JPH09280944A - Automatically reception level measuring system for light branching system - Google Patents

Automatically reception level measuring system for light branching system

Info

Publication number
JPH09280944A
JPH09280944A JP8696196A JP8696196A JPH09280944A JP H09280944 A JPH09280944 A JP H09280944A JP 8696196 A JP8696196 A JP 8696196A JP 8696196 A JP8696196 A JP 8696196A JP H09280944 A JPH09280944 A JP H09280944A
Authority
JP
Japan
Prior art keywords
signal
reception level
master station
level measuring
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8696196A
Other languages
Japanese (ja)
Other versions
JP2904111B2 (en
Inventor
Tetsuo Muragata
鉄雄 村形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP8696196A priority Critical patent/JP2904111B2/en
Publication of JPH09280944A publication Critical patent/JPH09280944A/en
Application granted granted Critical
Publication of JP2904111B2 publication Critical patent/JP2904111B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an automatically reception level measuring system for a light branching system which is completely free from interruption between a slave station and a master station and dispenses with direct operation of equipment by a maintenance person. SOLUTION: At a master station 11, a signal S2 for measuring reception levels overlapped on a main signal is converted to an electric signal by an O/E and a main signal 81 is extracted through an LPF 13 while the signal S2 for measuring reception levels is extracted through a BPF16. A peak detecting section 17 detects a peak voltage of the signal S2. A CPU 19 calculates a reception level from the peak voltage based on a peak voltage is reception level characteristic previously applied.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は光分岐システムの受
光レベル自動測定システムに関し、特に星型光分岐シス
テムの受光レベル自動測定システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an automatic light receiving level measuring system for an optical branching system, and more particularly to a light receiving level automatic measuring system for a star type optical branching system.

【0002】[0002]

【従来の技術】図7は星型光分岐システムの一構成図で
ある。星型光分岐システムは、1つの親局101と複数
(たとえば3つ)の子局102〜104とが光分岐器1
05を介して光ファイバ伝送路106〜109により接
続されている。このようなシステムの構成上、子局10
2〜104から送信されるバースト信号は光ファイバ伝
送路107〜109を経由して光分岐器105で合成さ
れ、さらに光ファイバ伝送路106を経由して親局10
1へ到達する。
2. Description of the Related Art FIG. 7 is a block diagram of a star type optical branching system. In the star type optical branching system, one master station 101 and a plurality of (for example, three) slave stations 102 to 104 are used as the optical branching device 1.
The optical fiber transmission lines 106 to 109 are connected to each other via 05. Due to the configuration of such a system, the slave station 10
The burst signals transmitted from 2 to 104 are combined by the optical branching device 105 via the optical fiber transmission lines 107 to 109, and further transmitted via the optical fiber transmission line 106 to the master station 10.
Reach 1

【0003】従って、同時に2つ以上の送信が光分岐器
105に入力されると、バースト信号の衝突が起きてし
まうので、一般的にはTDMA方式(時分割多元接続方
式)を用いて衝突を防止している。
Therefore, when two or more transmissions are input to the optical branching device 105 at the same time, a burst signal collision occurs. Therefore, in general, the TDMA method (time division multiple access method) is used for collision. To prevent.

【0004】ところで、子局を新設した際は各種の運用
前試験を行うが、その子局からの受光レベル測定を親局
側で行う必要がある。従来、受光レベルの測定は、保守
者が測定対象の子局まで出向いて直接スイッチ等を操作
して送信光を常時出力させ、一方、親局側でも保守者が
光ファイバ106と親局101のO/Eモジュール(光
・電気変換モジュール)(不図示)の接続を外して光フ
ァイバ106に光パワーメータ等の測定器を接続して試
験対象子局からの受光レベルを測定していた。
By the way, when a slave station is newly installed, various pre-operation tests are performed, but it is necessary for the master station side to measure the received light level from the slave station. Conventionally, in the measurement of the received light level, the maintenance person goes to the slave station to be measured and directly operates the switch or the like to constantly output the transmitted light. On the other hand, on the side of the master station, the maintenance person also operates the optical fiber 106 and the master station 101. The O / E module (optical / electrical conversion module) (not shown) was disconnected, and a measuring device such as an optical power meter was connected to the optical fiber 106 to measure the received light level from the slave station to be tested.

