JPH0928010A - Gas insulated switchgear, gas insulated transmission line, and insulating spacer therefor - Google Patents

Gas insulated switchgear, gas insulated transmission line, and insulating spacer therefor

Info

Publication number
JPH0928010A
JPH0928010A JP7176395A JP17639595A JPH0928010A JP H0928010 A JPH0928010 A JP H0928010A JP 7176395 A JP7176395 A JP 7176395A JP 17639595 A JP17639595 A JP 17639595A JP H0928010 A JPH0928010 A JP H0928010A
Authority
JP
Japan
Prior art keywords
insulating spacer
dielectric constant
insulating
gas
insulated switchgear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7176395A
Other languages
Japanese (ja)
Inventor
Atsushi Nukaga
淳 額賀
Yoichi Oshita
陽一 大下
Toshio Ishikawa
敏雄 石川
Takuya Sugawara
拓也 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7176395A priority Critical patent/JPH0928010A/en
Publication of JPH0928010A publication Critical patent/JPH0928010A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G5/00Installations of bus-bars
    • H02G5/06Totally-enclosed installations, e.g. in metal casings
    • H02G5/066Devices for maintaining distance between conductor and enclosure

Landscapes

  • Gas-Insulated Switchgears (AREA)
  • Insulating Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the creeping dielectric strength of an insulating spacer by tightly sticking a surface member having a low dielectric strength to a central member composed of a material having a high dielectric constant with a coupling agent. SOLUTION: Buried electrodes 5a and 5b and a cylindrical insulating layer 3a which is a central member are formed by injection molding. In addition, an insulating layer 3b which is a surface member 3b having a low dielectric constant is formed around the cylindrical insulating layer 3a composed of a high dielectric constant. At the time of forming the insulating layer 3b, the surface member 3b is injection-molded after a silane coupling agent is applied to the outer peripheral surface of the central member 3a. Therefore, even when conductive foreign matters exist in a gas insulated switchgear and the foreign matters adhere to an insulating spacer, the foreign matters certainly adhere to the insulating layer 3b, because the surface member 3b covers the central member 3a. As a result, the dielectric strength of the insulating spacer is improved as compared with a single-layer spacer having a high dielectric constant.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は六フッ化硫黄(SF6
ガスなどの絶縁ガスを絶縁媒体とするガス絶縁開閉装置
(GIS)や管路気中送電線(GIL)等に係り、特
に、高電圧導体を絶縁支持する絶縁性能の高い絶縁スペ
ーサに関する。
FIELD OF THE INVENTION The present invention relates to sulfur hexafluoride (SF 6 ).
The present invention relates to a gas insulated switchgear (GIS) and a pipeline air transmission line (GIL) that use an insulating gas such as a gas as an insulating medium, and particularly to an insulating spacer having a high insulating performance for insulating and supporting a high-voltage conductor.

【0002】[0002]

【従来の技術】SF6ガスを主絶縁媒体とするガス絶縁
開閉装置等は、絶縁信頼性や装置の小型化の点で優れて
いるために、発電所や変電所などで広く用いられてい
る。しかし、近年の電力需要の増加に伴い、送電系統で
は550kVあるいはUHVへの大容量化が求められて
いる。これらの発変電所で用いられるガス絶縁開閉装置
は、より高い信頼性が要求されると共に、経済性も要求
されコンパクト化が強く望まれている。
2. Description of the Related Art Gas-insulated switchgear using SF 6 gas as a main insulating medium is widely used in power plants, substations, etc. because of its excellent insulation reliability and miniaturization of the device. . However, as the demand for electric power has increased in recent years, the transmission system is required to have a large capacity up to 550 kV or UHV. The gas-insulated switchgear used in these power substations is required to have higher reliability and economical efficiency, and is strongly desired to be compact.

【0003】従来のガス絶縁開閉装置は、SF6ガスな
どの絶縁ガスを用いているため、装置のコンパクト化は
可能になったが、金属容器内に数mm程度の導電性異物
が存在しているだけでも絶縁破壊の虞がある。例えば金
属容器内に導電性異物があった場合、形状等によっては
導電性異物が電荷を帯び、中央の高電圧導体と周囲の金
属容器との間を往復したりする。
Since the conventional gas insulated switchgear uses an insulating gas such as SF 6 gas, the device can be made compact, but there is a conductive foreign substance of about several mm in the metal container. There is a risk of dielectric breakdown just by being there. For example, when there is a conductive foreign substance in the metal container, the conductive foreign substance is charged depending on the shape and the like, and reciprocates between the high voltage conductor in the center and the surrounding metal container.

