JPH09276929A - Method for controlling coiler for hot rolled stock - Google Patents

Method for controlling coiler for hot rolled stock

Info

Publication number
JPH09276929A
JPH09276929A JP11705696A JP11705696A JPH09276929A JP H09276929 A JPH09276929 A JP H09276929A JP 11705696 A JP11705696 A JP 11705696A JP 11705696 A JP11705696 A JP 11705696A JP H09276929 A JPH09276929 A JP H09276929A
Authority
JP
Japan
Prior art keywords
rolled
tension
winder
coiler
equation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11705696A
Other languages
Japanese (ja)
Inventor
Yasuhiko Takee
康彦 武衛
Kazuyoshi Kimura
和喜 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP11705696A priority Critical patent/JPH09276929A/en
Publication of JPH09276929A publication Critical patent/JPH09276929A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a coiling means for hot rolled stocks by which the estimating accuracy of the tension of a material to be rolled which is situated between a finishing mill and a coiler is improved without necessitating a special device by which high cost is brought about and width reduction at the time of coiling a hot rolled stock is securely prevented. SOLUTION: This method is a control method of the coiler for hot rolled stocks for preventing the width reduction of the material to be rolled which is generated at the time of coiling the material 1 to be rolled which comes out of a hot rolling mill with the coiler 6, an estimation computing element 13 for estimating the tension generated on the material to be rolled between the finishing mill and the coiler from the number of revolution of a motor 7 for driving the coiler, armature current and counter electromotive force is provided and coiling is executed as correcting the driving torque of the coiler based on the estimated value of tension with the computing element 13, the number of revolution of the motor 7 for driving the coiler and armature current.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、熱間圧延した被圧延
材を巻取機でコイル状に巻き取る際に生じがちな幅狭を
防止するための“熱延巻取機の制御方法”に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a "control method for a hot rolling winder" for preventing a narrow width which tends to occur when a hot rolled material is wound into a coil by a winder. It is about.

【0002】[0002]

【従来技術とその課題】一般に、薄板材(薄鋼板等)の
熱間圧延では熱間圧延機から出てきた被圧延材を巻取機
でコイル状に巻き取って作業を終了するが、この工程の
概要を図7を用いて説明する。
2. Description of the Related Art Generally, in the hot rolling of a thin plate material (such as a thin steel plate), the material to be rolled out from the hot rolling machine is wound into a coil by a winding machine, and the work is completed. The outline of the process will be described with reference to FIG. 7.

【0003】図7において、複数のスタンドから成る熱
間圧延仕上圧延機群2によって仕上圧延された被圧延材
1は、続くランアウトテ−ブルにて必要な温度まで冷却
された後、巻取機6によりコイル状に巻き取られる。ラ
ンアウトテ−ブルには、被圧延材搬送用ロ−ラ(テ−ブ
ルロ−ル)3が設けられており、被圧延材の搬送を良好
にすべく仕上圧延機出側速度よりも大きい速度で回転し
ている。この時、巻取機6は巻取機駆動モ−タ7によっ
て駆動されるが、この巻取機駆動モ−タ7には次のよう
な制御がなされる。即ち、まず張力/電流換算装置8に
よって仕上圧延機群2と巻取機6間の被圧延材に生じさ
せようとする“目標張力”から電流指令値が計算され
る。そして、この電流指令値を受けて、“仕上圧延機群
2と巻取機6間の被圧延材に生じる張力”を“目標張
力”とすべく電流制御装置9が巻取機駆動モ−タ7のト
ルクを制御する。
In FIG. 7, the material 1 to be rolled which has been finish-rolled by the hot-rolling finishing rolling mill group 2 composed of a plurality of stands is cooled to a required temperature in the subsequent run-out table, and then the winding machine 6 is used. Is wound into a coil. The run-out table is provided with a rolled material transporting roller (table roll) 3, which is rotated at a speed higher than the exit side speed of the finish rolling mill in order to favorably transport the rolled material. are doing. At this time, the winder 6 is driven by the winder drive motor 7, and the winder drive motor 7 is controlled as follows. That is, first, the tension / current conversion device 8 calculates the current command value from the "target tension" to be generated in the material to be rolled between the finish rolling mill group 2 and the winder 6. Then, in response to this current command value, the current controller 9 sets the "tension generated in the material to be rolled between the finish rolling mill group 2 and the winder 6" to the "target tension" to control the winder drive motor. Control the torque of 7.

【0004】なお、通常、このような設備では巻取機6
は被圧延材1のパスラインよりも低い位置に配置されて
いるので、巻取機6の上流には被圧延材1の走行方向を
パスラインの下側に向かわせるためのピンチロ−ル4が
設けられている。また、被圧延材1の先端部を巻取機6
に巻き付かせるため、巻取機6には3乃至4個のラッパ
−ロ−ル5が設けられており、被圧延材1が巻取機6に
巻き付いた直後から4乃至5巻する間はラッパ−ロ−ル
5により被圧延材1を巻取機6に押し付けながら巻取作
業が行われる。
[0004] Usually, in such equipment, the winder 6
Is arranged at a position lower than the pass line of the material 1 to be rolled, and therefore, a pinch roll 4 for directing the traveling direction of the material 1 to be rolled to the lower side of the pass line is provided upstream of the winder 6. It is provided. In addition, the tip end of the rolled material 1 is wound by the winder 6
The winding machine 6 is provided with three or four trumpet rolls 5 for winding on the winding machine 6. While the rolled material 1 is wound around the winding machine 6 for four to five windings immediately after being wound. The rolling work is performed while the rolled material 1 is pressed against the winding machine 6 by the wrapper roll 5.