【0005】また、光パワーの測定に関する先行技術と
して、(1)特開平2−221838号公報に波長の違
う光の光パワーを同時に測定する技術が開示され、
(2)特開昭62−222129号公報に多数の光ファ
イバからの光パワーを1個の光センサを用いて一括して
測定する技術が開示され、(3)実願昭62−3265
2号公報に光波長多重された光を夫々単一波長の光に分
離し、単一波長毎に光パワーの測定を行う技術が開示さ
れている。
Further, as a prior art relating to the measurement of optical power, (1) Japanese Unexamined Patent Publication No. 2-221838 discloses a technique for simultaneously measuring the optical power of light of different wavelengths,
(2) Japanese Patent Application Laid-Open No. 62-222129 discloses a technique for collectively measuring the optical power from a large number of optical fibers by using one optical sensor, and (3) Japanese Patent Application No. 62-3265.
Japanese Unexamined Patent Publication No. 2 (1994) discloses a technique in which the light wavelength-multiplexed lights are separated into lights of a single wavelength and the optical power is measured for each single wavelength.

【0006】[0006]

【発明が解決しようとする課題】しかし、従来の測定シ
ステムでは受光レベルの測定を行っている時は全ての通
信が途絶えるという欠点があった。
However, the conventional measuring system has a drawback in that all communication is interrupted while measuring the received light level.

【0007】このため、従来は1子局だけ後で増設する
ことは行わず、全ての子局について同時期に運用前試験
を行っていた。
For this reason, conventionally, only one slave station is not expanded later, but all slave stations are subjected to the pre-operation test at the same time.

【0008】また、保守者が直接機器を操作しなければ
ならないという欠点もあった。これは、子局については
現地に直接保守者が出向かねばならないということであ
る。
There is also a drawback that the maintenance person must directly operate the equipment. This means that for child stations, maintenance personnel must be sent directly to the site.

【0009】また、機器の操作をするということは誤操
作の可能性が残る。特に親局については光ファイバを付
けたり、外したりすることが機構的なトラブルの原因に
なりかねない。
In addition, there is a possibility that the operation of the device may be an erroneous operation. Especially for the master station, attaching or detaching the optical fiber may cause mechanical troubles.

【0010】一方、先行技術(1)〜(3)には、通信
を中断させることなく1子局の受光レベルの測定を可能
とする技術は開示されていない。
On the other hand, the prior arts (1) to (3) do not disclose any technique capable of measuring the light reception level of one slave station without interrupting communication.

【0011】そこで本発明の目的は、子局と親局間の通
信を中断することなく、かつ保守者が直接機器を操作す
る必要のない光分岐システムの受光レベル自動測定シス
テムを提供することにある。
Therefore, an object of the present invention is to provide an automatic light receiving level measuring system for an optical branching system without interrupting communication between the slave station and the master station and requiring no maintenance personnel to directly operate the equipment. is there.

【0012】[0012]

【課題を解決するための手段】前記課題を解決するため
に本発明は、1つの親局と複数の子局とが星型に接続さ
れ、前記親局が各子局からの光の受光レベルを測定する
光分岐システムの受光レベル自動測定システムであっ
て、前記親局は前記各子局からの受信信号を主信号と受
信レベル測定用信号とに分離する分離手段と、この分離
手段で分離された受信レベル測定用信号をアナログレベ
ル信号に変換する信号変換手段とを含むことを特徴とす
る。
In order to solve the above-mentioned problems, according to the present invention, one master station and a plurality of slave stations are connected in a star shape, and the master station receives light from each slave station. In the automatic light reception level measuring system of the optical branching system for measuring the signal, the master station separates the reception signal from each slave station into a main signal and a reception level measuring signal, and the separation means. And a signal converting means for converting the received signal for measuring a received level into an analog level signal.

【0013】さらに、遠隔操作により前記親局に受光レ
ベルの測定を行わせる遠隔操作手段を有することを特徴
とする。
Further, it is characterized by further comprising remote operation means for causing the master station to perform measurement of the light reception level by remote operation.

【0014】[0014]

【発明の実施の形態】本発明によれば、親局は受信した
主信号および受信レベル測定用信号を夫々の信号に分離
した後、受信レベル測定用信号をアナログレベル信号に
変換し、そのアナログレベルから受光レベルを算出す
る。
According to the present invention, a master station separates a received main signal and a received level measuring signal into respective signals, converts the received level measuring signal into an analog level signal, and then converts the analog level signal. The light receiving level is calculated from the level.

【0015】さらに、遠隔操作手段からの制御により親
局は所定の子局からの受光レベルを測定する。
Further, the master station measures the light reception level from a predetermined slave station under the control of the remote control means.