【0004】この導電性異物が絶縁スペーサの沿面に付
着した際に雷インパルスや断路器サージなどの過電圧が
ガス開閉装置にかかると、絶縁スペーサの絶縁破壊が引
き起こされる可能性が非常に高くなる。ガス絶縁開閉装
置における地絡事故の主な原因は上記の様な導電性異物
による絶縁スペーサの沿面絶縁破壊であり、導電性異物
管理は重要な課題である。しかし、装置製造において導
電性異物を無くすことは非常に難しく、装置の設計時に
導電性異物の混入を考慮した絶縁設計が必要となる。
If an overvoltage such as a lightning impulse or a disconnector surge is applied to the gas switchgear when the conductive foreign matter adheres to the surface of the insulating spacer, the dielectric breakdown of the insulating spacer is very likely to occur. The main cause of the ground fault in the gas-insulated switchgear is the surface dielectric breakdown of the insulating spacer due to the conductive foreign matter as described above, and the management of the conductive foreign matter is an important issue. However, it is very difficult to eliminate the conductive foreign matter in the manufacturing of the device, and it is necessary to design the device so that the insulating design takes into consideration the mixing of the conductive foreign matter.

【0005】そこで従来は、沿面絶縁破壊を防止するた
めに、特開平6―153342号公報記載の様に、絶縁
スペーサの表面に絶縁スペーサの材質よりも低い誘電率
を有する材質(フッソ樹脂)をコーティングする対策を
採っている。
Therefore, conventionally, in order to prevent a surface dielectric breakdown, as described in JP-A-6-153342, a material (fluorine resin) having a lower dielectric constant than the material of the insulating spacer is formed on the surface of the insulating spacer. Taking measures to coat.

【0006】[0006]

【発明が解決しようとする課題】上述した従来技術で絶
縁スペーサの表面を低誘電率の材質で被覆するのは、導
電性異物が絶縁スペーサの表面に付着したときに導電性
異物の近傍における電界集中を緩和するためである。こ
の考え方は、沿面絶縁破壊を防止する上で有益である
が、実際にガス絶縁開閉装置に適用するには、解決しな
ければならない問題がある。絶縁スペーサの表面を10
0μm程度の薄い低誘電率の膜で被覆しても、電界集中
防止の効果があまりに小さいという問題である。沿面絶
縁破壊を防止するには、数cmの絶縁スペーサの厚さに
対して少なくとも数mm以上の厚さの低誘電率の材質で
絶縁スペーサの表面を覆わなければならない。そこで、
数cm厚の絶縁スペーサと少なくとも数mm厚の低誘電
率材料とを積層した絶縁スペーサを作成することになる
が、ここで問題となるのは、低誘電率材料の表面に付着
した導電性異物への電界集中は防止できても、今度は、
絶縁スペーサと低誘電率材料との接合部を通して絶縁破
壊が生じてしまう虞があることである。
In the prior art described above, the surface of the insulating spacer is coated with a material having a low dielectric constant so that when the conductive foreign matter adheres to the surface of the insulating spacer, the electric field in the vicinity of the conductive foreign matter becomes large. This is to ease concentration. This idea is useful in preventing creeping dielectric breakdown, but there is a problem that must be solved before actually applied to the gas insulated switchgear. Set the surface of the insulating spacer to 10
Even if it is covered with a thin film having a low dielectric constant of about 0 μm, the effect of preventing electric field concentration is too small. In order to prevent creeping dielectric breakdown, the surface of the insulating spacer must be covered with a low dielectric constant material having a thickness of at least several mm or more with respect to the thickness of the insulating spacer of several cm. Therefore,
An insulating spacer in which an insulating spacer having a thickness of several cm and a low dielectric constant material having a thickness of at least several mm are laminated is prepared. However, the problem here is that the conductive foreign matter adhered to the surface of the low dielectric constant material Although it is possible to prevent electric field concentration on the
There is a possibility that dielectric breakdown may occur through the joint between the insulating spacer and the low dielectric constant material.

【0007】本発明の目的は、十分な絶縁性能を持つコ
ンパクトなガス絶縁開閉装置等とその絶縁スペーサを提
供することにある。
An object of the present invention is to provide a compact gas-insulated switchgear or the like having sufficient insulation performance and its insulating spacer.

