JPH09277006A - Method for continuously casting molten metal - Google Patents

Method for continuously casting molten metal

Info

Publication number
JPH09277006A
JPH09277006A JP8861296A JP8861296A JPH09277006A JP H09277006 A JPH09277006 A JP H09277006A JP 8861296 A JP8861296 A JP 8861296A JP 8861296 A JP8861296 A JP 8861296A JP H09277006 A JPH09277006 A JP H09277006A
Authority
JP
Japan
Prior art keywords
molten metal
mold
immersion nozzle
electromagnetic brake
continuous casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8861296A
Other languages
Japanese (ja)
Inventor
Masahiro Tani
雅弘 谷
Eiichi Takeuchi
栄一 竹内
Takehiko Fuji
健彦 藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP8861296A priority Critical patent/JPH09277006A/en
Publication of JPH09277006A publication Critical patent/JPH09277006A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a continuously cast slab having only a little internal defect and surface defect by using an electromagnetic brake device and controlling valocity distribution of molten metal flow in an immersion nozzle. SOLUTION: The difference Δh of the molten metal heights is detected with thermocouples 11a, 11b embedded in the mold walls 4a, 4b. The detected signals are inputted to an input device 13 and treated with an arithmetic device 14 and the electromagnetic brake 5a is shifted in the vertical direction to the pouring direction of the molten metal through a control device 15. In the electromagnetic brake 5a, the molten metal flowing velocities 6a, 6b in the immersion nozzle are adjusted with an electromagnet generated by an impressed current and the spouting flows 7a, 7b of the immersion nozzle are uniformized to execute the restraint of drift flow in the mold. By this method, the drift flow of the molten metal in the mold can be prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、溶融金属の連続鋳
造方法において、浸漬ノズル内の溶融金属流動を制御す
ることにより、溶融金属の鋳型内偏流を防止することの
できる連続鋳造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuous casting method for molten metal, which can prevent molten metal from drifting in a mold by controlling the molten metal flow in a dipping nozzle.

【0002】[0002]

【従来の技術】連続鋳造工程においてタンディッシュ内
の溶融金属を鋳型内に注入する際に、浸漬ノズルとタン
ディッシュの間に設置されるスライディングノズルの絞
り開度や鋳造速度により溶融金属流動に揺らぎが生じた
場合も、もしくは浸漬ノズル内壁における酸化物系介在
物の付着が生じた場合、浸漬ノズル内部を流動する溶融
金属の速度分布の対称性が悪化し、浸漬ノズルから吐出
する溶融金属の速度分布も対称性が悪化する。この結
果、鋳型内において、溶融金属流動の鋳型長辺及び短辺
方向に対する対称性が損なわれた、いわゆる偏流現象が
生じる。
2. Description of the Related Art When a molten metal in a tundish is poured into a mold in a continuous casting process, the molten metal flow fluctuates depending on the throttle opening of a sliding nozzle installed between the immersion nozzle and the tundish and the casting speed. When the oxide inclusions adhere to the inner wall of the immersion nozzle, the symmetry of the velocity distribution of the molten metal flowing inside the immersion nozzle deteriorates, and the velocity of the molten metal discharged from the immersion nozzle increases. The distribution also has poor symmetry. As a result, a so-called drift phenomenon occurs in the mold, in which the symmetry of the molten metal flow with respect to the long side and the short side of the mold is impaired.

【0003】この偏流が生じると偏流が無い場合に比べ
て、ノズルから吐出する溶融金属が鋳型内の深部まで達
して溶融金属中の非金属介在物が鋳型内の深部まで達
し、大部分は湯面に浮上するが、残る一部は鋳片内部に
補足されて製品欠陥を誘発させる。
When this drift occurs, the molten metal discharged from the nozzle reaches a deep portion inside the mold and non-metallic inclusions in the molten metal reach a deep portion inside the mold, as compared with the case where there is no drift, and most of the molten metal is hot water. Although it floats to the surface, the remaining part is trapped inside the slab and induces product defects.