【0016】以下、本発明の実施の形態について添付図
面を参照しながら説明する。なお、従来例と同様の構成
部分については同一番号を付し、その説明を省略する。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. The same components as those in the conventional example are designated by the same reference numerals, and the description thereof will be omitted.

【0017】親局と複数の子局との接続は図7に示した
従来の構成図と同様である。
The connection between the master station and the plurality of slave stations is the same as the conventional configuration shown in FIG.

【0018】図1は本発明に係る受光レベル自動測定シ
ステムの子局の送信系構成図である。なお、子局は一例
として3局で構成するがこれに限定されるものではな
く、局数は任意である。
FIG. 1 is a block diagram of a transmission system of a slave station of an automatic light reception level measuring system according to the present invention. It should be noted that the slave station is composed of three stations as an example, but is not limited to this, and the number of stations is arbitrary.

【0019】子局1(1−1〜1−3)は主信号S1を
生成して出力するロジック回路部2と、この主信号S1
の周波数fの正数倍の周波数n×f(Hz)(nは正の
整数)の受光レベル測定用信号S2を生成して出力する
発振器3(または周波数逓倍回路でもよい。)と、この
信号S1またはS2を親局からの選択信号S3により選
択して出力するセレクタ4と、このセレクタ4より出力
される信号S1またはS2を光信号に変換して光ファイ
バ伝送路107〜109へ出力する電気・光変換部(以
下、E/Oという。)5とからなる。
The slave stations 1 (1-1 to 1-3) generate a main signal S1 and output the logic circuit section 2, and the main signal S1.
An oscillator 3 (or a frequency multiplying circuit) which generates and outputs a received light level measuring signal S2 having a frequency n × f (Hz) (n is a positive integer) which is a positive multiple of the frequency f. A selector 4 which selects and outputs S1 or S2 by a selection signal S3 from the master station, and an electric which converts the signal S1 or S2 output from this selector 4 into an optical signal and outputs the optical signal to the optical fiber transmission lines 107 to 109. A light conversion unit (hereinafter referred to as E / O) 5.

【0020】図2は本発明に係る受光レベル自動測定シ
ステムの親局の受信系構成図である。親局は一局で構成
される。
FIG. 2 is a block diagram of the receiving system of the master station of the automatic light receiving level measuring system according to the present invention. The parent station consists of one station.

【0021】親局11は光分岐器105を介して入力さ
れた主信号S1および受信レベル測定用信号S2を受信
し、その受信信号を電気信号に変換する光・電気変換部
(以下、O/Eという。)12と、遮断周波数2fのロ
ーパスフィルタ(以下、LPFという。)13と、入力
信号の等化、再生、識別処理を行う3R処理部14と、
この3R処理部14で処理された信号が入力されるロジ
ック回路部15と、周波数n×f(Hz)を中心とした
一定帯域幅の信号を通過させるバンドパスフィルタ(以
下、BPFという。)16と、このBPF16の出力信
号のピーク電圧を検出するピーク検出部17と、ピーク
検出部17より出力される信号をディジタル変換するA
/D変換部(以下A/Dという。)18と、このA/D
18でディジタル変換された信号を処理する中央処理装
置(以下、CPUという。)19とからなる。
The master station 11 receives the main signal S1 and the reception level measuring signal S2 input via the optical branching device 105, and converts the received signal into an electric signal (hereinafter referred to as O / E converter). 12), a low-pass filter (hereinafter referred to as LPF) 13 having a cutoff frequency 2f, a 3R processing unit 14 that performs equalization, reproduction, and identification processing of an input signal,
A logic circuit unit 15 to which the signal processed by the 3R processing unit 14 is input, and a bandpass filter (hereinafter referred to as BPF) 16 that passes a signal having a constant bandwidth centered on a frequency of n × f (Hz) 16. A peak detector 17 for detecting the peak voltage of the output signal of the BPF 16, and A for digitally converting the signal output from the peak detector 17.
A / D converter (hereinafter referred to as A / D) 18 and this A / D
A central processing unit (hereinafter referred to as CPU) 19 for processing the signal digitally converted by 18.

【0022】図3は親局受信系における受信データフォ
ーマットの模式説明図である。同図(A)は子局1−1
〜1−3が通常動作の場合を示す。通常は子局1−1の
主信号はa、子局1−2の主信号はb、子局1−3の主
信号はcというように時分割で親局で受信される。
FIG. 3 is a schematic explanatory diagram of a reception data format in the master station reception system. The same figure (A) is a slave station 1-1.
1 to 3 show the case of normal operation. Usually, the main signal of the slave station 1-1 is a, the main signal of the slave station 1-2 is b, the main signal of the slave station 1-3 is c, and the main signal is received by the master station in a time division manner.