【0005】ところで、上述のような熱間圧延設備では
巻取機6の回転速度を被圧延材搬送用ロ−ラ3の速度に
連動させて運転することが行われており、従ってランア
ウトテ−ブル上を走行して巻取機6に達した被圧延材1
が巻取機に巻き付く速度は仕上圧延機出側速度よりも大
きくなる。そのため、被圧延材が巻取機に巻き付いた直
後に“仕上圧延機群2と巻取機6との間に位置する被圧
延材”には過大張力が発生し、これにより被圧延材に
「局所的な幅狭(ネッキング)」と呼ばれる“くびれ”
が生じて歩留低下の原因になることが問題となってい
た。
By the way, in the hot rolling equipment as described above, the rotation speed of the winder 6 is operated in association with the speed of the material-rolling roller 3 for rolling, and thus the runout table is operated. Rolled material 1 traveling above and reaching the winder 6
The speed at which the coil winds around the winder is higher than the exit speed of the finish rolling mill. Therefore, immediately after the rolled material is wound around the winder, an excessive tension is generated in the “rolled material located between the finishing rolling mill group 2 and the winding machine 6,” which causes “ "Necking" called "narrowing (local necking)"
It has been a problem that this causes the yield reduction.

【0006】更に、被圧延材の巻取り中も、巻取形状を
良好にするため、巻取機6での巻取速度を仕上圧延機出
側速度よりも大きくして適当な大きさの張力が“仕上圧
延機群2と巻取機6との間に位置する被圧延材”に付与
されるように図られる。この付与張力は、通常、「定常
的な幅狭」が生じない程度の大きさに設定されるが、巻
取機駆動モ−タ7の制御が良好に働かない時には設定し
た値よりも大きな張力が“仕上圧延機群2と巻取機6と
の間に位置する被圧延材”に働くことになり、その“張
力”の大きさに応じた幅狭が被圧延材1の全長にわたっ
て生じる。この「定常的な幅狭」も歩留低下の原因にな
っていた。
Further, even during the winding of the material to be rolled, in order to improve the winding shape, the winding speed of the winding machine 6 is made higher than the exiting speed of the finish rolling machine to obtain an appropriate tension. Is applied to the "rolled material located between the finishing rolling mill group 2 and the winding machine 6." This applied tension is usually set to a level such that "steady narrow" does not occur, but when the control of the winder drive motor 7 does not work well, the applied tension is larger than the set value. Acts on the "rolled material located between the finishing rolling mill group 2 and the winding machine 6", and a narrow width corresponding to the magnitude of the "tension" occurs over the entire length of the rolled material 1. This "steady narrow width" has also been a cause of a decrease in yield.

【0007】もっとも、前述したような被圧延材の「局
所的な幅狭(ネッキング)」や「定常的な幅狭」を防止
するための方法はこれまでにも幾つか提案されている。
例えば、特開平6−297015号公報を見ると、「被
圧延材が巻取機に巻き付いた直後の“巻取機のモ−タ回
転数”と“仕上圧延機出口の被圧延材速度”との速度差
により“巻取機に巻き付いた直後の被圧延材の張力”が
生じる」とし、“巻取機の回転数”と“仕上圧延機出口
の被圧延材速度”との速度差を基に被圧延材の張力を算
出すると共に、求められた張力に基づいて巻取機の回転
速度を修正する方法が示されている。
However, some methods have been proposed so far for preventing the above-mentioned "local narrowing (necking)" and "steady narrowing" of the material to be rolled.
For example, see Japanese Unexamined Patent Publication No. Hei 6-297015, it is said that "the number of revolutions of the motor of the winder immediately after the material to be rolled is wound around the winder and the speed of the material to be rolled at the exit of the finishing mill""The tension of the material to be rolled immediately after being wound on the winder is generated" due to the difference in speed of the winder, and the speed difference between the "revolution speed of the winder" and the "speed of the rolled material at the exit of the finishing mill" The method of calculating the tension of the material to be rolled and correcting the rotation speed of the winder on the basis of the obtained tension is disclosed in the document.