【0004】従来、鋳型内溶融金属の偏流を制御する手
段として、特開昭62−252650号公報には、鋳型
の両短辺に埋設された熱電対による温度情報から偏流を
検知し、鋳型に配設した電磁撹拌装置を用いて解消する
方法が開示されている。また、特開平3−294053
号公報には、湯面に設けた複数個の渦流センサーにより
偏流を検知し、鋳型に配設した電磁ブレーキ装置により
解消する方法が開示されている。
Conventionally, as a means for controlling the drift of molten metal in a mold, Japanese Patent Laid-Open No. 62-252650 discloses that the drift is detected from temperature information by thermocouples embedded on both short sides of the mold, and the drift is detected in the mold. A method of solving the problem by using an electromagnetic stirring device provided is disclosed. In addition, JP-A-3-294053
Japanese Unexamined Patent Publication (Kokai) discloses a method in which a plurality of eddy current sensors provided on the molten metal surface detect uneven flow and the electromagnetic brake device provided in the mold eliminates the drift.

【0005】[0005]

【発明が解決しようとする課題】前記したように、特開
昭62−252650号公報には、鋳型内電磁撹拌装置
を用いて、また、特開平3−294053号公報には、
鋳型内電磁ブレーキ装置を用いて鋳型内における溶融金
属の偏流を防止する方法が開示されているが、電磁力の
作用体積が大きいために制御性が悪いばかりか効率も悪
い。本発明の目的は、電磁ブレーキ装置を用いることに
より、浸漬ノズル内の溶融金属流動の速度分布を制御し
て鋳型内溶融金属流動の偏流を防止し、内部品質ならび
に表面品質の優れた連鋳鋳片を製造することのできる連
続鋳造方法を提供することである。
As described above, Japanese Patent Application Laid-Open No. 62-252650 uses an electromagnetic stirring device in a mold, and Japanese Patent Application Laid-Open No. 3-294053 discloses:
Although a method of preventing the drift of the molten metal in the mold by using the electromagnetic brake device in the mold is disclosed, the controllability is poor and the efficiency is poor because the action volume of the electromagnetic force is large. An object of the present invention is to control the velocity distribution of the molten metal flow in the immersion nozzle by using an electromagnetic brake device to prevent uneven flow of the molten metal flow in the mold, and to achieve continuous casting with excellent internal quality and surface quality. It is an object of the present invention to provide a continuous casting method capable of producing a piece.

【0006】[0006]

【課題を解決するための手段】本発明は上記課題を解決
するためのものであり、その要旨とするところは下記の
通りである。 (1)溶融金属の連続鋳造方法において、鋳型に埋設し
た熱電対もしくは浸漬ノズルと鋳型との間に複数個設置
したレベル計により鋳型内における溶融金属流動の偏流
を検知し、タンディッシュ内の溶融金属を鋳型内に注入
する浸漬ノズルの外周に設置した電磁ブレーキ装置を用
いて浸漬ノズル内の溶融金属流動の速度分布を制御する
ことにより、鋳型内における溶融金属の偏流を防止する
ことを特徴とする、溶融金属の連続鋳造方法である。そ
して、(2)前項(1)に記載の電磁ブレーキ装置が、
溶融金属の注入方向に対して垂直方向に移動可能な構造
を持つことを特徴とする、溶融金属の連続鋳造方法であ
り、また、(3)前記(1)或いは(2)に記載の電磁
ブレーキ装置が、溶融金属の注入方向に対して垂直方向
に設置された複数の電磁コイルから構成され、かつ、各
々の電磁コイルに異なる電流を通電できる構造を持つ電
磁ブレーキ装置を用いることを特徴とする、溶融金属の
連続鋳造方法であり、(4)前記(1)に記載の浸漬ノ
ズルの平断面形状が矩形形状であって、かつ、長辺と短
辺の長さの比が3以上20以下である浸漬ノズルを用い
ることを特徴とする、溶融金属の連続鋳造方法。さら
に、(5)前記(1),(2)或いは(3)の何れかに
記載の電磁ブレーキ装置が、偏平な導電体と絶縁物を交
互に重ねて形成される螺旋コイルの軸方向に、冷却水を
通水させるための複数の通水路を貫通させて、該電磁コ
イルを冷却する構造であるビターコイルを利用すること
を特徴とする、溶融金属の連続鋳造方法である。
The present invention is intended to solve the above problems, and the gist thereof is as follows. (1) In the continuous casting method for molten metal, a drift of molten metal flow in the mold is detected by a thermocouple embedded in the mold or a level meter installed between the immersion nozzle and the mold, and the molten metal in the tundish is melted. By controlling the velocity distribution of the molten metal flow in the immersion nozzle using an electromagnetic brake device installed on the outer periphery of the immersion nozzle for injecting metal into the mold, it is possible to prevent drift of the molten metal in the mold. This is a continuous casting method for molten metal. And (2) the electromagnetic brake device described in the preceding paragraph (1),
A continuous casting method for molten metal, having a structure capable of moving in a direction perpendicular to a direction of injecting molten metal, and (3) an electromagnetic brake according to (1) or (2) above. The device is characterized by using an electromagnetic brake device composed of a plurality of electromagnetic coils installed in a direction perpendicular to a direction of injecting molten metal, and having a structure capable of passing different currents to the respective electromagnetic coils. A molten metal continuous casting method, (4) the immersion nozzle according to (1) above has a rectangular rectangular cross-section, and the ratio of the length of the long side to the length of the short side is 3 or more and 20 or less. The method for continuous casting of molten metal is characterized in that the immersion nozzle is used. Further, (5) the electromagnetic brake device according to any one of (1), (2), and (3) above has an axial direction of a spiral coil formed by alternately stacking flat conductors and insulators. It is a continuous casting method for molten metal, characterized by using a bitter coil having a structure for cooling the electromagnetic coil by penetrating a plurality of water passages for passing cooling water.