【0023】一方、同図(B)は子局1−3に対しての
み受光レベル測定の制御をした場合を示す。この場合は
同図に示すように子局1−1の主信号はa、子局1−2
の主信号はbというように時分割で受信されるが子局1
−3の受光レベル測定用信号c´は時分割ではなく連続
光として受信される。したがって、時間軸上では子局1
−1の主信号a、子局1−2の主信号bのデータ領域と
重畳して子局1−3の受光レベル測定用信号c´が受信
される。
On the other hand, FIG. 3B shows the case where the light receiving level measurement is controlled only for the slave stations 1-3. In this case, the main signal of the slave station 1-1 is a and the slave station 1-2 is as shown in FIG.
The main signal of is received by time division like b
The light reception level measuring signal c ′ of −3 is received as continuous light instead of time division. Therefore, on the time axis, the slave station 1
The main signal a of -1 and the main signal b of the slave station 1-2 are overlapped with the data areas, and the light reception level measurement signal c'of the slave station 1-3 is received.

【0024】図4は主信号と受光レベル測定用信号の関
係を示す波形図である。同図(A)は主信号S1(a,
b,cのうちの1つの信号)を示す。周波数f(Hz)
のディジタルデータである。同図では101010…の
データを示すがこれは一例であり、たとえば10110
…のような任意のデータでよい。
FIG. 4 is a waveform diagram showing the relationship between the main signal and the received light level measuring signal. In the figure (A), the main signal S1 (a,
signal of b and c). Frequency f (Hz)
Of the digital data. In the figure, the data of 101010 ... Is shown, but this is an example, for example, 10110.
Any data such as ... may be used.

【0025】同図(B)は受光レベル測定用信号S2
(c´)を示す。周波数がn×f(Hz)の矩形波であ
る。なお、本実施例では一例としてn=3とする。
FIG. 3B shows the light reception level measuring signal S2.
(C ') is shown. It is a rectangular wave having a frequency of n × f (Hz). In this embodiment, n = 3 as an example.

【0026】同図(C)は親局11で受信される波形を
示す。親局では主信号S1と受光レベル測定用信号S2
との重畳信号が受信される。
FIG. 3C shows a waveform received by the master station 11. At the master station, the main signal S1 and the received light level measurement signal S2
And a superimposed signal of is received.

【0027】同図(D)は後述するが、受光レベル測定
用信号S2のピーク電圧S4の波形図である。
As will be described later, FIG. 3D is a waveform diagram of the peak voltage S4 of the received light level measuring signal S2.

【0028】次に、図1〜4を参照しながら受光レベル
自動測定システムの動作について説明する。
Next, the operation of the automatic received light level measuring system will be described with reference to FIGS.

【0029】親局11から子局1(1−1〜1−3)の
セレクタ4に対して、光ファイバ伝送路106、光分岐
器105、光ファイバ伝送路107〜109を経由し
て、選択信号S3が入力されるよう構成されている。
Select from the master station 11 to the selector 4 of the slave station 1 (1-1 to 1-3) via the optical fiber transmission line 106, the optical branching device 105, and the optical fiber transmission lines 107 to 109. The signal S3 is input.

【0030】いま、子局1−3に対して選択信号Sが送
信されたとすると、子局1−3のセレクタ4は受光レベ
ル測定用信号S2(c´)を選択してE/O5へ出力す
る。これを受けたE/O5はこの受光レベル測定用信号
S2(c´)を光信号に変換して光ファイバ伝送路10
9へ送出する。
If the selection signal S is transmitted to the slave station 1-3, the selector 4 of the slave station 1-3 selects the received light level measurement signal S2 (c ') and outputs it to the E / O5. To do. Upon receiving this, the E / O 5 converts the received light level measurement signal S2 (c ') into an optical signal to convert the optical fiber transmission line 10
9 is sent.

【0031】一方、この選択信号S3が送信されない子
局1−1,1−2は主信号S1(a,b)を選択し、こ
の主信号S1(a,b)を光信号に変換して光ファイバ
伝送路107,108へ送出する。
On the other hand, the slave stations 1-1 and 1-2 to which the selection signal S3 is not transmitted select the main signal S1 (a, b) and convert the main signal S1 (a, b) into an optical signal. It is sent to the optical fiber transmission lines 107 and 108.

