差法を用い、投影光
学系を通して焼き付け位置のフォ−カス位置を検出する
ことを特徴としている。またこの方法はエアセンサを用
いた時のようにウエハのレジスト塗布面を見るだけでな
く、その下の回路パタ−ンそのものにもピントを合わせ
ることが可能なので、露光時にどちらの面にピントを合
わせるかを選択できるというメリットも持っている。
In order to solve the above problems, the present invention is characterized in that the astigmatism method is used for focus detection and the focus position of the printing position is detected through the projection optical system. In addition, this method not only looks at the resist coated surface of the wafer as when using an air sensor, but it is also possible to focus on the circuit pattern itself underneath, so either surface can be focused during exposure. It also has the advantage that you can choose.

【0009】特に本発明の露光装置では、第1物体の像
を第2物体上に投影光学系を用いて露光転写を行う露光
装置において、該投影光学系を介して合焦検出光を第2
物体上に照射し、該合焦検出光の非点収差の発生状態に
より合焦状態を検出して、合焦状態の制御を行うことを
特徴としている。
Particularly, in the exposure apparatus of the present invention, in the exposure apparatus which transfers the image of the first object onto the second object by using the projection optical system, the focus detection light is transmitted through the projection optical system to the second focus detection light.
It is characterized in that the focused state is detected by irradiating the object and the astigmatism of the focused detection light is generated to control the focused state.

【0010】又、本発明の露光方法では、第1物体の像
を第2物体上に投影光学系を用いて露光転写を行う露光
方法において、該投影光学系を介して合焦検出光を第2
物体上に照射し、該合焦検出光の非点収差の発生状態に
より合焦状態を検出して、合焦状態の制御を行うことを
特徴としている。
Further, in the exposure method of the present invention, in the exposure method in which the image of the first object is exposed and transferred onto the second object by using the projection optical system, the focus detection light is transmitted through the projection optical system. Two
It is characterized in that the focused state is detected by irradiating the object and the astigmatism of the focused detection light is generated to control the focused state.

【0011】[0011]

【発明の実施の形態】図1は本発明の実施形態1の要部
概略図である。同図では合焦検出装置を具備したスキャ
ンアンドリピ−ト法の半導体露光装置の構成図を示し、
本発明の基本形をなすものである。同図で1はレ−ザダ
イオ−ド、2はレンズ、3及び4はダイクロイックハ−
フミラ−、5は集光レンズ、6はシリンドリカルレン
ズ、7は2次元CCD、8は露光レンズ(投影光学
系)、9はレチクル(第1物体)、10はレチクルステ
−ジ、11はウエハ(第2物体)、12はウエハステ−
ジ、一点鎖線で示した13は照明光(露光光)、14は
合焦検出光を示している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a schematic view of a main part of a first embodiment of the present invention. In the figure, a configuration diagram of a semiconductor exposure apparatus of a scan and repeat method equipped with a focus detection device is shown.
It forms the basic form of the present invention. In the figure, 1 is a laser diode, 2 is a lens, and 3 and 4 are dichroic hardware.
Fumira-5 is a condenser lens, 6 is a cylindrical lens, 7 is a two-dimensional CCD, 8 is an exposure lens (projection optical system), 9 is a reticle (first object), 10 is a reticle stage, 11 is a wafer (first). 2 objects), 12 is a wafer station
In the figure, 13 indicated by a chain line indicates illumination light (exposure light), and 14 indicates focus detection light.

【0012】スキャンアンドリピ−トによる露光では、
レチクル9上に露光によって転写される基パタ−ンがあ
り、該基パタ−ンが照明光13で照明される。この固定
された照明光に対して、レチクルステ−ジ10が矢印で
示したX方向に移動してレチクル9上にあるパタ−ンが
すべて照明される。照明された光は露光レンズ8を通し
てウエハ11にパタ−ンを縮小して焼き付ける。その
際、ウエハ11を載せたウエハステ−ジ12も矢印で示
したX方向、及び紙面に垂直なY方向に動き、ウエハ1
1全面にわたってパタ−ンが焼き付けられる。
In the scan and repeat exposure,
There is a base pattern transferred by exposure on the reticle 9, and the base pattern is illuminated with illumination light 13. With respect to this fixed illumination light, the reticle stage 10 moves in the X direction shown by the arrow and all the patterns on the reticle 9 are illuminated. The illuminated light passes through the exposure lens 8 to reduce the pattern on the wafer 11 and print it. At this time, the wafer stage 12 on which the wafer 11 is placed also moves in the X direction indicated by the arrow and in the Y direction perpendicular to the plane of the drawing, so that the wafer 1
1 The pattern is baked on the entire surface.