【0007】[0007]

【発明の実施の形態】本発明の実施の形態を図1〜7に
従って説明する。図1〜3に示す溶融金属の連続鋳造に
おいて、溶融金属1は、タンディッシュ2から浸漬ノズ
ル3を通して鋳型4に注入される。浸漬ノズル3内の溶
融金属流動に揺らぎが生じた場合、もしくは浸漬ノズル
内壁における酸化物介在物の付着が生じた場合、浸漬ノ
ズル内部の溶融金属の流速6a,6b、浸漬ノズルから
吐出する溶融金属の流速7a,7bに差が生じる。その
結果、鋳型下部への溶融金属流速8a,8b、鋳型上部
への溶融金属流速9a,9bに差が生じ、さらに、溶融
金属自由表面における湯面の盛り上がり10a,10b
にも差Δhが生じる。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described with reference to FIGS. In the continuous casting of the molten metal shown in FIGS. 1 to 3, the molten metal 1 is poured into the mold 4 from the tundish 2 through the immersion nozzle 3. When fluctuations occur in the molten metal flow in the immersion nozzle 3, or when oxide inclusions adhere to the inner wall of the immersion nozzle, the molten metal flow rates 6a and 6b inside the immersion nozzle, the molten metal discharged from the immersion nozzle There is a difference in the flow velocities 7a, 7b of As a result, a difference occurs between the molten metal flow rates 8a and 8b to the lower part of the mold and the molten metal flow rates 9a and 9b to the upper part of the mold, and further, the molten metal swells 10a and 10b on the free surface of the molten metal.
Also causes a difference Δh.

【0008】この時、図2においては、Δhを鋳型4
a,4bに埋設した熱電対11a,11bにより検知す
る。検知された信号は、A/D変換器などの入力装置1
3に入力され、演算装置14で処理され、制御装置15
を介して、図4〜5に示すように電磁ブレーキ装置5a
を溶融金属の注入方向に対して垂直方向に移動させる。
この電磁ブレーキ装置5aにおいては、印加電流によっ
て発生する電磁力により、浸漬ノズル内の溶融金属流速
6a,6bを調節して、浸漬ノズル吐出流7a,7bを
均一化し、鋳型内偏流の抑制を行なう。
At this time, in FIG.
It is detected by thermocouples 11a and 11b embedded in a and 4b. The detected signal is input to the input device 1 such as an A / D converter.
3, processed by the arithmetic unit 14, and controlled by the control unit 15.
Through the electromagnetic brake device 5a as shown in FIGS.
Is moved in a direction perpendicular to the pouring direction of the molten metal.
In the electromagnetic brake device 5a, the molten metal flow rates 6a and 6b in the immersion nozzle are adjusted by the electromagnetic force generated by the applied current to make the immersion nozzle discharge flows 7a and 7b uniform and suppress uneven flow in the mold. .