【0008】[0008]

【課題を解決するための手段】上記目的は、ガス絶縁開
閉装置または管路気中送電線の高電圧導体と該高電圧導
体を気密に保持する密閉容器との間を絶縁支持する絶縁
スペーサにおいて、高誘電率材からなる中心部材と、該
中心部材の表面に配置され低誘電率材でなる表面部材
と、前記中心部材と前記表面部材との間を緊密に接着す
るカップリング剤とで構成することで、達成される。
The above object is to provide an insulating spacer for insulating and supporting between a high voltage conductor of a gas insulated switchgear or a pipeline air transmission line and a hermetically sealed container for hermetically holding the high voltage conductor. A center member made of a high dielectric constant material, a surface member made of a low dielectric constant material disposed on the surface of the center member, and a coupling agent for closely bonding the center member and the surface member. It is achieved by doing.

【0009】好適には、前記中心部材の誘電率を5以上
とし、表面部材の誘電率を3.5〜4.5とする。
Preferably, the central member has a dielectric constant of 5 or more, and the surface member has a dielectric constant of 3.5 to 4.5.

【0010】更に好適には、表面部材の厚さを少なくと
も3mm以上とする。
More preferably, the thickness of the surface member is at least 3 mm or more.

【0011】上記目的はまた、絶縁スペーサに充填する
無機質充填材の密度を中心部に比べて表面部を低密度と
し、一体に形成することで、達成される。
The above object is also achieved by making the density of the inorganic filler to be filled in the insulating spacer smaller than that of the central portion of the surface portion and integrally forming the same.

【0012】好適には、無機質充填材の密度は、前記中
心部の誘電率が5以上となり、表面部の誘電率が3.5
〜4.5となるようにする。
Preferably, the density of the inorganic filler is such that the central part has a dielectric constant of 5 or more and the surface part has a dielectric constant of 3.5.
It should be ~ 4.5.

【0013】[0013]

【作用】表面部位に配置された厚手の低誘電率材により
沿面部分の静電容量が減少し、それにより導電性異物が
付着した際の電界集中に起因するコロナ開始電圧が上昇
し、沿面絶縁耐力が向上する。また、低誘電率材の機械
的強度が小さいという弱点を、中心部に荷重を支持する
のに充分な強度をもつ高誘電率材を用いることにより、
機械的強度が向上する。更に、低誘電率材を厚手とした
ことで高誘電率材との間の界面で絶縁破壊が生じる虞が
あるが、カップリング剤を用いて両者を緊密に接着して
あるので、この絶縁破壊は防止される。
[Function] The thick low-dielectric constant material placed on the surface reduces the capacitance of the creeping portion, which increases the corona starting voltage due to the electric field concentration when conductive foreign matter adheres, and creeping insulation The yield strength is improved. In addition, the weak point of low mechanical strength of low dielectric constant material is that by using a high dielectric constant material with sufficient strength to support the load in the center,
The mechanical strength is improved. Furthermore, thick low-dielectric-constant material may cause dielectric breakdown at the interface with the high-dielectric-constant material, but since the two are tightly bonded using a coupling agent, this dielectric breakdown Is prevented.

【0014】[0014]

【実施例】以下、本発明の一実施例を図面を参照して説
明する。図4は、ガス絶縁開閉装置の母線部分の原理的
な構造を示す図である。尚、ガス絶縁開閉装置に適用し
た実施例について説明するが、管路気中送電線(装置)
についても同様であるので管路気中送電線についての説
明は省略する。図4において、1は主にSF6ガスなど
の絶縁ガスを封入してなる接地電位の金属製密閉容器で
あり、2は高電圧導体である。4は所定間隔毎に配置し
たコーン型絶縁スペーサであり、このコーン型絶縁スペ
ーサ4により高電圧導体2は金属製密閉容器1に絶縁支
持される。また、コーン型絶縁スペーサ4間の高電圧導
体2は、エポキシ注型樹脂絶縁スペーサ3により、絶縁
支持される。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 4 is a diagram showing the principle structure of the busbar portion of the gas insulated switchgear. An example applied to a gas-insulated switchgear will be described. A pipeline air transmission line (apparatus)
The same applies to the above, so description of the pipeline air transmission line will be omitted. In FIG. 4, reference numeral 1 is a metal-enclosed container having a ground potential, which is mainly filled with an insulating gas such as SF 6 gas, and 2 is a high-voltage conductor. Reference numeral 4 denotes a cone-type insulating spacer arranged at predetermined intervals, and the cone-type insulating spacer 4 insulates and supports the high-voltage conductor 2 in the metal closed container 1. The high voltage conductor 2 between the cone type insulating spacers 4 is insulated and supported by the epoxy cast resin insulating spacers 3.