【0008】しかし、まず巻取機の回転速度と仕上圧延
機出口の被圧延材速度とから被圧延材の張力を推定する
という上記方法では、熱間仕上圧延機出口で被圧延材速
度を絶えず精度良く測定しなければならないが、熱間仕
上圧延機出口のような高温,高湿度の悪環境下で被圧延
材速度を絶えず精度良く測定することは非常に困難であ
って、このような環境での速度計(レ−ザ−ドップラ−
方式の速度計等)の測定値は誤差が大きく、従ってこの
測定値を基に推定した“被圧延材の張力”は的確性に欠
けるという問題があった。加えて、速度計を設置するこ
とによるコスト上昇も大きな問題であった。
However, in the above method in which the tension of the material to be rolled is first estimated from the rotational speed of the winder and the speed of the material to be rolled at the exit of the finish rolling mill, the speed of the material to be rolled is constantly maintained at the outlet of the hot finish rolling mill. It is necessary to measure accurately, but it is very difficult to measure the speed of the material to be rolled continuously and accurately under a bad environment of high temperature and high humidity such as at the exit of a hot finish rolling mill. Speedometer (laser Doppler
There is a problem in that the measured value of the speedometer of the method) has a large error, and therefore the "tension of the rolled material" estimated based on this measured value is not accurate. In addition, the cost increase due to the installation of the speedometer was also a big problem.

【0009】これに対して、速度計を用いることなく、
仕上圧延機のロ−ル周速度と計算先進率とから仕上圧延
機出口の被圧延材速度を次式に基づいて求める方法もあ
る。 V=VR ( 1+f) 〔但し、 V:被圧延材速度,VR :ロ−ル周速度,f:
計算先進率〕
On the other hand, without using a speedometer,
There is also a method of obtaining the speed of the material to be rolled at the exit of the finishing rolling mill from the roll peripheral speed of the finishing rolling mill and the calculated advanced rate based on the following equation. V = V R (1 + f ) [where, V: the rolled material velocity, V R: B - Le circumferential speed, f:
Advanced calculation rate)

【0010】しかしながら、計算先進率には予測誤差が
あって精度良く被圧延材速度を求めることができず、こ
れを用いて推定した被圧延材張力もやはり予測誤差が大
きいという問題を免れ得なかった。
However, there is an unavoidable problem that the calculated advance rate has a prediction error, and the speed of the material to be rolled cannot be obtained accurately, and the tension of the material to be rolled estimated using this also has a large prediction error. It was

【0011】このようなことから、本発明が目的とした
のは、格別なコスト高を招く装置を必要とせずに“仕上
圧延器と巻取機との間に位置する被圧延材の張力”の推
定精度を向上させ、熱間圧延材巻取り時の幅狭をより的
確に防止できる熱延巻取手段を提供することであった。
In view of the above, the object of the present invention is to "tension of the material to be rolled located between the finish rolling mill and the winding machine" without requiring a device which causes a particularly high cost. It is an object of the present invention to provide a hot rolling and winding means capable of improving the estimation accuracy of, and more accurately preventing a narrow width when winding a hot rolled material.

【0012】[0012]

【課題を解決するための手段】もっとも、本発明者等は
上述のような目的を達成すべく、先に、「巻取機駆動用
モ−タの回転数と電機子電流とから“仕上圧延機と巻取
機との間の被圧延材に生じる張力”を推定する推定演算
器を設け、 該演算器による張力推定値に基づいて巻取機
の駆動トルクを修正する張力制御器により被圧延材の張
力を目標張力に制御する方法」を提案しているが(特願
平7-227381号)、その後、この提案方法の更なる検討の
中で次のような認識を持つに至っている。
However, in order to achieve the above-mentioned object, the inventors of the present invention have previously described "finishing rolling from the rotational speed of the motor for driving the winder and the armature current. An estimation calculator for estimating the "tension generated in the material to be rolled" between the winder and the winder is provided, and the tension controller adjusts the drive torque of the winder based on the estimated tension value by the calculator. A method of controlling the tension of the material to a target tension "has been proposed (Japanese Patent Application No. 7-227381), but after that, the further recognition of this proposed method led to the recognition as follows.

【0013】即ち、上記提案方法を実施するに当っては
“張力推定演算器”の中で巻取器駆動用モ−タの界磁磁
束を用いて張力を推定することが行われるが、この界磁
磁束は直接的に測定することができないため予め設定さ
れた値を使用せざるを得ないという問題が認識されたの
である。また、実際操業を通じて、上記提案方法により
望む制御効果を十分に得るためには“推定張力を基に張
力制御器装置で目標張力値を実現するまでの過渡誤差”
を無視することができず、これを小さく抑える工夫が是
非とも必要であることも明らかとなった。
That is, in carrying out the above-mentioned proposed method, the tension is estimated by using the field magnetic flux of the winder drive motor in the "tension estimation calculator". It has been recognized that the field magnetic flux cannot be directly measured and thus a preset value must be used. In addition, in order to obtain the desired control effect by the proposed method through actual operation, “transient error until the target tension value is achieved by the tension controller device based on the estimated tension”
It has become clear that it is necessary to devise a method to suppress this because it cannot be ignored.