【0009】また、図3においては、溶融金属自由表面
における湯面の盛り上がり10a,10bの差Δhをモ
ールド内湯面レベル計12a,12bにより検知する。
検知された信号は、A/D変換器などの入力装置13に
入力され、演算装置14で処理され、制御装置16を介
して、図6に示すように浸漬ノズルに設置した電磁ブレ
ーキ装置5b,5cへの印加電流を独立に制御する。こ
れらの、電磁ブレーキ装置5b,5cにおいては、印加
電流によって発生する電磁力により、浸漬ノズル内の溶
融金属流速6a,6bを調節して、浸漬ノズル吐出流7
a,7bを均一化し、鋳型内偏流の抑制を行なう。
Further, in FIG. 3, the difference Δh between the rises 10a and 10b of the molten metal on the free surface of the molten metal is detected by the in-mold molten metal level gauges 12a and 12b.
The detected signal is input to the input device 13 such as an A / D converter, processed by the arithmetic device 14, and passed through the control device 16 to the electromagnetic brake device 5b installed in the immersion nozzle as shown in FIG. The current applied to 5c is controlled independently. In these electromagnetic brake devices 5b and 5c, the molten metal flow rates 6a and 6b in the immersion nozzle are adjusted by the electromagnetic force generated by the applied current, and the immersion nozzle discharge flow 7
A and 7b are made uniform to suppress uneven flow in the mold.

【0010】また、ここで用いる浸漬ノズル3は、図4
〜6に示すようにその断面形状の長辺部と短辺部の比が
3以上20以下の矩形形状であることが望ましい。長さ
の比が3以下になると、電磁ブレーキの磁極間距離が大
きくなり、その制動効果が小さくなる。また、長さの比
が20以上になると、浸漬ノズルにおける溶融金属の流
路の短辺方向長さが短くなり、アルミナ等の酸化物介在
物の付着による閉塞が懸念される。
The immersion nozzle 3 used here is shown in FIG.
As shown in FIGS. 6 to 6, it is desirable that the cross-sectional shape is a rectangular shape in which the ratio of the long side portion to the short side portion is 3 or more and 20 or less. When the length ratio is 3 or less, the distance between the magnetic poles of the electromagnetic brake increases, and the braking effect decreases. Further, if the length ratio is 20 or more, the length of the molten metal flow path in the dipping nozzle in the short side direction becomes short, and there is a concern that clogging may occur due to the adhesion of oxide inclusions such as alumina.

【0011】さらに、浸漬ノズル3の外周に設置した電
磁ブレーキ装置5(5a,5b,5c)は、ビターコイ
ルを用いることが望ましい。ビターコイルとは、M.Garn
ierが1990年にIISC名古屋で公開しているコイ
ル構造で、図7に示す偏平な導電体17、絶縁物18、
冷却水孔19、ボルト孔20から形成される構造であ
り、コイルの軸方向に導電体17と絶縁物18を貫通さ
せて冷却水を流動させる。このビターコイルの構造に関
しては、Proceeding of The 6th IISC,1990,Nagoya,ISI
J Vol.4 P233,Fig-1及び本文に記載されている。通常の
水冷管を用いた水冷コイルに比べて、ビターコイルでは
冷却水の流路における圧損が少なく大量の冷却水を供給
できるので、大電流の印加に適しており、コイルのコン
パクト化が可能である。
Furthermore, it is desirable to use a bitter coil for the electromagnetic brake device 5 (5a, 5b, 5c) installed on the outer periphery of the immersion nozzle 3. What is Bitter Coil? M.Garn
ier has a coil structure disclosed in 1990 at IISC Nagoya, and has a flat conductor 17, an insulator 18, shown in FIG.
It has a structure formed of a cooling water hole 19 and a bolt hole 20, and allows the cooling water to flow through the conductor 17 and the insulator 18 in the axial direction of the coil. Regarding the structure of this bitter coil, Proceeding of The 6th IISC, 1990, Nagoya, ISI
J Vol.4 P233, Fig-1 and text. Compared to a water-cooled coil that uses a normal water-cooled tube, the bitter coil has less pressure loss in the cooling water flow path and can supply a large amount of cooling water, making it suitable for applying a large current and enabling the coil to be made compact. is there.