【0032】この主信号S1(a,b)および受光レベ
ル測定用信号S2(c´)を受信した親局の動作は次の
とおりである。
The operation of the master station which has received the main signal S1 (a, b) and the received light level measuring signal S2 (c ') is as follows.

【0033】まず、O/E12にて光信号が電気信号に
変換される。次に、LPF13(遮断周波数2×f(H
z)とする。)にて受光レベル測定用信号S2(c´)
が除去され主信号S1(a,b)のみが出力される。そ
してこの主信号S1(a,b)は3R処理部14で従来
同様の等化、再生、識別処理が行われる。したがって、
ロジック回路部15では主信号S1(a,b)成分のみ
が通常どおり入力される。
First, the optical signal is converted into an electric signal by the O / E 12. Next, LPF 13 (cutoff frequency 2 × f (H
z). ) Signal S2 (c ') for measuring received light level
Is removed and only the main signal S1 (a, b) is output. Then, the main signal S1 (a, b) is subjected to equalization, reproduction and identification processing similar to the conventional one in the 3R processing unit 14. Therefore,
In the logic circuit section 15, only the main signal S1 (a, b) component is input as usual.

【0034】一方、BPF16(通過周波数3×f(H
z))で周波数3×f(Hz)を中心としたフィルタリ
ングがなされる。このフィルタリングで主信号S1
(a,b)は除去されるため、ピーク検出部17へは受
光レベル測定用信号S2(c´)のみが入力される。
On the other hand, the BPF 16 (pass frequency 3 × f (H
z)) performs filtering centered on the frequency 3 × f (Hz). By this filtering, the main signal S1
Since (a, b) is removed, only the received light level measurement signal S2 (c ') is input to the peak detector 17.

【0035】ピーク検出部17に入力される受光レベル
測定用信号S2(c´)はアナログ情報として取り扱わ
れる。すなわち、実際にO/E12にて受信した光の受
光レベルが大きいほどピーク検出部17に対する入力電
圧も高くなる。ピーク検出部17においては従来のピー
クホールド回路等を用いて入力電圧の変動を押さえこ
み、入力時の最大電圧をホールド(保持)してA/D1
8に対して一定電圧を出力する。このピーク検出部17
より出力される信号S4の波形が図4(D)である。
The received light level measurement signal S2 (c ') input to the peak detector 17 is treated as analog information. That is, the higher the light reception level of the light actually received by the O / E 12, the higher the input voltage to the peak detection unit 17. In the peak detection unit 17, a conventional peak hold circuit or the like is used to suppress fluctuations in the input voltage and hold (hold) the maximum voltage at the time of input to A / D1.
A constant voltage is output to 8. This peak detector 17
The waveform of the output signal S4 is shown in FIG.

【0036】図5はO/E12へ入力される受光レベル
とピーク検出部17の出力電圧との関係を示す特性図で
ある。同図に示すように受光レベルとピーク検出部17
の出力電圧とは比例する。
FIG. 5 is a characteristic diagram showing the relationship between the received light level input to the O / E 12 and the output voltage of the peak detector 17. As shown in FIG.
Is proportional to the output voltage of.

【0037】A/D18はピーク検出部17から入力し
たアナログ信号をディジタルの2値信号に変換する。
The A / D 18 converts the analog signal input from the peak detector 17 into a digital binary signal.

【0038】CPU19は、予め図5の特性図に示す情
報を与えておくことにより、CPU19に入力されたデ
ィジタル信号から逆変換処理を行い、O/E12に入力
された光信号の受光レベルを算出する。たとえば、CP
U19における入力が図5の信号S4のQの値であった
場合、CPU19は実際のO/E12の光入力レベルと
してPという値を算出することができる。
The CPU 19 performs the inverse conversion processing from the digital signal input to the CPU 19 by giving the information shown in the characteristic diagram of FIG. 5 in advance, and calculates the light receiving level of the optical signal input to the O / E 12. To do. For example, CP
When the input at U19 is the Q value of the signal S4 in FIG. 5, the CPU 19 can calculate the value P as the actual optical input level of the O / E 12.

【0039】次に、親局の遠隔操作システムについて説
明する。図6は親局の遠隔操作システムの構成図であ
る。
Next, the remote control system of the master station will be described. FIG. 6 is a block diagram of the remote control system of the master station.

【0040】親局の遠隔操作システムは、親局11を監
視する監視装置21と、親局11の送信系と、子局1の
送信系および受信系とからなる。
The remote control system of the master station comprises a monitoring device 21 for monitoring the master station 11, a transmission system of the master station 11, and a transmission system and a reception system of the slave station 1.