【0014】そこで、これらの問題をも解決すべく更に
研究を続けた結果、「被圧延材が巻取機に巻き付いた直
後からの被圧延材張力は巻取機駆動用モ−タの回転数と
電機子電流に加えて逆起電力を考慮することによって的
確に推定でき、 この推定値と巻取機駆動用モ−タの回転
数と電機子電流とに基づいて巻取機の駆動トルクを制御
するようにすれば、 被圧延材の幅狭を的確かつ効果的に
抑えることができる」との知見を得ることができた。
Therefore, as a result of further research to solve these problems, "the tension of the material to be rolled immediately after the material to be rolled is wound around the winder is the number of revolutions of the motor for driving the winder. It can be accurately estimated by considering the back electromotive force in addition to the armature current and the drive torque of the winder based on this estimated value, the rotation speed of the winder drive motor, and the armature current. By controlling it, it is possible to accurately and effectively suppress the narrow width of the material to be rolled. "

【0015】本発明は、上記知見事項等を基になされた
ものであり、「巻取機駆動用電動機(巻取機駆動モ−
タ)の回転数と電機子電流と逆起電力とから“仕上圧延
機と巻取機との間の被圧延材に生じる張力”を推定する
推定演算器を設け、 該演算器による張力推定値と巻取機
駆動モ−タの回転数及び電機子電流に基づいて巻取機の
駆動トルクを修正することによって、 熱間仕上圧延機を
出た被圧延材を巻取機でコイル状に巻き取る際に生じる
被圧延材の幅狭を的確に防止し得るようにした点」に大
きな特徴を有している。
The present invention has been made on the basis of the above-mentioned findings and the like. The present invention relates to a "motor for driving a winder (winder drive motor).
Estimating the "tension generated in the material to be rolled between the finish rolling mill and the winding machine" from the rotation speed of the motor, the armature current and the back electromotive force, and the tension estimated value by the computing unit is provided. By adjusting the drive torque of the winder based on the rotation speed of the winder drive motor and the armature current, the material to be rolled out of the hot finish rolling mill is wound into a coil by the winder. The point is that it is possible to accurately prevent the narrow width of the material to be rolled that occurs when the material is taken ".

【0016】[0016]

【発明の実施形態】上述のように、本発明は、被圧延材
が巻取機に巻き付いた直後からの被圧延材張力を巻取機
駆動モ−タの回転数と電機子電流と逆起電力とから推定
する張力推定演算器を設けて、上記張力推定演算器によ
り推定された張力が巻き付き直後及び巻取中に大きな値
とならずに目標値となるよう、“上記推定張力”と“上
記推定張力と目標張力との偏差”と“巻取機駆動モ−タ
の回転数と電機子電流”とに基づいて巻取機の駆動トル
クを修正しつつ巻取機の回転数を制御し、被圧延材に働
く張力変動を抑えて幅狭を防止する技術に関するもので
あるが、以下、本発明をその作用と共により詳細に説明
する。
BEST MODE FOR CARRYING OUT THE INVENTION As described above, according to the present invention, the tension of the material to be rolled immediately after the material to be rolled is wound around the winder is counter-induced with the rotational speed of the winder drive motor and the armature current. By providing a tension estimation calculator that estimates from the electric power and the tension estimated by the above tension estimation calculator does not become a large value immediately after winding and during winding and reaches a target value The rotation speed of the winder is controlled while the drive torque of the winder is corrected based on the "difference between the estimated tension and the target tension" and the "revolution speed of the winder drive motor and armature current". The present invention relates to a technique for suppressing a narrow width by suppressing a change in tension acting on a material to be rolled, and the present invention will be described in detail below together with its operation.

【0017】まず、巻取機に巻き付いた後の“仕上圧延
機と巻取機との間の被圧延材に生じる張力”について検
討する。被圧延材が巻取機に巻き付いた後の巻取機の運
動方程式は次の微分方程式で表すことができる。
First, the "tension generated in the material to be rolled between the finish rolling machine and the winding machine" after winding on the winding machine will be examined. The equation of motion of the winder after the material to be rolled is wound around the winder can be expressed by the following differential equation.

【0018】[0018]

【数1】 但し、ω:巻取機の角速度, J:巻取機の慣性モ−メント, I:巻取機駆動モ−タの電機子電流, τT :被圧延材の張力による負荷トルク, τB :巻取機で被圧延材を巻き取る際の曲げトルク, τL :巻取駆動系のロストルク, Φ:巻取機駆動モ−タの界磁磁束, R:巻取機におけるコイル半径(被圧延材が巻き取られ
るに従って大きくなる), ζ:定数(巻取機駆動モ−タの磁極数,電機子の導体数
及び並列回路数に依存する)。
[Equation 1] Where ω is the angular velocity of the winder, J is the inertia moment of the winder, I is the armature current of the winder drive motor, τ T is the load torque due to the tension of the material to be rolled, and τ B : Bending torque when winding the material to be rolled by the winder, τ L : Loss torque of the winding drive system, Φ: Field magnetic flux of the winder drive motor, R: Coil radius of the winder (rolling target) It increases as the material is wound up), ζ: Constant (depending on the number of magnetic poles of the winder drive motor, the number of armature conductors and the number of parallel circuits).

【0019】このとき、巻取機駆動モ−タの界磁磁束Φ
は直接測定できないため、巻取機の角速度ωと逆起電力
EMF を用いて、式(2) の関係より間接的に求めておく。
At this time, the field magnetic flux Φ of the winder drive motor
Cannot be measured directly, the angular velocity ω of the winder and the back electromotive force
EMF is used to obtain indirectly from the relationship in equation (2).