【0012】[0012]

【実施例】以下に本発明の実施例を説明する。 [実施例1]本発明の効果を検討するために、幅138
0mm、厚み250mmの断面を有する湾曲型スラブ連鋳機
(半径10.5m)を用いて、引き抜き速度1.0m/m
inで中炭素アルミキルド鋼の鋳造を実施した。浸漬ノズ
ルは幅800mm、厚み150mmの矩形平断面形状のもの
であり、電磁ブレーキ装置は図4〜5に示す溶融金属の
注入方向に対して垂直方向に移動可能な構造を持ち、磁
場強度は2Tとした。鋳型内溶鋼流動の偏流検知は、鋳
型短辺より100mmの位置に設置した2組の渦流式レベ
ルセンサーを用いた。
Embodiments of the present invention will be described below. Example 1 In order to examine the effect of the present invention, a width 138
Using a curved slab continuous casting machine (radius 10.5 m) with a cross section of 0 mm and a thickness of 250 mm, drawing speed 1.0 m / m
Casting of medium carbon aluminum killed steel was carried out at in. The immersion nozzle has a rectangular flat cross section with a width of 800 mm and a thickness of 150 mm, and the electromagnetic brake device has a structure movable in a direction perpendicular to the molten metal injection direction shown in FIGS. And Two sets of eddy current type level sensors installed at a position 100 mm from the short side of the mold were used to detect the drift of the molten steel flow in the mold.

【0013】図8に湯面高さの差Δhを比較した一例を
示す。本発明法の平断面が矩形状の浸漬ノズルを用い
て、浸漬ノズル内電磁ブレーキを使用しない従来法の場
合よりも湯面盛り上がり高さの差Δhが明らかに小さく
なっており、鋳型内での偏流防止効果が大なることを示
している。
FIG. 8 shows an example of comparison of differences Δh in molten metal height. When the immersion nozzle of the method of the present invention having a rectangular cross section is used, the difference Δh in the height of the molten metal surface is clearly smaller than that in the conventional method which does not use the electromagnetic brake in the immersion nozzle. This shows that the effect of preventing drift is great.

【0014】[実施例2]本発明の効果を検討するため
に、幅1380mm、厚み250mmの断面を有する湾曲型
スラブ連鋳機(半径10.5m)を用いて引き抜き速度
1.0m/minで中炭素アルミキルド鋼の鋳造を実施し
た。浸漬ノズルは幅800mm、厚み150mmの矩形平断
面形状のものであり、電磁ブレーキ装置は図6に示す溶
融金属の注入方向に対して垂直方向に設置された2組み
の電磁コイルにより構成される構造を持ち、磁場強度は
2Tとした。鋳型内溶鋼流動の偏流検知は、鋳型短辺よ
り100mmの位置に設置した2組の渦流式レベルセンサ
ーを用いた。
[Embodiment 2] In order to study the effect of the present invention, a drawing speed of 1.0 m / min was used with a curved slab continuous casting machine (radius 10.5 m) having a width of 1380 mm and a thickness of 250 mm. Casting of medium carbon aluminum killed steel was carried out. The immersion nozzle has a rectangular flat cross section with a width of 800 mm and a thickness of 150 mm, and the electromagnetic brake device is composed of two sets of electromagnetic coils installed in the direction perpendicular to the direction of molten metal injection shown in FIG. And the magnetic field strength was 2T. Two sets of eddy current type level sensors installed at a position 100 mm from the short side of the mold were used to detect the drift of the molten steel flow in the mold.

【0015】図9に湯面高さの差Δhを比較した一例を
示す。本発明法の平断面が矩形状の浸漬ノズルを用い
て、浸漬ノズル内電磁ブレーキを使用しない従来法の場
合よりも湯面盛り上がり高さの差Δhが明らかに小さく
なっており、鋳型内での偏流防止効果が大なることを示
している。
FIG. 9 shows an example of comparison of differences Δh in molten metal height. When the immersion nozzle of the method of the present invention having a rectangular cross section is used, the difference Δh in the height of the molten metal surface is clearly smaller than that in the conventional method which does not use the electromagnetic brake in the immersion nozzle. This shows that the effect of preventing drift is great.