【0041】親局の送信系は、監視装置21からのコマ
ンドS11を解読するコマンド解読部22と、このコマ
ンド解読部22で解読された試験コマンドS12を送信
データS13に重畳させる重畳部23と、重畳された信
号を光信号に変換するE/O24とからなる。
The transmission system of the master station includes a command decoding unit 22 for decoding the command S11 from the monitoring device 21, and a superposition unit 23 for superposing the test command S12 decoded by the command decoding unit 22 on the transmission data S13. And an E / O 24 for converting the superimposed signal into an optical signal.

【0042】子局1の送信系は、光伝送路111、光分
岐器105および光伝送路112を介して入力された光
信号を電気信号に変換するO/E31と、電気信号に変
換された信号を試験コマンドS12と受信データ(送信
データと同一)S13とに分離する分離部32と、試験
コマンドS12を解読する試験コマンド解読部33とか
らなり、この試験コマンド解読部33から出力される選
択信号S3が送信系のセレクタ4へ入力され、セレクタ
4を制御する。
The transmission system of the slave station 1 has an O / E 31 for converting an optical signal input via the optical transmission path 111, the optical branching device 105 and the optical transmission path 112 into an electric signal, and an electric signal. It comprises a separation unit 32 that separates a signal into a test command S12 and received data (same as transmission data) S13, and a test command decoding unit 33 that decodes the test command S12. The selection output from the test command decoding unit 33 The signal S3 is input to the selector 4 of the transmission system and controls the selector 4.

【0043】なお、受信系のセレクタ4、ロジック回路
部2、発振器3、E/O5は図1の構成と同一である。
The selector 4, the logic circuit section 2, the oscillator 3, and the E / O 5 of the receiving system are the same as those in FIG.

【0044】次に、動作について説明する。監視装置よ
りコマンドS11がコマンド解読部22へ入力される
と、コマンド解読部22はそのコマンドS11を解読す
る。いま、そのコマンドS11が受光レベル測定コマン
ド(試験コマンド)S12であったとすると、コマンド
解読部22はその試験コマンドS12を読み出す。
Next, the operation will be described. When the command S11 is input to the command decoding unit 22 from the monitoring device, the command decoding unit 22 decodes the command S11. Now, assuming that the command S11 is the received light level measurement command (test command) S12, the command decoding unit 22 reads the test command S12.

【0045】そして、その読み出された試験コマンドS
12が送信データS13に重畳部23で重畳され、E/
O24へ入力される。E/O24はこの重畳信号を光信
号に変換し、光ファイバ伝送路111、光分岐器105
および光ファイバ伝送路112を経由して子局1へ送信
する。
Then, the read test command S
12 is superimposed on the transmission data S13 by the superimposing unit 23, and E /
Input to O24. The E / O 24 converts this superimposed signal into an optical signal, and the optical fiber transmission line 111 and the optical branching device 105.
And to the slave station 1 via the optical fiber transmission line 112.

【0046】子局1は、この重畳信号をO/E31で電
気信号に変換し、分離部32へ入力する。分離部32は
この重畳信号を受信データS13と試験コマンドS12
に分離し、試験コマンドS12を解読部33へ入力す
る。
The slave station 1 converts this superposed signal into an electric signal by the O / E 31 and inputs it to the separating section 32. The separation unit 32 uses the superimposed signal as the reception data S13 and the test command S12.
And the test command S12 is input to the decoding unit 33.

【0047】解読部33は入力された信号が試験コマン
ドS12であることを解読し、選択信号S3を出力す
る。
The decoding section 33 decodes that the input signal is the test command S12 and outputs the selection signal S3.

【0048】この選択信号S3はセレクタ4へ入力さ
れ、セレクタ4は発振器3からの受光レベル測定用信号
S2(c´)を選択する。そして、選択された受光レベ
ル測定用信号S2(c´)は、E/O5および光ファイ
バ伝送路109等を経由して親局11へ送信される。
The selection signal S3 is input to the selector 4, and the selector 4 selects the light reception level measurement signal S2 (c ') from the oscillator 3. Then, the selected light reception level measurement signal S2 (c ') is transmitted to the master station 11 via the E / O5, the optical fiber transmission path 109, and the like.

【0049】そして、この受光レベル測定用信号S2
(c´)に基づき親局11が受光レベルの測定を行うの
は前述したとおりである。
Then, the received light level measuring signal S2
As described above, the master station 11 measures the received light level based on (c ').