【数2】 [Equation 2]

【0020】ここで、下記の式(3) で示すトルクを状態
変数として定義すると、前記運動方程式は下記の式(4)
のように表される。 τD =τT +τB +τL =FT Rn+τB +τL …(3) 但し、FT :仕上圧延機と巻取機との間の被圧延材に生
じる張力, n :巻取機駆動モ−タのギヤ比。
When the torque expressed by the following equation (3) is defined as a state variable, the equation of motion is given by the following equation (4)
It is represented as τ D = τ T + τ B + τ L = F T Rn + τ B + τ L (3) where F T : tension generated in the material to be rolled between the finish rolling mill and the winder, n: winder drive mode -Gear ratio.

【数3】 (Equation 3)

【0021】仕上圧延機と巻取機との間の被圧延材に生
じる張力は、巻取機への巻き付き速度と仕上圧延機から
ランアウトテ−ブルへ送出される速度との差によって生
じるので、仕上圧延機と巻取機との間の被圧延材に働く
張力応力と歪の関係から、次式の関係が成立する。
The tension generated in the material to be rolled between the finish rolling mill and the winder is caused by the difference between the winding speed on the winder and the speed at which the finish rolling mill sends it to the runout table. From the relationship between the tensile stress and strain acting on the material to be rolled between the rolling mill and the winder, the following equation is established.

【0022】[0022]

【数4】 但し、σ:仕上圧延機と巻取機との間の被圧延材に働く
張力応力, v7 :仕上圧延機からランアウトテ−ブルへ送出される
被圧延材の速度, vM :被圧延材の巻取機への巻き付き速度, E:ヤング率, L:ランアウトテ−ブル(仕上圧延機から巻取機まで)
の長さ。
(Equation 4) Where σ: tension stress acting on the material to be rolled between the finish rolling mill and the winder, v 7 : speed of the material to be rolled out from the finishing rolling mill to the run-out table, v M : of the material to be rolled Winding speed around the winder, E: Young's modulus, L: Run-out table (from finish rolling mill to winder)
Length of

【0023】ここで、巻取機駆動モ−タの曲げトルク及
びロストルクの時間応答は、張力の変動に比べて十分遅
く、仕上圧延機の駆動モ−タは一般的に巻取機駆動モ−
タに比べて慣性モ−メントが極めて大きいために、仕上
圧延機からランアウトテ−ブルへの送出速度変動は巻取
機への巻取速度変動に比べて無視できるので、次式が成
立する。
Here, the time response of bending torque and loss torque of the winder drive motor is sufficiently slower than the fluctuation of the tension, and the drive motor of the finish rolling mill is generally a winder drive motor.
Since the inertial moment is much larger than that of the winding machine, the change in the delivery speed from the finish rolling mill to the runout table can be ignored compared to the change in the winding speed to the winder, and therefore the following equation is established.

【0024】[0024]

【数5】 但し、B:被圧延材の製造板幅, h:被圧延材の製造板厚。(Equation 5) However, B: production plate width of rolled material, h: production plate thickness of rolled material.

【0025】以上の微分方程式をまとめることによっ
て、この制御対象は次のように行列表現することができ
る。
By summarizing the above differential equations, this controlled object can be expressed as a matrix as follows.

【数6】 ここで、x(t) :状態ベクトル, u(t) :入力, y(t) :出力, T:ベクトルの転置。(Equation 6) Here, x (t): state vector, u (t): input, y (t): output, T: transposition of vector.

【0026】上記状態方程式において、直接測定できな
いトルクτD ( 便宜上、 張力トルクと呼ぶ)を推定する
推定器を次のように構成する。
In the above equation of state, an estimator for estimating the torque τ D (for convenience, called tension torque) that cannot be directly measured is constructed as follows.

【数7】 上記式におけるkは推定器のゲインであって、この推定
器による推定値の真値への収束時間(Tc ) を調節できる
ものであり、後述する本発明の実施例では「収束時間 T
c =0.01秒」とした。
(Equation 7) In the above equation, k is the gain of the estimator, which can adjust the convergence time (T c ) of the estimated value by this estimator, and in the embodiment of the present invention described later, “convergence time T
c = 0.01 seconds ".

【0027】このようにして計算した推定トルク値を前
記式(3) に代入することで、被圧延材の張力FT は次式
を基にして求められる。
By substituting the estimated torque value calculated in this way into the above equation (3), the tension F T of the material to be rolled can be obtained based on the following equation.

【数8】 上述のように、巻取機駆動モ−タの角速度と電機子電流
とから“仕上圧延機と巻取機との間の被圧延材に生じる
張力”を推定することができる。
(Equation 8) As described above, the "tension generated in the material to be rolled between the finish rolling mill and the winder" can be estimated from the angular velocity of the winder drive motor and the armature current.

【0028】次に、この張力推定値に基づいて巻取機の
駆動トルクを修正し、被圧延材の張力を目標張力に制御
する張力制御器の構成について説明する。張力制御を実
施する際には、目標張力との過渡誤差ができるだけ少な
い制御系を設計することが望ましい。そこで、張力制御
器として現代制御理論を適用した最適サ−ボシステムを
構成する方法について述べる。
Next, the structure of the tension controller for correcting the drive torque of the winder on the basis of the estimated tension value and controlling the tension of the material to be rolled to the target tension will be described. When performing tension control, it is desirable to design a control system that has as little transient error as possible with the target tension. Therefore, a method of constructing an optimal servo system applying the modern control theory as a tension controller will be described.