【0016】[0016]

【発明の効果】本発明の連続鋳造方法を採用することに
より、溶融金属の連続鋳造工程におけるタンディッシュ
内の溶融金属を鋳型内の注入する浸漬ノズル内の溶融金
属の流動を制御することにより、鋳型内における溶融金
属の偏流を防止できるので、内部欠陥、表面欠陥の極め
て少ない連鋳鋳片の製造が可能になる。
By adopting the continuous casting method of the present invention, by controlling the flow of the molten metal in the immersion nozzle for injecting the molten metal in the tundish into the mold in the continuous casting process of molten metal, Since the drift of the molten metal in the mold can be prevented, it is possible to manufacture a continuous cast slab having extremely few internal defects and surface defects.

【図面の簡単な説明】[Brief description of drawings]

【図1】溶融金属の連続鋳造工程におけるタンディッシ
ュ、浸漬ノズル、鋳型および電磁コイルの取り合いを示
す概要図である。
FIG. 1 is a schematic view showing the arrangement of a tundish, an immersion nozzle, a mold and an electromagnetic coil in a continuous casting process of molten metal.

【図2】本発明法による鋳型内溶融金属の偏流防止装置
(電磁コイルが1個の場合)の構成ならびに鋳型内溶融
金属流動状況を模式的に示した図である。
FIG. 2 is a diagram schematically showing a configuration of a drift metal preventing device for molten metal in a mold (when there is one electromagnetic coil) according to the method of the present invention and a molten metal flow state in the mold.

【図3】本発明法による鋳型内溶融金属の偏流防止装置
(電磁コイルが2個の場合)の構成ならびに鋳型内溶融
金属流動状況を模式的に示した図である。
FIG. 3 is a diagram schematically showing the configuration of a molten metal drift preventive device in a mold (when there are two electromagnetic coils) according to the method of the present invention and the molten metal flow state in the mold.

【図4】実施例1の場合の浸漬ノズルと電磁ブレーキの
取り合いを示す概念図であって、浸漬ノズル内右側の溶
鋼の流速を抑制する場合の電磁コイルの位置を示し、
(a)は斜視図、(b)は上面図である。
FIG. 4 is a conceptual diagram showing the relationship between the immersion nozzle and the electromagnetic brake in the case of Example 1, showing the position of the electromagnetic coil when suppressing the flow velocity of molten steel on the right side inside the immersion nozzle,
(A) is a perspective view and (b) is a top view.

【図5】実施例1の場合の浸漬ノズルと電磁ブレーキの
取り合いを示す概念図であって、浸漬ノズル内左側の溶
鋼の流速を抑制する場合の電磁コイルの位置を示し、
(a)は斜視図、(b)は上面図である。
FIG. 5 is a conceptual diagram showing the relationship between the immersion nozzle and the electromagnetic brake in the case of Example 1, showing the position of the electromagnetic coil when suppressing the flow velocity of the molten steel on the left side of the immersion nozzle,
(A) is a perspective view and (b) is a top view.

【図6】実施例2の場合の電磁コイルを2個設置した場
合の浸漬ノズルと電磁ブレーキの取り合いを示す概念図
であり、(a)は斜視図、(b)は上面図である。
6A and 6B are conceptual diagrams showing an arrangement of an immersion nozzle and an electromagnetic brake in the case of installing two electromagnetic coils in the case of Example 2, where FIG. 6A is a perspective view and FIG. 6B is a top view.

【図7】本発明に用いるビターコイルの概念図であり、
(a)は構成説明図、(b)は電導体及び絶縁物の単体
を示す。
FIG. 7 is a conceptual diagram of a bitter coil used in the present invention,
(A) is a structural explanatory view, (b) shows a single substance of an electric conductor and an insulator.

【図8】実施例1の場合の湯面盛り上がり高さの従来法
と本発明法の差Δhの比較を示す図である。
FIG. 8 is a diagram showing a comparison of the difference Δh between the conventional method and the method of the present invention in the rise height of the molten metal surface in the case of Example 1.