【0013】一方、合焦検出光14はレ−ザダイオ−ド
1からレンズ2を通ってダイクロイックハ−フミラ−3
で反射し、露光光束13に合流する。合流後、合焦検出
光14はもう一つのダイクロイックハ−フミラ−4を透
過して露光レンズ8に入射する。ダイクロイックハ−フ
ミラ−3、4は波長選択性があり、合焦検出光の波長に
のみハ−フミラ−として働き、露光用の照明光13の波
長の光に対しては影響を及ぼさず、ただ透過させるのみ
である。
On the other hand, the focus detection light 14 passes from the laser diode 1 through the lens 2 to the dichroic hammilla-3.
Is reflected by and is merged with the exposure light flux 13. After merging, the focus detection light 14 passes through another dichroic hammilla-4 and enters the exposure lens 8. The dichroic hammillas-3 and 4 have wavelength selectivity, work only as a hammilla for the wavelength of the focus detection light, and do not affect the light of the wavelength of the illumination light 13 for exposure. It only lets through.

【0014】露光レンズ8に入射した合焦検出光14は
露光レンズ8を出た後、照明光13によりレチクル9上
のパタ−ンが結像されているウエハ11上の位置よりも
横に少しだけずれた場所に集光される。集光される位置
はパタ−ンの結像されている位置と露光レンズ8の光軸
方向に対しては同一であるが、横方向についてはスキャ
ンで露光する位置の少し手前となるように設定される。
例えば図1(a)のようにウエハステ−ジ12が右方向
に動いている場合は、照明光13による結像位置よりも
合焦検出光14を左側に集光させる。ウエハ11の表面
が照明光13による結像位置にない、即ちピント外れの
場合はウエハステ−ジ12を露光レンズ8の光軸である
Z方向(上下方向)に駆動してピントを合わせなければ
ならない。合焦検出光14の集光位置を横方向に故意に
ずらしておけば、照明光13で露光される前にウエハ1
1の上下方向の位置を検出できるため、検出から信号処
理して駆動までにかかるフィ−ドバックの時間を取るこ
とができピントのあった結像制御を行える。
After the focus detection light 14 that has entered the exposure lens 8 exits the exposure lens 8, the illumination light 13 causes the focus detection light 14 to move slightly laterally beyond the position on the wafer 11 where the pattern on the reticle 9 is imaged. It is focused on the place where it is deviated. The position where the light is focused is the same as the position where the pattern is imaged and the optical axis direction of the exposure lens 8, but the position where the light is focused is set slightly before the position where the exposure is performed by scanning. To be done.
For example, when the wafer stage 12 is moving to the right as shown in FIG. 1A, the focus detection light 14 is focused on the left side of the imaging position of the illumination light 13. When the surface of the wafer 11 is not in the image forming position by the illumination light 13, that is, when it is out of focus, the wafer stage 12 must be driven in the Z direction (vertical direction) which is the optical axis of the exposure lens 8 to focus. . If the focus position of the focus detection light 14 is intentionally shifted in the lateral direction, the wafer 1 can be exposed before the exposure light 13 is exposed.
Since the position of 1 in the vertical direction can be detected, the feedback time required from detection to signal processing and driving can be taken, and focused imaging control can be performed.

【0015】また合焦検出光14でウエハ11の表面の
角度が所定の角度よりずれていると判断された場合も、
上下方向の補正と同じくウエハステ−ジ12でウエハ1
1をチルト駆動させる必要がある。この場合にも合焦検
出光14の集光位置を露光する位置の手間側に置いて事
前検出すれば、チルトの補正・駆動に要するフィ−ドバ
ックの時間を取ることができ、良好なチルト制御を行う
ことができる。
When it is determined by the focus detection light 14 that the angle of the surface of the wafer 11 is deviated from a predetermined angle,
Wafer stage 12 performs wafer 1 as well as vertical correction.
1 needs to be tilt-driven. Even in this case, if the focus position of the focus detection light 14 is placed on the side of the exposure position in advance and pre-detected, the feedback time required for tilt correction / driving can be taken and good tilt control can be performed. It can be performed.