【0015】図1は、図4のガス絶縁開閉装置を軸方向
から見た拡大図(絶縁スペーサ3については断面図とな
っている。)であり、図2は、絶縁スペーサ3の断面図
である。図1,図2において、埋込み電極5a,5bと
共に注型をされた円柱状の中心部材である絶縁層3a
は、無機質充填材が混入されたエポキシ樹脂で形成され
ている。この中心部材3aは、絶縁スペーサ3にかかる
荷重を支持するのに必要な強度をもたせるために、例え
ばアルミナ(Al2O3)を充填したエポキシ樹脂で成り、
誘電率は5以上になっている。
FIG. 1 is an enlarged view of the gas-insulated switchgear of FIG. 4 as viewed from the axial direction (the insulating spacer 3 is a sectional view), and FIG. 2 is a sectional view of the insulating spacer 3. is there. In FIG. 1 and FIG. 2, the insulating layer 3a, which is a cylindrical central member cast with the embedded electrodes 5a and 5b.
Is formed of an epoxy resin mixed with an inorganic filler. The central member 3a is made of, for example, an epoxy resin filled with alumina (Al 2 O 3 ) in order to have the strength required to support the load applied to the insulating spacer 3.
The dielectric constant is 5 or more.

【0016】本実施例は、中心部材(絶縁層)3aの直
径が、埋込み電極5a,5bの直径とほぼ等しい例であ
り、この絶縁層3aによりスペーサ3にかかる荷重を支
持する。この円柱状の絶縁層3aの周囲には、無機質充
填材の混入量が少ないエポキシ樹脂が注型され、誘電率
が3.5〜4.5程度の表面部材である絶縁層3bが形
成される。この表面部材3bのみの形状は回転楕円体状
となっており、長軸部分に中心部材3aと埋込み電極5
a,5bが嵌合する構造となっている。尚、図1に示す
絶縁スペーサの具体的寸法は、最大外周囲部分(表面部
材3bの最大外周部分)の直径が8cm,中心部材3a
の直径が4cmである。
This embodiment is an example in which the diameter of the central member (insulating layer) 3a is substantially equal to the diameter of the embedded electrodes 5a and 5b, and the insulating layer 3a supports the load applied to the spacer 3. Around the cylindrical insulating layer 3a, an epoxy resin containing a small amount of the inorganic filler is cast to form an insulating layer 3b which is a surface member having a dielectric constant of about 3.5 to 4.5. . Only the surface member 3b has a spheroidal shape, and the central member 3a and the embedded electrode 5 are provided on the major axis portion.
It has a structure in which a and 5b are fitted together. The specific dimensions of the insulating spacer shown in FIG. 1 are as follows: the maximum outer peripheral portion (the maximum outer peripheral portion of the surface member 3b) has a diameter of 8 cm, and the central member 3a.
Has a diameter of 4 cm.

【0017】中心部材3aを形成した後に、表面部材3
bが注型されるが、このとき、両者(3a,3b)間が
緊密に密着していないと、両者の界面で絶縁破壊が起き
る虞がある。そこで、本実施例では、両者(3a,3
b)間に、アミノ官能性シランやエポキシ官能性シラン
等のシランカップリング剤が充填されるように、中心部
材3aを形成した後にシランカップリング剤を中心部材
3aの外周囲に付着させ、その後に表面部材3bを注型
する。
After forming the central member 3a, the surface member 3
b is cast, but at this time, if the two (3a, 3b) are not in close contact with each other, dielectric breakdown may occur at the interface between the two. Therefore, in this embodiment, both (3a, 3
After forming the central member 3a so that a silane coupling agent such as amino-functional silane or epoxy-functional silane is filled between b), the silane coupling agent is attached to the outer periphery of the central member 3a, and then Then, the surface member 3b is cast.