【図9】実施例2の場合の湯面盛り上がり高さの従来法
と本発明法の差Δhの比較を示す図である。
FIG. 9 is a diagram showing a comparison of the difference Δh between the conventional method and the method of the present invention in the rise height of the molten metal surface in the case of Example 2;

【符号の説明】[Explanation of symbols]

1 溶融金属 2 タンディッシュ 3 浸漬ノズル 4 鋳型 4,4a,4b 鋳型 5,5a,5b,5c 電磁コイル 6a,6b ノズル内溶鋼流動 7a,7b ノズル吐出流動 8a,8b 鋳型下降流 9a,9b 鋳型上昇流 10a,10b 湯面盛り上がり 11a,11b 鋳型内熱電対 12a,12b モールド内湯面レベル計 13 入力装置 14 演算装置 15 電磁ブレーキ制御装置 16 電磁ブレーキ制御装置 17 電導体 18 絶縁物 19 冷却水孔 20 ボルト孔 Δh 湯面高さの差 1 Molten Metal 2 Tundish 3 Immersion Nozzle 4 Mold 4,4a, 4b Mold 5,5a, 5b, 5c Electromagnetic Coil 6a, 6b Nozzle Molten Steel Flow 7a, 7b Nozzle Discharge Flow 8a, 8b Mold Downflow 9a, 9b Mold Rise Flow 10a, 10b Hot metal surface rise 11a, 11b Thermocouple in mold 12a, 12b Level gauge in mold 13 Input device 14 Computing device 15 Electromagnetic brake control device 16 Electromagnetic brake control device 17 Conductor 18 Insulator 19 Cooling water hole 20 Volt Hole Δh Difference in molten metal height

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 溶融金属の連続鋳造方法において、鋳型
に埋設した熱電対もしくは浸漬ノズルと鋳型との間に複
数個設置したレベル計により鋳型内における溶融金属流
動の偏流を検知し、タンディッシュ内の溶融金属を鋳型
内に注入する浸漬ノズルの外周に配設した電磁ブレーキ
装置を用いて浸漬ノズル内の溶融金属流動の速度分布を
制御することにより、鋳型内における溶融金属の偏流を
防止することを特徴とする、溶融金属の連続鋳造方法。
1. In a continuous casting method of molten metal, a drift of molten metal flow in the mold is detected by a thermocouple embedded in the mold or a plurality of level meters installed between the dipping nozzle and the mold, and the inside of the tundish is detected. Prevents drift of molten metal in the mold by controlling the velocity distribution of the molten metal flow in the immersion nozzle using an electromagnetic brake device that is installed around the outer periphery of the immersion nozzle that injects the molten metal into the mold. A method for continuously casting molten metal, comprising:
【請求項2】 請求項1に記載の電磁ブレーキ装置が、
溶融金属の注入方向に対して垂直方向に移動可能な構造
を持つことを特徴とする、溶融金属の連続鋳造方法。
2. The electromagnetic brake device according to claim 1,
A continuous casting method for molten metal, which has a structure capable of moving in a direction perpendicular to the direction of injection of the molten metal.
【請求項3】 電磁ブレーキ装置が、溶融金属の注入方
向に対して垂直方向に設置された複数の電磁コイルから
構成され、かつ、各々の電磁コイルに異なる電流を通電
できる構造を持つ電磁ブレーキ装置を用いることを特徴
とする、請求項1あるいは2に記載の溶融金属の連続鋳
造方法。
3. An electromagnetic brake device comprising a plurality of electromagnetic coils installed in a direction perpendicular to a direction of injecting molten metal, and having a structure capable of supplying different currents to the respective electromagnetic coils. The continuous casting method for molten metal according to claim 1 or 2, characterized by using.
【請求項4】 浸漬ノズルの平断面形状が矩形形状であ
って、かつ、長辺と短辺の長さの比が3以上20以下で
ある浸漬ノズルを用いることを特徴とする、請求項1に
記載の溶融金属の連続鋳造方法。
4. The immersion nozzle is characterized in that the planar cross-sectional shape of the immersion nozzle is rectangular and the ratio of the length of the long side to the length of the short side is 3 or more and 20 or less. The method for continuous casting of molten metal according to.
【請求項5】 電磁ブレーキ装置が、偏平な導電体と絶
縁物を交互に重ねて形成される螺旋コイルの軸方向に、
冷却水を通水させるための複数の通水路を貫通させて、
該電磁コイルを冷却する構造であるビターコイルを利用
することを特徴とする、請求項1,2あるいは3の何れ
かに記載の溶融金属の連続鋳造方法。
5. An electromagnetic brake device comprising: an axial direction of a spiral coil formed by alternately stacking flat conductors and insulators;
By passing through multiple water passages for passing cooling water,
The molten metal continuous casting method according to claim 1, wherein a bitter coil having a structure for cooling the electromagnetic coil is used.
JP8861296A 1996-04-10 1996-04-10 Method for continuously casting molten metal Withdrawn JPH09277006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8861296A JPH09277006A (en) 1996-04-10 1996-04-10 Method for continuously casting molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8861296A JPH09277006A (en) 1996-04-10 1996-04-10 Method for continuously casting molten metal