【0029】“仕上圧延機と巻取機との間の被圧延材に
生じる張力”は前記推定器によって推定できるので、こ
こでは制御対象の出力を張力トルクτD とし、このトル
ク出力を目標トルクに追従させるサ−ボ機構を設計する
ものとする。即ち、制御対象を次式のように状態ベクト
ル表現し、目標張力トルクτD refは目標張力FT ref
から前記式(3) を基に求めるものとする。
Since the "tension generated in the material to be rolled between the finish rolling mill and the winder" can be estimated by the estimator, the output of the controlled object is the tension torque τ D, and this torque output is the target torque. The servo mechanism that follows the above shall be designed. That is, the control target is expressed as a state vector as in the following equation, and the target tension torque τ D ref is the target tension F T ref.
From the above equation (3).

【数9】 [Equation 9]

【0030】τD ref がどのような入力であってもサ−
ボ機構は理論的に設定できることが保証されているが、
ここでは説明を簡単にするため、ステップ状の目標入力
に対して追従するサ−ボ機構を設計するものとする。こ
こで、サ−ボシステムを図2に示す構成とし、出力y
(t) =τD を目標トルクτD ref に定常偏差なく追従さ
せるために、目標トルクと出力との差に定常偏差補償器
として積分器を配置する。また、図2においてF,Kは
制御系を漸近安定にするためのフィ−ドバック行列であ
る。
No matter what input τ D ref is,
Although it is guaranteed that the BO mechanism can be set theoretically,
In order to simplify the description, a servo mechanism that follows a step-like target input is designed here. Here, the servo system is configured as shown in FIG.
In order to make (t) = τ D follow the target torque τ D ref without steady deviation, an integrator is arranged as a steady deviation compensator for the difference between the target torque and the output. Further, in FIG. 2, F and K are feedback matrices for making the control system asymptotically stable.

【0031】なお、図2のシステムは、前記式(10)に加
え、次式で表される。
The system of FIG. 2 is expressed by the following expression in addition to the expression (10).

【数10】 (Equation 10)

【0032】ここで、次の式(12)を得る。Here, the following equation (12) is obtained.

【数11】 [Equation 11]

【0033】次に、定常値からの誤差システムを求め
る。誤差システムの状態変数として、次の変数を用意す
る。
Next, the error system from the steady value is obtained. The following variables are prepared as the state variables of the error system.

【数12】 (Equation 12)

【0034】この時、式(10)〜(13)より、誤差システム
を行列表現すると式(14)(15)のように表せる。
At this time, from the equations (10) to (13), the error system can be expressed as a matrix as in equations (14) and (15).

【数13】 (Equation 13)

【数14】 [Equation 14]

【0035】これは、式(14)の系に式(15)の状態フィ−
ドバックを施したものとみなすことができる。そこで、
3次の拡大システム{式(14)}において、重み行列A,
Bを選び、次式で表される評価関数を最小にするvを最
適出力レギュレ−タ問題を解く。
This is the state field of equation (15) in the system of equation (14).
It can be regarded as being subjected to a debug. Therefore,
In the third-order expansion system {Equation (14)}, the weight matrix A,
B is selected and v that minimizes the evaluation function expressed by the following equation is solved for the optimum output regulator problem.

【数15】 (Equation 15)

【0036】この結果、最適フィ−ドバックベクトルが
式(17)のように解くことができたとする。
As a result, it is assumed that the optimum feedback vector can be solved as shown in equation (17).

【数16】 (Equation 16)

【0037】前記式(15)と上記式(17)を比較すると、次
式が成立する。
Comparing the above equation (15) with the above equation (17), the following equation is established.

【数17】 [Equation 17]

【0038】従って、図2のフィ−ドバック行列F,K
は、次式を基にして求めることができる。
Therefore, the feedback matrices F and K in FIG.
Can be calculated based on the following equation.

【数18】 (Equation 18)

【0039】以下、本発明を実施例により説明する。The present invention will be described below with reference to examples.

【実施例】図1は、本実施例で使用した鋼板の熱間圧延
設備に係る説明図である。この図1において、1は被圧
延材、2は熱間仕上圧延器群、3は被圧延材搬送用ロ−
ラ(テ−ブルロ−ラ)、4はピンチロ−ル、5はラッパ
−ロ−ル、6は巻取機、7は巻取機駆動モ−タ、9は電
流制御装置、10は電流測定器、11はモ−タ角速度測定
器、12はモ−タ逆起電力測定器、13は張力推定演算器、
14は張力制御装置、15は演算器である。
EXAMPLE FIG. 1 is an explanatory diagram relating to the hot rolling equipment for steel sheets used in this example. In FIG. 1, 1 is a material to be rolled, 2 is a group of hot finish rolling mills, 3 is a roll for transporting the material to be rolled.
La (table roller), 4 is a pinch roll, 5 is a wrapper roll, 6 is a winder, 7 is a winder drive motor, 9 is a current controller, and 10 is a current measuring device. , 11 is a motor angular velocity measuring device, 12 is a motor back electromotive force measuring device, 13 is a tension estimation calculator,
Reference numeral 14 is a tension control device, and 15 is a calculator.