【0050】[0050]

【発明の効果】本発明によれば、親局を、各子局からの
受信信号を主信号と受信レベル測定用信号とに分離する
分離手段と、この分離手段で分離された受信レベル測定
用信号をアナログレベル信号に変換する信号変換手段と
を含んで構成したため、子局と親局間の通信を中断させ
ることなく受光レベルの測定を行うことができる。
According to the present invention, the master station separates the reception signal from each slave station into the main signal and the reception level measurement signal, and the reception level measurement signal separated by this separation means. Since the signal conversion means for converting a signal into an analog level signal is included, it is possible to measure the received light level without interrupting communication between the slave station and the master station.

【0051】また、遠隔操作により前記親局に受光レベ
ルの測定を行わせる遠隔操作手段を有したため、保守者
が直接機器を操作する必要がなくなり、したがって誤操
作を減らすことができる。
Further, since the remote control means for causing the master station to measure the received light level by remote control is provided, it is not necessary for the maintenance person to directly operate the equipment, and therefore erroneous operation can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る受光レベル自動測定システムの子
局の送信系構成図である。
FIG. 1 is a transmission system configuration diagram of a slave station of an automatic light reception level measurement system according to the present invention.

【図2】同システムの親局の受信系構成図である。FIG. 2 is a block diagram of a receiving system of a master station of the system.

【図3】同システムの親局受信系における受信データフ
ォーマットの模式説明図である。
FIG. 3 is a schematic explanatory diagram of a reception data format in a master station reception system of the system.

【図4】同システムの主信号と受光レベル測定用信号の
関係を示す波形図である。
FIG. 4 is a waveform diagram showing a relationship between a main signal and a light receiving level measuring signal of the system.

【図5】同システムのO/Eへ入力される受光レベルと
ピーク検出部の出力電圧との関係を示す特性図である。
FIG. 5 is a characteristic diagram showing the relationship between the light receiving level input to the O / E of the system and the output voltage of the peak detection unit.

【図6】同システムの親局の遠隔操作システムの構成図
である。
FIG. 6 is a configuration diagram of a remote control system of a master station of the system.

【図7】星型光分岐システムの一構成図である。FIG. 7 is a configuration diagram of a star-shaped optical branching system.

【符号の説明】[Explanation of symbols]

1 子局 2 ロジック回路部 3 発振器 4 セレクタ 11 親局 13 ローパスフィルタ 16 バンドパスフィルタ 17 ピーク検出部 21 監視装置 22 コマンド解読部 23 重畳部 32 分離部 33 試験コマンド解読部 1 Slave Station 2 Logic Circuit Section 3 Oscillator 4 Selector 11 Master Station 13 Low-pass Filter 16 Band-pass Filter 17 Peak Detecting Section 21 Monitoring Device 22 Command Decoding Section 23 Superimposing Section 32 Separating Section 33 Test Command Decoding Section