Publications (1)

Publication Number Publication Date
JPH09277006A true JPH09277006A (en) 1997-10-28

Family

ID=13947643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8861296A Withdrawn JPH09277006A (en) 1996-04-10 1996-04-10 Method for continuously casting molten metal

Country Status (1)

Country Link
JP (1) JPH09277006A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6494249B1 (en) * 1997-09-03 2002-12-17 Abb Ab Method and device for control of metal flow during continuous casting using electromagnetic fields
CN107498001A (en) * 2017-09-08 2017-12-22 大连理工大学 The pouring cup device with electromagnetism purified treatment for magnesium iron mold continuous production

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6494249B1 (en) * 1997-09-03 2002-12-17 Abb Ab Method and device for control of metal flow during continuous casting using electromagnetic fields
CN107498001A (en) * 2017-09-08 2017-12-22 大连理工大学 The pouring cup device with electromagnetism purified treatment for magnesium iron mold continuous production
CN107498001B (en) * 2017-09-08 2023-08-11 大连理工大学 Pouring cup device with electromagnetic purification treatment for continuous production of ductile iron casting mold

Similar Documents

Publication Publication Date Title
KR101396734B1 (en) Method and apparatus for controlling the flow of molten steel in a mould
KR930002836B1 (en) Method and apparatus for continuous casting
EP1021262B1 (en) Method and device for control of metal flow during continuous casting using electromagnetic fields
US4200137A (en) Process and apparatus for the continuous casting of metal using electromagnetic stirring
Cho et al. Electromagnetic effects on solidification defect formation in continuous steel casting
RU2539253C2 (en) Method and unit for regulation of flows of molten metal in crystalliser pan for continuous casting of thin flat slabs
JP4591156B2 (en) Steel continuous casting method
JPH09277006A (en) Method for continuously casting molten metal
JP3468978B2 (en) Continuous casting method of molten metal
JPH0484650A (en) Method for restraining drift of molten steel in continuous casting mold
JPS61199557A (en) Device for controlling flow rate of molten steel in mold for continuous casting
JP3125661B2 (en) Steel continuous casting method
JPH10263763A (en) Method for controlling fluidity in continuously casting strand and device for controlling fluidity
JP2638369B2 (en) Pouring method of continuous casting mold
WO1999011404A1 (en) Method and device for continuous or semi-continuous casting of metal
JP3914092B2 (en) Thin slab continuous casting equipment and continuous casting method
JP2009066619A (en) Method and apparatus for continuously casting steel
KR100244660B1 (en) Control device for molten metal of continuous casting mould
JP3399627B2 (en) Flow control method of molten steel in mold by DC magnetic field
JP3491099B2 (en) Continuous casting method of steel using static magnetic field
JP2887625B2 (en) Continuous casting equipment
JPH06126409A (en) Method for supplying molten steel into slab continuous casting mold
JPH03294053A (en) Method for controlling drift flow of molten steel in continuous casting mold
Sjoden et al. Use of electromagnetic equipment for slab and thin slab steel continuous caster
JPH08174165A (en) Device for controlling molten steel flow in mold in continuous casting

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030701