【0016】合焦検出光14をウエハ11に入射させる
際にはその集光点をウエハ11のどの部分に集光させる
かを選択することが可能である。図1(a)に示したの
は集光位置をウエハ11のレジスト塗布面に合わせた場
合、図1(b)はレジスト層の下の基板に合わせた場合
で、本実施形態の構成ではどちらでも選択が可能であ
る。これはレジストと基板面で光に反射率が異なること
を利用したもので、後に説明する2次元CCDで光量の
差を判別することが可能なためである。
When the focus detection light 14 is made incident on the wafer 11, it is possible to select which part of the wafer 11 the light collection point is to be collected. FIG. 1A shows the case where the focus position is aligned with the resist coating surface of the wafer 11, and FIG. 1B is the case where it is aligned with the substrate under the resist layer. But you can choose. This is because the fact that the resist and the substrate surface have different reflectivities of light is used, and it is possible to discriminate the difference in light amount with a two-dimensional CCD described later.

【0017】ウエハ11に入射し、反射した合焦検出光
14はウエハ11が前記所定の角度に一致し、かつ合焦
状態である場合にはレ−ザダイオ−ド1からの入射光路
をそのまま逆に進み、ダイクロイックミラ−4で反射し
て検出光学系に入る。検出光学系では集光レンズ5、シ
リンドリカルレンズ6を通った後、2次元CCD7に入
射し、スポット像が形成される。この場合、基準状態に
おいては、予め2次元CCD7の中心位置に円形スポッ
トが結ぶように設定が行われる。図1は2次元CCD上
でのスポットの形状を示しており、スポット形状の縦の
大きさをd1、横の大きさをd2とする。基準状態はd
1=d2で、この条件が満足された時が合焦と判別され
る。また集光されたスポットの位置はウエハの角度ずれ
に対応する。スポットの位置が2次元CCD7の中心に
あることが、ウエハ11の表面が所定の角度に一致する
ことを示している。
The focus detection light 14 which is incident on the wafer 11 and reflected by the wafer 11 is directly reversed from the incident light path from the laser diode 1 when the wafer 11 is coincident with the predetermined angle and is in focus. Then, the light enters the detection optical system after being reflected by the dichroic mirror-4. In the detection optical system, after passing through the condenser lens 5 and the cylindrical lens 6, it is incident on the two-dimensional CCD 7 and a spot image is formed. In this case, in the reference state, setting is made in advance so that a circular spot is connected to the center position of the two-dimensional CCD 7. FIG. 1 shows the shape of a spot on a two-dimensional CCD, where the vertical size of the spot shape is d1 and the horizontal size is d2. Reference state is d
When 1 = d2 and this condition is satisfied, it is determined to be in focus. The position of the focused spot corresponds to the angular deviation of the wafer. The fact that the position of the spot is at the center of the two-dimensional CCD 7 indicates that the surface of the wafer 11 coincides with a predetermined angle.

【0018】図2、3はこれに対し焦点ずれをした場合
である。図2は合焦検出光14の集光位置がウエハ11
よりも上にある場合、即ち後ピン状態で、かつウエハ1
1の角度が所定の角度と一致していた場合である。この
場合、ウエハ11で反射した合焦検出光14の戻り光1
4’は点線のような光路を戻るため、シリンドリカルレ
ンズ6の効果で2次元CCD7上に横長のスポットをC
CD7の中心位置に結ぶ。この場合にはd2>d1であ
る。
2 and 3 show the case where defocusing is performed. In FIG. 2, the focusing position of the focus detection light 14 is on the wafer 11
Above, that is, in the rear pin state, and the wafer 1
This is the case where the angle 1 corresponds to the predetermined angle. In this case, the return light 1 of the focus detection light 14 reflected by the wafer 11
Since 4'returns the optical path like a dotted line, a laterally long spot C is formed on the two-dimensional CCD 7 by the effect of the cylindrical lens 6.
Connect to the center of CD7. In this case, d2> d1.