【0018】上述した構成の絶縁スペーサ3が内部に配
設され高電圧導体2を絶縁支持するガス絶縁開閉装置に
おいて、装置内に導電性異物が存在し、運転電界中の導
電性異物の運動により絶縁スペーサ3にこの導電性異物
が付着した場合でも、中心部材3aの全外周囲を表面部
材3bが覆っているため、必ず低誘電率の絶縁層3bに
導電性異物が付着する。
In the gas-insulated switchgear for insulating and supporting the high-voltage conductor 2 in which the insulating spacer 3 having the above-mentioned structure is provided, the conductive foreign matter exists in the apparatus, and the conductive foreign matter moves in the operating electric field. Even if this conductive foreign substance adheres to the insulating spacer 3, since the surface member 3b covers the entire outer periphery of the central member 3a, the conductive foreign substance always adheres to the insulating layer 3b having a low dielectric constant.

【0019】ここで、ガス絶縁開閉装置にサージ電圧が
印加されたとすると、絶縁スペーサに付着した導電性異
物付近に電界集中が起こり、リーダチャンネルが形成さ
れる。リーダチャンネルの導電率は非常に大きく、長さ
方向の電位傾度は0.1〜0.2(kV/mm)にすぎず、
ストリーマコロナの電位傾度3〜4×P(kV/mm)に比
べ桁違いに小さい(P:ガス圧[bar])。このよう
な高い導電率になるためには、リーダチャンネルの温度
が2000K程度になっていることが必要である。
Here, if a surge voltage is applied to the gas-insulated switchgear, electric field concentration occurs near the conductive foreign matter attached to the insulating spacer, and a reader channel is formed. The conductivity of the reader channel is very large, and the potential gradient in the length direction is only 0.1-0.2 (kV / mm),
It is orders of magnitude smaller than the electric potential gradient of Streamer Corona 3 to 4 x P (kV / mm) (P: Gas pressure [bar]). In order to achieve such a high conductivity, the temperature of the reader channel needs to be about 2000K.

【0020】リーダチャンネル先端の電界がEcr(コロ
ナ開始電圧)以上になると放電を開始し、強い発光を伴
うストリーマコロナになる。そして、ストリーマコロナ
の作る空間電荷により電界が緩和されて放電が停止し、
発生した電子は分子と衝突してリーダチャンネルを加熱
する。リーダチャンネル形成のための約2000Kの加
熱には、通常107J/kgの注入エネルギーΔhが必要で
ある。これに必要な電圧Vcrはエネルギーの釣り合いの
条件により、次の数1で与えられる。
When the electric field at the tip of the leader channel exceeds Ecr (corona starting voltage), discharge is started and a streamer corona with strong light emission is formed. And the electric field is relaxed by the space charge created by the streamer corona, and the discharge stops,
The generated electrons collide with molecules and heat the reader channel. The heating energy of about 2000 K for forming the leader channel usually requires an implantation energy Δh of 10 7 J / kg. The voltage Vcr required for this is given by the following equation 1 depending on the condition of energy balance.

【0021】[0021]

【数1】 [Equation 1]

【0022】このとき、A:スケーリング係数、P:ガ
ス圧、C:リーダと対向電極間の静電容量、xL:リーダ
長、であり、注入エネルギーはリーダと対向電極間の静
電容量を介して供給され、放電が進展する。そのため、
リーダと電極間にあるスペーサの比誘電率が小さくなる
と、静電容量Cが小さくなってVcrが大きくなるため、沿
面絶縁破壊電圧が高くなる。
At this time, A is a scaling coefficient, P is a gas pressure, C is a capacitance between the reader and the counter electrode, and xL is a leader length, and the injection energy is transmitted through the capacitance between the reader and the counter electrode. Is supplied as a discharge, and the discharge progresses. for that reason,
When the relative permittivity of the spacer between the reader and the electrode becomes small, the electrostatic capacitance C becomes small and Vcr becomes large, so that the creeping dielectric breakdown voltage becomes high.

【0023】ここで、dC/dxLはWhere dC / dxL is

【0024】[0024]

【数2】 [Equation 2]

【0025】と表わせる。このとき、εo:真空の誘電
率、εr:比誘電率、f:場のひずみの係数で、およそ
0.5程度、k:誘電材の厚さ、R:導電性異物の半径、
である。ゆえに、導電性異物の直径を0.45mmとした
場合、異物付着時の沿面耐圧向上には少なくとも異物半
径の10倍以上の3mmの低誘電率材の厚さを必要とし、
薄いコーティング膜ではその機能を果たすことができな
い。
Can be expressed as At this time, εo: permittivity of vacuum, εr: relative permittivity, f: coefficient of field strain, about 0.5, k: thickness of dielectric material, R: radius of conductive foreign matter,
It is. Therefore, when the diameter of the conductive foreign matter is 0.45 mm, a low dielectric constant material of 3 mm, which is at least 10 times the radius of the foreign matter or more, is required to improve the creeping breakdown voltage when the foreign matter adheres.
A thin coating film cannot fulfill its function.