【0040】図1に示す熱間圧延設備において、複数の
スタンドからなる熱間圧延機群2にて圧延された被圧延
材1は、続くランアウトテ−ブルにて必要な温度まで冷
却された後、巻取機6によりコイル状に巻き取られる。
ここで、被圧延材1が巻取機6に巻き付いた瞬間から本
発明に係る張力制御による幅狭防止制御が動作するが、
まず巻取機駆動モ−タ7の電機子電流とモ−タ角速度,
逆起電力がそれぞれ電流測定器10,角速度測定器11,逆
起電力測定器12にて測定され、これらの測定信号は張力
推定演算器13に入力される。張力推定演算器13では、先
に述べた方法により、モ−タ電機子電流とモ−タ角速度
及びモ−タ逆起電力とから被圧延材1の張力が推定され
る。
In the hot rolling equipment shown in FIG. 1, the material to be rolled 1 rolled by the hot rolling mill group 2 composed of a plurality of stands is cooled to a required temperature in the subsequent runout table, It is wound into a coil by the winder 6.
Here, the narrowing prevention control by the tension control according to the present invention operates from the moment the rolled material 1 is wound around the winder 6,
First, the armature current of the winder drive motor 7 and the motor angular velocity,
The back electromotive force is measured by the current measuring device 10, the angular velocity measuring device 11, and the back electromotive force measuring device 12, respectively, and these measurement signals are input to the tension estimation calculator 13. The tension estimation calculator 13 estimates the tension of the material 1 to be rolled from the motor armature current, the motor angular velocity and the motor back electromotive force by the method described above.

【0041】この張力推定値から計算された推定トルク
は演算器15に送られるが、演算器15によって目標トルク
との偏差が計算され、計算された偏差は張力制御装置14
に入力される。なお、張力制御装置14は図2で示す如く
に構成されている。
The estimated torque calculated from the estimated tension value is sent to the calculator 15. The calculator 15 calculates the deviation from the target torque, and the calculated deviation is the tension controller 14
Is input to The tension control device 14 is constructed as shown in FIG.

【0042】張力制御装置14では、先に述べた方法によ
って、張力推定演算器13にて推定したトルク推定値とモ
−タ角速度の状態フィ−ドバックにより張力と目標張力
との過渡偏差が少なくなるような電流指令値が計算さ
れ、その結果が電流制御装置9に入力される。そして、
電流制御装置9は上記電流指令値に基づき、巻取機駆動
モ−タ7を制御する。
In the tension control device 14, the transient deviation between the tension and the target tension is reduced by the above-described method, by the state feedback of the estimated torque value estimated by the tension estimation calculator 13 and the motor angular velocity. Such a current command value is calculated, and the result is input to the current control device 9. And
The current controller 9 controls the winder drive motor 7 based on the current command value.

【0043】この一連の制御動作により、被圧延材の張
力は、巻取機に巻き付いた直後から過渡誤差を最小限に
抑えることによって、直ちに目標張力に制御されるた
め、幅狭が生じることはない。
With this series of control operations, the tension of the material to be rolled is immediately controlled to the target tension by minimizing the transient error immediately after the tension is applied to the winder. Absent.

【0044】さて、本発明の効果を検証すべく、図1に
示した実施例設備(鋼板の熱間圧延設備実機)を使って
前記本発明に係る熱延巻取機の制御テストを行った。こ
の結果を、図3及び図4に示す。また、比較として、本
発明に係る熱延巻取機の制御を実施しなかった場合(図
7で示した如き従来の制御を行った場合)のテスト結果
を図5及び図6に示す。
In order to verify the effect of the present invention, a control test of the hot rolling winder according to the present invention was conducted using the equipment of the embodiment shown in FIG. 1 (actual hot rolling equipment for steel sheet). . The results are shown in FIGS. As a comparison, FIGS. 5 and 6 show the test results when the control of the hot rolling winder according to the present invention is not carried out (when the conventional control as shown in FIG. 7 is carried out).

【0045】図3及び図4に示される結果からは、本発
明に係る熱延巻取機の制御を実施した場合には、被圧延
材の張力が巻取り開始と同時にほぼ目標張力に制御され
るため、被圧延材には幅狭が発生していないことが確認
できる。
From the results shown in FIGS. 3 and 4, when the control of the hot rolling winder according to the present invention is carried out, the tension of the material to be rolled is controlled to almost the target tension at the same time when the winding is started. Therefore, it can be confirmed that the material to be rolled is not narrowed.