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 1つの親局と複数の子局とが星型に接続
され、前記親局が各子局からの光の受光レベルを測定す
る光分岐システムの受光レベル自動測定システムであっ
て、 前記親局は前記各子局からの受信信号を主信号と受信レ
ベル測定用信号とに分離する分離手段と、この分離手段
で分離された受信レベル測定用信号をアナログレベル信
号に変換する信号変換手段とを含むことを特徴とする光
分岐システムの受光レベル自動測定システム。
1. An automatic light reception level measuring system for an optical branching system, wherein one master station and a plurality of slave stations are connected in a star shape, and the master station measures the light reception level of light from each slave station. The master station separates the reception signal from each slave station into a main signal and a reception level measurement signal, and a signal for converting the reception level measurement signal separated by the separation means into an analog level signal. An automatic measuring system for a received light level of an optical branching system, comprising: a converting means.
【請求項2】 前記子局は前記主信号を生成する主信号
生成手段と、前記受信レベル測定用信号を生成する受信
レベル測定用信号生成手段と、前記親局からの制御信号
により前記主信号または前記受信レベル測定用信号を選
択して出力する選択出力手段とを含むことを特徴とする
光分岐システムの受光レベル自動測定システム。
2. The main signal is generated by the slave station by a main signal generating means for generating the main signal, a reception level measuring signal generating means for generating the reception level measuring signal, and a control signal from the master station. Or a selective output means for selecting and outputting the reception level measuring signal, and an automatic light receiving level measuring system for an optical branching system.
【請求項3】 前記主信号は時分割出力される信号から
なり、前記受信レベル測定用信号は連続出力される信号
からなることを特徴とする請求項1または2記載の光分
岐システムの受光レベル自動測定システム。
3. The light receiving level of the optical branching system according to claim 1, wherein the main signal is a signal that is time-divisionally output, and the reception level measuring signal is a signal that is continuously output. Automatic measurement system.
【請求項4】 前記受信レベル測定用信号は前記主信号
のクロック周波数の正数倍の周波数を有するクロックパ
ルスであることを特徴とする請求項1〜3いずれかに記
載の光分岐システムの受光レベル自動測定システム。
4. The light receiving system of claim 1, wherein the reception level measuring signal is a clock pulse having a frequency that is a positive multiple of the clock frequency of the main signal. Level automatic measurement system.
【請求項5】 前記親局は子局宛ての主信号に受信レベ
ル測定用の前記制御信号を重畳して出力する重畳出力手
段を有し、前記子局は前記重畳された信号を前記主信号
と前記制御信号とに分離する第2の分離手段を有するこ
とを特徴とする請求項1〜4いずれかに記載の光分岐シ
ステムの受光レベル自動測定システム。
5. The master station has superimposing output means for superimposing and outputting the control signal for measuring the reception level on a main signal addressed to the slave station, and the slave station outputs the superposed signal to the main signal. 5. The automatic light reception level measuring system for an optical branching system according to claim 1, further comprising a second separating means for separating the control signal and the control signal.
【請求項6】 さらに遠隔操作により前記親局に受光レ
ベルの測定を行わせる遠隔操作手段を有することを特徴
とする請求項1〜5いずれかに記載の光分岐システムの
受光レベル自動測定システム。
6. The automatic light receiving level measuring system for an optical branching system according to claim 1, further comprising remote operating means for causing the master station to measure a light receiving level by remote operation.
JP8696196A 1996-04-10 1996-04-10 Automatic light receiving level measurement system for optical branching system Expired - Lifetime JP2904111B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8696196A JP2904111B2 (en) 1996-04-10 1996-04-10 Automatic light receiving level measurement system for optical branching system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8696196A JP2904111B2 (en) 1996-04-10 1996-04-10 Automatic light receiving level measurement system for optical branching system

Publications (2)

Publication Number Publication Date
JPH09280944A true JPH09280944A (en) 1997-10-31
JP2904111B2 JP2904111B2 (en) 1999-06-14

Family

ID=13901479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8696196A Expired - Lifetime JP2904111B2 (en) 1996-04-10 1996-04-10 Automatic light receiving level measurement system for optical branching system

Country Status (1)

Country Link
JP (1) JP2904111B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012253608A (en) * 2011-06-03 2012-12-20 Kyosan Electric Mfg Co Ltd Transmission state supervision device and transmission state decision method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012253608A (en) * 2011-06-03 2012-12-20 Kyosan Electric Mfg Co Ltd Transmission state supervision device and transmission state decision method

Also Published As

Publication number Publication date
JP2904111B2 (en) 1999-06-14

Similar Documents

Publication Publication Date Title
JPS63210743A (en) Wavelength dispersion measuring instrument
JP3077600B2 (en) Optical network system path monitoring device
US4187415A (en) Remote locating system for transmission faults in data transmission line having regenerative repeaters
JP2904111B2 (en) Automatic light receiving level measurement system for optical branching system
JPH0650876B2 (en) Intermediate relay device
JPH0797761B2 (en) Optical transmission system
JPS63107240A (en) Demultiplexing circuit
JPH0821900B2 (en) Optical repeater monitoring system
JPS58202641A (en) Master station device of time division multi-direction multiplex communication system
JPS59176937A (en) System for supervising optical relay transmission line
JP2621756B2 (en) Video switcher self-diagnosis device
JP2876908B2 (en) Transmission path failure notification method
JPH10224829A (en) Wavelength multiplexer/demultiplexer
JPH0818578A (en) Monitor control system for data transmission system
JPS5966238A (en) Optical fiber relay transmission line monitor
JP2003318828A (en) Failure position locating method and optical transmission system
JPH05102940A (en) Method and device for monitoring matrix switch
JPH04151923A (en) Self-diagnostic system for pcm line unit
JP2000244407A (en) Optical subscriber system and its monitor method
JPH08204639A (en) Burst optical output monitor
JPH08307483A (en) Monitor data transmission system
JPH04326821A (en) Fault locating method for transmission system
JPH09116598A (en) Multiplex layer signal terminating equipment
JPH05235774A (en) Signal conversion circuit between bipolar signal and unipolar signal
JPH0521373B2 (en)