【0019】図3は合焦検出光14の集光位置がウエハ
11よりも下にある場合、即ち前ピン状態で、かつウエ
ハ11の角度が所定の角度と一致していた場合である。
この場合ウエハ11で反射した合焦検出光14の戻り光
14’は点線のような光路を戻り、シリンドリカルレン
ズ6の効果で2次元CCD7に縦長のスポットをCCD
7の中心位置に結ぶ。この場合にはd2<d1である。
FIG. 3 shows the case where the focus position of the focus detection light 14 is below the wafer 11, that is, in the front focus state, and the angle of the wafer 11 matches a predetermined angle.
In this case, the return light 14 ′ of the focus detection light 14 reflected by the wafer 11 returns along the optical path shown by the dotted line, and the cylindrical lens 6 produces a vertically long spot on the two-dimensional CCD 7.
Connect to the center of 7. In this case, d2 <d1.

【0020】このようにシリンドリカルレンズを用いた
非点収差法ではCCD上に結んだスポットの長径と短径
の大きさを比較検出ことでd1=d2ならば合焦、図2
のようにd2>d1ならば後ピン状態、図3のようにd
2<d1ならば前ピン状態と焦点合わせの状態が容易に
判別できる。
As described above, in the astigmatism method using the cylindrical lens, by comparing and detecting the size of the major axis and the minor axis of the spot connected on the CCD, if d1 = d2, the focus is achieved.
If d2> d1 as shown in FIG.
If 2 <d1, the front focus state and the focus state can be easily discriminated.

【0021】図4はウエハ11が合焦状態ではあるが、
所定の角度からずれて配置されている場合である。合焦
検出光14のウエハ11への集光点付近の拡大図が図4
(a)である。この場合、戻り光14’はウエハ11の
傾きに応じてやや右方向にずれて露光レンズ8に再入射
する。そのため2次元CCD7上ではウエハ11表面が
所定の角度になっていた場合と比較してやや下方向にス
ポット光がずれ、2次元CCD7の中心位置から離れた
位置にスポット光の重心が形成される。角度ずれは2次
元的なものなので、図4の2次元CCD7の矢視図にお
いては縦方向のずれdzと横方向のずれdyとなって現
われる。しかしウエハ11に角度ずれはあってもスポッ
ト光の形は円形でd1=d2であるため、合焦状態であ
ることは判別可能である。
Although the wafer 11 is in focus in FIG. 4,
This is the case where they are displaced from a predetermined angle. An enlarged view of the vicinity of the focal point of the focus detection light 14 on the wafer 11 is shown in FIG.
(A). In this case, the return light 14 ′ is re-incident on the exposure lens 8 with a slight shift to the right according to the inclination of the wafer 11. Therefore, the spot light deviates slightly downward on the two-dimensional CCD 7 as compared with the case where the surface of the wafer 11 is at a predetermined angle, and the center of gravity of the spot light is formed at a position away from the central position of the two-dimensional CCD 7. Since the angular shift is two-dimensional, it appears as a vertical shift dz and a horizontal shift dy in the arrow view of the two-dimensional CCD 7 shown in FIG. However, even if the wafer 11 is deviated in angle, the shape of the spot light is circular and d1 = d2. Therefore, it is possible to determine that it is in focus.

【0022】ウエハ11表面の角度と2次元CCD中心
からスポット光重心までの位置関係は1対1に対応して
いる。従って、予め角度が既知の平板等とCCD上のス
ポット光との対応を調べて装置側をキャリブレ−ション
しておけば、表面の角度が不明なウエハに対しても合焦
状態の判別と角度の測定を同時に行うことが可能であ
る。
The angle of the surface of the wafer 11 and the positional relationship from the center of the two-dimensional CCD to the center of gravity of the spot light have a one-to-one correspondence. Therefore, if the device side is calibrated by checking the correspondence between a flat plate whose angle is already known and the spot light on the CCD in advance, it is possible to discriminate the focus state and the angle even for a wafer whose surface angle is unknown. It is possible to simultaneously measure