【0026】よって、本実施例に係る絶縁スペーサにお
いては、誘電率5程度の単層スペーサに比べ、異物付着
時の絶縁耐力が向上し、また、機械的強度の優れた高誘
電率材部分で荷重を支持しているために、低誘電率材の
単層で構成したスペーサよりも強度が上がる。
Therefore, in the insulating spacer according to the present embodiment, the dielectric strength at the time of adhering foreign matter is improved, and in the high dielectric constant material portion excellent in mechanical strength, as compared with the single-layer spacer having a dielectric constant of about 5. Since it supports the load, it has higher strength than the spacer composed of a single layer of low dielectric constant material.

【0027】図3は、本発明の第2実施例に係る絶縁ス
ペーサ3の縦断面図である。本実施例では、埋込み電極
5a,5bと共に注型をされたエポキシ樹脂において、
混入する無機質充填材7の量を加減して、例えばアルミ
ナ(Al2O3)を充填したエポキシ樹脂では中心部で誘電
率が5以上になるように、周囲部に近づくに従って充填
材の量を連続的に少なくなるようにして、沿面付近で誘
電率が3.5〜4.5程度になるように調整する。即
ち、本実施例では、第1実施例の中心部材3aと表面部
材3bとが一体となるように作り、カップリング剤を不
要としている。この本実施例においても、前記第1実施
例と同様に、中心部の高誘電率部分で機械的強度を上
げ、周囲の低誘電率部分で沿面絶縁耐力を上げる効果が
ある。第1実施例と第2実施例とを比較すると、第2実
施例の方が製作が難しくコストが嵩むが、第1実施例の
部材3a,3b間の界面がない分だけ耐絶縁性能に対す
る信頼性は高いといえる。
FIG. 3 is a vertical sectional view of the insulating spacer 3 according to the second embodiment of the present invention. In this embodiment, in the epoxy resin cast with the embedded electrodes 5a and 5b,
By adjusting the amount of the inorganic filler 7 to be mixed, for example, in the epoxy resin filled with alumina (Al 2 O 3 ), the amount of the filler is adjusted so that the dielectric constant becomes 5 or more in the central portion as it approaches the peripheral portion. The dielectric constant is adjusted to be about 3.5 to 4.5 in the vicinity of the creeping surface by continuously decreasing it. That is, in the present embodiment, the central member 3a and the surface member 3b of the first embodiment are integrally formed, and the coupling agent is unnecessary. Similar to the first embodiment, this embodiment also has the effect of increasing the mechanical strength in the high dielectric constant portion of the central portion and increasing the creeping dielectric strength in the peripheral low dielectric constant portion. Comparing the first embodiment and the second embodiment, the second embodiment is more difficult to manufacture and costs more, but the reliability of the insulation resistance is high because there is no interface between the members 3a and 3b of the first embodiment. It can be said that it has high sex.

【0028】以上は、絶縁スペーサ3について適用した
例であるが、勿論、図3に示すコーン型絶縁スペーサ4
に上述した実施例と同様な対策を適用し、コーンの両面
全面に厚手の低誘電率の板材をシランカップリング剤を
介在させて接合したり、無機質充填材の混入割合を制御
して誘電率を連続的に表面になるほど低誘電率にしても
よいことはいうまでもない。
The above is an example in which the insulating spacer 3 is applied. Of course, the cone type insulating spacer 4 shown in FIG.
The same measures as those in the above-described example are applied, and a thick low dielectric constant plate material is bonded to both entire surfaces of the cone with a silane coupling agent interposed, or the mixing ratio of the inorganic filler is controlled to permit the dielectric constant. Needless to say, the lower the dielectric constant, the lower the surface may become.

【0029】[0029]

【発明の効果】本発明によれば、金属容器内に電界で運
動する導電性異物が存在しても、充分な絶縁性能を保持
でき、信頼性が向上すると共に装置の小型化を図れると
いう効果を奏する。
According to the present invention, even if there is a conductive foreign substance that moves in an electric field in a metal container, sufficient insulation performance can be maintained, reliability is improved, and the device can be downsized. Play.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明第1実施例に係るガス絶縁開閉装置を軸
方向から見た図(絶縁スペーサ部分は断面図)である。
FIG. 1 is a view of a gas-insulated switchgear according to a first embodiment of the present invention as seen from an axial direction (an insulating spacer portion is a cross-sectional view).