【0023】図5は本発明の実施形態2の要部概略図で
ある。同図は半導体露光装置を示している。同図で実施
形態1と同じ部材については同じ番号が付けられてい
る。図中15はハ−フミラ−、16はケ−スである。図
1では合焦検出光の照明光束13への導入と戻り光1
4’の分離をダイクロイックミラ−3、4で行っていた
が、本実施形態は戻り光14’の分離の位置を実施形態
1と異なった位置に配置したハ−フミラ−で行ったもの
である。即ち本実施形態では入射光と戻り光の分離をレ
−ザダイオ−ド1から光が出たすぐのところで行うのが
特徴となっている。分離する場所近辺では照明光13と
光束が重なっていないため、実施形態1に比べて小さな
ハ−フミラ−15を配置することで目的が達成される。
更にこの配置ではレ−ザダイオ−ド1とレンズ2、ハ−
フミラ−15及び合焦検出部(集光レンズ5、シリンド
リカルレンズ6、2次元CCD7)の位置がお互いに近
づくので、ケ−ス16によりこれらの部分を囲むことに
よって合焦検出に必要な全ての部品を含むユニットをコ
ンパクトにまとめることが可能である。
FIG. 5 is a schematic view of the essential portions of Embodiment 2 of the present invention. The figure shows a semiconductor exposure apparatus. In the figure, the same members as those in the first embodiment are given the same numbers. In the figure, 15 is a half mirror and 16 is a case. In FIG. 1, the focus detection light is introduced into the illumination light flux 13 and the return light 1
The separation of 4'was carried out by the dichroic mirrors-3 and 4, but in the present embodiment, the separation of the returning light 14 'is carried out by a half mirror arranged at a position different from that of the first embodiment. . That is, the present embodiment is characterized in that the incident light and the return light are separated immediately after the light is emitted from the laser diode 1. Since the illumination light 13 and the light flux do not overlap in the vicinity of the separation position, the object can be achieved by arranging the half mirror 15 smaller than that in the first embodiment.
Furthermore, in this arrangement, the laser diode 1, the lens 2, and the
Since the positions of the fumilla-15 and the focus detection section (the condenser lens 5, the cylindrical lens 6, and the two-dimensional CCD 7) are close to each other, by enclosing these parts with the case 16, all the necessary focus detection is performed. It is possible to compactly combine units including parts.

【0024】[0024]

【発明の効果】以上述べてきたように本発明では半導体
露光装置の合焦状態を投影光学系を介して検出する機能
に関して、非点収差法と2次元CCD等の2次元画像素
子を組み合わせることで、投影光学系に対するウエハの
合焦状態を検出することが可能となり、該検出値に基づ
いてウエハを駆動補正することによりピントのあった状
態で露光を行うことを可能とした。該検出値はウエハの
合焦状態と共に角度ずれも同時に検出できるため、ウエ
ハの駆動補正が投影光学系の光軸方向だけでなく、傾き
であるチルト補正にも行うことが可能となった。
As described above, according to the present invention, the astigmatism method and the two-dimensional image element such as the two-dimensional CCD are combined for the function of detecting the in-focus state of the semiconductor exposure apparatus through the projection optical system. Thus, it becomes possible to detect the in-focus state of the wafer with respect to the projection optical system, and by performing drive correction of the wafer based on the detected value, it becomes possible to perform exposure in a focused state. Since the detected value can detect the in-focus state of the wafer as well as the angular deviation at the same time, the drive correction of the wafer can be performed not only in the optical axis direction of the projection optical system but also in the tilt correction which is the tilt.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施形態1の露光装置の要部概略図FIG. 1 is a schematic view of a main part of an exposure apparatus according to a first embodiment of the present invention.

【図2】 本発明の実施形態1で後ピンのデフォ−カス
状態での検出状態を示す要部概略図
FIG. 2 is a schematic view of a main part showing a detection state of a rear pin in a defocus state according to the first embodiment of the present invention.

【図3】 本発明の実施形態1で前ピンのデフォ−カス
状態での検出状態を示す要部概略図
FIG. 3 is a schematic view of a main part showing a detection state of a front pin in a defocus state according to the first embodiment of the present invention.

【図4】 本発明の実施形態1でウエハ表面が傾いた状
態での検出状態を示す要部概略図
FIG. 4 is a schematic view of a main part showing a detection state when the wafer surface is tilted according to the first embodiment of the present invention.

【図5】 本発明の実施形態2の露光装置の要部概略図FIG. 5 is a schematic view of a main part of an exposure apparatus according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 レ−ザダイオ−ド 2 レンズ 3 ダイクロイックハ−フミラ− 4 ダイクロイックハ−フミラ− 5 集光レンズ 6 シリンドリカルレンズ 7 2次元CCD 8 露光レンズ 9 レチクル 10 レチクルステ−ジ 11 ウエハ 12 ウエハステ−ジ 13 照明光 14 合焦検出光 15 ハ−フミラ− 16 ケ−ス 1 laser diode 2 lens 3 dichroic hammilla 4 dichroic hammilla 5 condenser lens 6 cylindrical lens 7 two-dimensional CCD 8 exposure lens 9 reticle 10 reticle stage 11 wafer 12 wafer stage 13 illumination light 14 Focus detection light 15 Harm mirror 16 cases