【図2】図1に示す絶縁スペーサの縦断面図である。FIG. 2 is a vertical sectional view of the insulating spacer shown in FIG.

【図3】本発明の第2実施例に係る絶縁スペーサの縦断
面図である。
FIG. 3 is a vertical sectional view of an insulating spacer according to a second embodiment of the present invention.

【図4】ガス絶縁開閉装置における母線の一例を図であ
る。
FIG. 4 is a diagram showing an example of a busbar in the gas insulated switchgear.

【符号の説明】[Explanation of symbols]

1…金属容器、2…高圧導体、3a,3b…絶縁層、4
…コーン型絶縁スペーサ、5a,5b…埋込み電極、6
…下部支持金具、7…無機質充填材。
1 ... Metal container, 2 ... High-voltage conductor, 3a, 3b ... Insulating layer, 4
... Cone type insulating spacers, 5a, 5b ... Embedded electrodes, 6
... Lower support metal fittings, 7 ... Inorganic filler.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 菅原 拓也 茨城県日立市大みか町七丁目2番1号 株 式会社日立製作所電力・電機開発本部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takuya Sugawara 7-2-1 Omika-cho, Hitachi-shi, Ibaraki Hitachi Ltd. Electric Power & Electric Development Division

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 ガス絶縁開閉装置または管路気中送電線
の高電圧導体と該高電圧導体を気密に保持する密閉容器
との間を絶縁支持する絶縁スペーサにおいて、高誘電率
材からなる中心部材と、該中心部材の表面に配置され低
誘電率材でなる表面部材と、前記中心部材と前記表面部
材との間を緊密に接着するカップリング剤とからなるこ
とを特徴とする絶縁スペーサ。
1. An insulating spacer for insulating and supporting between a high-voltage conductor of a gas-insulated switchgear or a pipeline air transmission line and a hermetically sealed container that holds the high-voltage conductor in an airtight manner. An insulating spacer comprising: a member, a surface member that is disposed on the surface of the central member and is made of a low dielectric constant material, and a coupling agent that closely adheres the central member and the surface member.
【請求項2】 請求項1において、前記中心部材の誘電
率を5以上とし、表面部材の誘電率を3.5〜4.5と
したことを特徴とする絶縁スペーサ。
2. The insulating spacer according to claim 1, wherein the center member has a dielectric constant of 5 or more and the surface member has a dielectric constant of 3.5 to 4.5.
【請求項3】 請求項1または請求項2において、表面
部材の厚さを少なくとも3mm以上としたことを特徴とす
る絶縁スペーサ。
3. The insulating spacer according to claim 1, wherein the surface member has a thickness of at least 3 mm.
【請求項4】 ガス絶縁開閉装置または管路気中送電線
の高電圧導体と該高電圧導体を気密に保持する密閉容器
との間を絶縁支持する絶縁スペーサにおいて、該絶縁ス
ペーサに充填する無機質充填材の密度を中心部に比べて
表面部を低密度としたことを特徴とする絶縁スペーサ。
4. An insulating spacer for insulating and supporting between a high-voltage conductor of a gas-insulated switchgear or a pipeline aerial power transmission line and a closed container that holds the high-voltage conductor in an airtight manner, wherein an inorganic material is filled in the insulating spacer. An insulating spacer characterized in that the surface portion has a lower density than the density of the filler.
【請求項5】 請求項4において、無機質充填材の密度
は、前記中心部の誘電率が5以上となり、表面部の誘電
率が3.5〜4.5となるようにしてあることを特徴と
する絶縁スペーサ。
5. The density of the inorganic filler according to claim 4, wherein the central part has a dielectric constant of 5 or more and the surface part has a dielectric constant of 3.5 to 4.5. Insulation spacer to be.
【請求項6】 請求項5において、前記誘電率が3.5
〜4.5の表面部の厚さが少なくとも3mm以上としたこ
とを特徴とする絶縁スペーサ。
6. The dielectric constant according to claim 5, wherein the dielectric constant is 3.5.
An insulating spacer characterized in that the thickness of the surface portion of ~ 4.5 is at least 3 mm or more.
【請求項7】 絶縁性ガスを封入した密閉容器と、該密
閉容器の内部に挿通される高電圧導体と、前記密閉容器
内で前記高電圧導体を絶縁支持する絶縁スペーサとを備
えるガス絶縁開閉装置において、前記絶縁スペーサとし
て、請求項1乃至請求項6のいずれかに記載の絶縁スペ
ーサを用いたことを特徴とするガス絶縁開閉装置。
7. A gas-insulated switchgear comprising a hermetically sealed container in which an insulating gas is sealed, a high-voltage conductor inserted into the hermetically sealed container, and an insulating spacer for insulatingly supporting the high-voltage conductor in the hermetically sealed container. A gas-insulated switchgear, wherein the insulating spacer according to any one of claims 1 to 6 is used as the insulating spacer.
【請求項8】 絶縁性ガスを封入した密閉容器と、該密
閉容器の内部に挿通される高電圧導体と、前記密閉容器
内で前記高電圧導体を絶縁支持する絶縁スペーサとを備
える管路気中送電線において、前記絶縁スペーサとし
て、請求項1乃至請求項6のいずれかに記載の絶縁スペ
ーサを用いたことを特徴とする管路気中送電線。
8. A pipeline gas comprising an airtight container in which an insulating gas is sealed, a high-voltage conductor inserted into the airtight container, and an insulating spacer for insulatingly supporting the high-voltage conductor in the airtight container. In a medium power transmission line, a pipeline air transmission line, wherein the insulating spacer according to any one of claims 1 to 6 is used as the insulating spacer.
【請求項9】 請求項7記載のガス絶縁開閉装置または
請求項8記載の管路気中送電線を備えることを特徴とす
る変電設備。
9. A substation facility comprising the gas insulated switchgear according to claim 7 or the pipeline air transmission line according to claim 8.
JP7176395A 1995-07-12 1995-07-12 Gas insulated switchgear, gas insulated transmission line, and insulating spacer therefor Pending JPH0928010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7176395A JPH0928010A (en) 1995-07-12 1995-07-12 Gas insulated switchgear, gas insulated transmission line, and insulating spacer therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7176395A JPH0928010A (en) 1995-07-12 1995-07-12 Gas insulated switchgear, gas insulated transmission line, and insulating spacer therefor