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 第1物体の像を第2物体上に投影光学系
を用いて露光転写を行う露光装置において、該投影光学
系を介して合焦検出光を第2物体上に照射し、該合焦検
出光の非点収差の発生状態により合焦状態を検出して、
合焦状態の制御を行うことを特徴とする露光装置。
1. An exposure apparatus for exposing and transferring an image of a first object onto a second object using a projection optical system, wherein focus detection light is radiated onto the second object via the projection optical system, The in-focus state is detected by the astigmatism generation state of the in-focus detection light,
An exposure apparatus which controls a focused state.
【請求項2】 前記合焦検出光が前記第1物体の像を前
記第2物体上に露光転写を行う際の露光光と共通光路を
持つことを特徴とする請求項1記載の露光装置。
2. The exposure apparatus according to claim 1, wherein the focus detection light has a common optical path with the exposure light when the image of the first object is transferred onto the second object by exposure.
【請求項3】 前記合焦状態の検出を2次元画像検出素
子で行うことを特徴とする請求項2記載の露光装置。
3. The exposure apparatus according to claim 2, wherein the in-focus state is detected by a two-dimensional image detection element.
【請求項4】 前記2次元画像素子上に形成される前記
合焦検出光の位置により前記第2物体の角度ずれを検出
することを特徴とする請求項4記載の露光装置。
4. The exposure apparatus according to claim 4, wherein an angular deviation of the second object is detected based on a position of the focus detection light formed on the two-dimensional image element.
【請求項5】 前記露光装置がスキャンアンドリピ−ト
での露光方法を採用したものであることを特徴とする請
求項4記載の露光装置。
5. The exposure apparatus according to claim 4, wherein the exposure apparatus employs a scan-and-repeat exposure method.
【請求項6】 前記合焦検出光が露光を行う照明光の結
像位置よりずれた位置に集光され、該合焦検出光による
検出値をもとに前記第2物体の位置を制御することを特
徴とする請求項5記載の露光装置。
6. The focus detection light is condensed at a position deviated from the image formation position of the illumination light for exposure, and the position of the second object is controlled based on the detection value by the focus detection light. The exposure apparatus according to claim 5, wherein:
【請求項7】 第1物体の像を第2物体上に投影光学系
を用いて露光転写を行う露光方法において、該投影光学
系を介して合焦検出光を第2物体上に照射し、該合焦検
出光の非点収差の発生状態により合焦状態を検出して、
合焦状態の制御を行うことを特徴とする露光方法。
7. An exposure method for exposing and transferring an image of a first object onto a second object using a projection optical system, wherein focus detection light is radiated onto the second object via the projection optical system, The in-focus state is detected by the astigmatism generation state of the in-focus detection light,
An exposure method characterized by controlling a focused state.
【請求項8】 前記合焦検出光が前記第1物体の像を前
記第2物体上に露光転写を行う際の露光光と共通光路を
持つことを特徴とする請求項7記載の露光方法。
8. The exposure method according to claim 7, wherein the focus detection light has a common optical path with the exposure light when the image of the first object is transferred onto the second object by exposure.
【請求項9】 前記合焦検出光が前記第2物体上で検出
する位置を前記合焦検出光の集光位置により選択できる
ことを特徴とする請求項8記載の露光方法。
9. The exposure method according to claim 8, wherein a position where the focus detection light is detected on the second object can be selected by a converging position of the focus detection light.
【請求項10】 前記合焦状態の検出を2次元画像検出
素子で行うことを特徴とする請求項9記載の露光方法。
10. The exposure method according to claim 9, wherein the in-focus state is detected by a two-dimensional image detection element.
【請求項11】 前記2次元画像素子上に形成される前
記合焦検出光の位置により前記第2物体の角度ずれを検
出することを特徴とする請求項10記載の露光方法。
11. The exposure method according to claim 10, wherein an angular deviation of the second object is detected by a position of the focus detection light formed on the two-dimensional image element.
【請求項12】 前記露光装置がスキャンアンドリピ−
トであることを特徴とする請求項11記載の露光方法。
12. The scan and repeater is the exposure apparatus.
The exposure method according to claim 11, wherein
【請求項13】 前記合焦検出光が露光を行う照明光の
結像位置よりずれた位置に集光され、該合焦検出光によ
る検出値をもとに前記第2物体の位置を制御することを
特徴とする請求項12記載の露光方法。
13. The focus detection light is condensed at a position deviated from an image formation position of illumination light for exposure, and the position of the second object is controlled based on a detection value by the focus detection light. 13. The exposure method according to claim 12, wherein:
JP8112061A 1996-04-09 1996-04-09 Aligner and exposing method Pending JPH09283423A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8112061A JPH09283423A (en) 1996-04-09 1996-04-09 Aligner and exposing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8112061A JPH09283423A (en) 1996-04-09 1996-04-09 Aligner and exposing method

Publications (1)

Publication Number Publication Date
JPH09283423A true JPH09283423A (en) 1997-10-31

Family

ID=14577073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8112061A Pending JPH09283423A (en) 1996-04-09 1996-04-09 Aligner and exposing method

Country Status (1)

Country Link
JP (1) JPH09283423A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100444263B1 (en) * 1999-07-05 2004-08-11 캐논 가부시끼가이샤 Exposure apparatus and device manufacturing method
US6861614B1 (en) 1999-07-08 2005-03-01 Nec Corporation S system for the formation of a silicon thin film and a semiconductor-insulating film interface
JP2006179907A (en) * 2004-12-20 2006-07-06 Asml Netherlands Bv Lithographic apparatus with autofocus system
JP2009192850A (en) * 2008-02-15 2009-08-27 Yokogawa Electric Corp Autofocus control system
JP2009302549A (en) * 2005-03-30 2009-12-24 Asml Netherlands Bv Lithographic apparatus and device manufacturing method utilizing data filtering

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100444263B1 (en) * 1999-07-05 2004-08-11 캐논 가부시끼가이샤 Exposure apparatus and device manufacturing method
US6861614B1 (en) 1999-07-08 2005-03-01 Nec Corporation S system for the formation of a silicon thin film and a semiconductor-insulating film interface
US7312418B2 (en) 1999-07-08 2007-12-25 Nec Corporation Semiconductor thin film forming system
JP2006179907A (en) * 2004-12-20 2006-07-06 Asml Netherlands Bv Lithographic apparatus with autofocus system
JP2009302549A (en) * 2005-03-30 2009-12-24 Asml Netherlands Bv Lithographic apparatus and device manufacturing method utilizing data filtering
US8508715B2 (en) 2005-03-30 2013-08-13 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method utilizing data filtering
US9846368B2 (en) 2005-03-30 2017-12-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method utilizing data filtering
JP2009192850A (en) * 2008-02-15 2009-08-27 Yokogawa Electric Corp Autofocus control system

Similar Documents

Publication Publication Date Title
JP3181050B2 (en) Projection exposure method and apparatus
JP2890882B2 (en) Positioning method, semiconductor device manufacturing method, and projection exposure apparatus using the same
JP3572430B2 (en) Exposure method and apparatus
KR100266729B1 (en) Surface position detecting method and scanning exposure method using the same
US20090123874A1 (en) Exposure method, exposure apparatus, and method for manufacturing device
US4952970A (en) Autofocusing system for a projecting exposure apparatus
JPH11251229A (en) Aligner and manufacture of device
JP3335126B2 (en) Surface position detecting apparatus and scanning projection exposure apparatus using the same
US7072027B2 (en) Exposure apparatus, method of controlling same, and method of manufacturing devices
JPH09283423A (en) Aligner and exposing method
JP3518826B2 (en) Surface position detecting method and apparatus, and exposure apparatus
JP3647227B2 (en) Scanning exposure equipment
JP3428825B2 (en) Surface position detection method and surface position detection device
JPH104055A (en) Automatic focusing device and manufacture of device using it
JPH097915A (en) Surface tilt detection system
JPH07142346A (en) Projection aligner
JP3381740B2 (en) Exposure method and projection exposure apparatus
JP2771136B2 (en) Projection exposure equipment
JP2810400B2 (en) Exposure equipment
KR100414575B1 (en) Projection exposure equipment
JP2771138B2 (en) Projection exposure equipment
JPH06349708A (en) Projection exposure device
JP2001250768A (en) Projection aligner
JPH104053A (en) Surface position detector and manufacture of device thereby
JP2771137B2 (en) Projection exposure equipment