Publications (1)

Publication Number Publication Date
JPH0928010A true JPH0928010A (en) 1997-01-28

Family

ID=16012921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7176395A Pending JPH0928010A (en) 1995-07-12 1995-07-12 Gas insulated switchgear, gas insulated transmission line, and insulating spacer therefor

Country Status (1)

Country Link
JP (1) JPH0928010A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014180907A1 (en) * 2013-05-07 2014-11-13 Schneider Electric Industries Sas High-voltage component

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014180907A1 (en) * 2013-05-07 2014-11-13 Schneider Electric Industries Sas High-voltage component

Similar Documents

Publication Publication Date Title
US7262367B2 (en) High voltage bushing with field control material
JP4177628B2 (en) Compound insulation type gas insulated switchgear
EP1103988A2 (en) SEmi-capacitance graded bushing insulator of the type with insulating gas filling, such as SF6
JPH0928010A (en) Gas insulated switchgear, gas insulated transmission line, and insulating spacer therefor
JP2004335390A (en) Cone type insulation spacer
JPH0530626A (en) Composite insulation system bus
JP6352782B2 (en) Insulating spacer
JP6807276B2 (en) Insulation spacer and gas insulation switchgear using it
JPH05234441A (en) Supporting insulator
JP4130249B2 (en) DC surge arrester
JPH0715813A (en) Gas insulated switching device
JPH0591611A (en) Gas-insulated switchgear
JPH0345111A (en) Gas-insulated machine
JP2001518775A (en) Electrical insulator and insulation method
JP7137486B2 (en) Gas-insulated switchgear and manufacturing method thereof
JPH0898341A (en) Switchgear
JP2000316225A (en) Insulating spacer
JPH0556529A (en) Conductor connector
JPH06351117A (en) Gas-insulated apparatus
JPH0145685B2 (en)
Varivodov et al. Technical Solutions to Reduce Dielectric Losses of Electricity in Current Conductors During its Transmission from Offshore Wind Farms
JPH031764B2 (en)
JPH02303311A (en) Molded insulator
JPS6241532Y2 (en)
JPH0732528B2 (en) Cast insulator