【0046】これに対して、図5及び図6に示される比
較例(本発明に係る熱延巻取機の制御を実施しなかった
場合)の結果は、被圧延材が巻取機に巻き付いた直後に
過大な張力が発生し、その後の巻取り中も張力を直接制
御していないために目標張力との間に誤差が生じること
を示している。このため、被圧延材には幅狭が生じてい
ることが分かる。この比較例の結果は、被圧延材の刻々
とした張力変動に留意することなく巻取機駆動モ−タの
電機子電流の制御のみを実施するに止まっていたことに
起因したものである。
On the other hand, the results of the comparative examples shown in FIGS. 5 and 6 (when the control of the hot rolling winder according to the present invention is not carried out) show that the material to be rolled is wound around the winder. It indicates that an excessive tension is generated immediately after, and an error occurs between the tension and the target tension because the tension is not directly controlled during the subsequent winding. Therefore, it can be seen that the rolled material has a narrow width. The result of this comparative example is due to the fact that only the control of the armature current of the winder drive motor was carried out without paying attention to the fluctuation in tension of the material to be rolled.

【0047】[0047]

【効果の総括】以上に説明した如く、この発明によれ
ば、熱間圧延後の被圧延材を巻き取る際に生じがちな幅
狭を高価な設備を要することなく簡単かつ的確に防止す
ることが可能となり、適正な熱間圧延材を高歩留で能率
生産できるなど、産業上有用な効果がもたらされる。
[Summary of Effects] As described above, according to the present invention, it is possible to easily and accurately prevent a narrow width that tends to occur when winding a material to be rolled after hot rolling without requiring expensive equipment. It is possible to produce suitable hot-rolled material with high yield and to produce industrially useful effects.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例で使用した鋼板の熱間圧延設備に係る説
明図である。
FIG. 1 is an explanatory diagram related to a hot rolling facility for steel sheets used in an example.

【図2】実施例で使用した張力制御装置に係る説明図で
ある。
FIG. 2 is an explanatory diagram related to a tension control device used in an example.

【図3】本発明に従った実機制御における「経過時間と
被圧延材の張力との関係」を示したグラフである。
FIG. 3 is a graph showing “relationship between elapsed time and tension of rolled material” in actual machine control according to the present invention.

【図4】本発明に従った実機制御における「被圧延材長
さ位置と板幅偏差との関係」を示したグラフである。
FIG. 4 is a graph showing “relationship between length position of rolled material and strip width deviation” in actual machine control according to the present invention.

【図5】従来法による実機制御における「経過時間と被
圧延材の張力との関係」を示したグラフである。
FIG. 5 is a graph showing “relationship between elapsed time and tension of rolled material” in actual machine control by the conventional method.

【図6】従来法による実機制御における「被圧延材長さ
位置と板幅偏差との関係」を示したグラフである。
FIG. 6 is a graph showing a “relationship between a rolled material length position and a strip width deviation” in actual machine control by a conventional method.

【図7】従来実施されていた熱延巻取機の制御方法に係
る説明図である。
FIG. 7 is an explanatory diagram relating to a conventional method for controlling a hot rolling winder.

【符号の説明】[Explanation of symbols]

1 被圧延材 2 熱間仕上圧延機群 3 被圧延材帆走用ロ−ラ(テ−ブルロ−ラ) 4 ピンチロ−ル 5 ラッパ−ロ−ル 6 巻取機 7 巻取機駆動モ−タ 8 張力/電流換算装置 9 電流制御装置 10 電流測定器 11 モ−タ角速度測定器 12 モ−タ逆起電力測定器 13 張力推定演算器 14 張力制御装置 15 演算器 1 Rolled material 2 Hot finishing rolling mill group 3 Rolled material for sailing rolled material (table roller) 4 Pinch roll 5 Wrapper roll 6 Winder 7 Winder drive motor 8 Tension / current conversion device 9 Current control device 10 Current measuring device 11 Motor angular velocity measuring device 12 Motor counter electromotive force measuring device 13 Tension estimation calculator 14 Tension controller 15 calculator

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 熱間仕上圧延機を出た被圧延材を巻取機
でコイル状に巻き取る際に生じる被圧延材の幅狭を防止
するための熱延巻取機の制御方法であって、巻取機駆動
用電動機の回転数と電機子電流と逆起電力とから“仕上
圧延機と巻取機との間の被圧延材に生じる張力”を推定
する推定演算器を設け、該演算器による張力推定値と巻
取機駆動用電動機の回転数及び電機子電流に基づいて巻
取機の駆動トルクを修正することによって被圧延材の張
力を目標張力に制御することを特徴とする、熱延巻取機
の制御方法。
1. A method for controlling a hot rolling winder for preventing a narrow width of a rolled material generated when a rolled material exiting a hot finish rolling mill is wound into a coil by a winding machine. And an estimation calculator for estimating "tension generated in the material to be rolled between the finish rolling mill and the winding machine" from the rotation speed of the winding machine driving motor, the armature current and the back electromotive force, It is characterized in that the tension of the material to be rolled is controlled to the target tension by modifying the drive torque of the winder based on the estimated value of tension by the calculator, the rotation speed of the electric motor for driving the winder, and the armature current. , Control method of hot rolling and winding machine.
JP11705696A 1996-04-15 1996-04-15 Method for controlling coiler for hot rolled stock Pending JPH09276929A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11705696A JPH09276929A (en) 1996-04-15 1996-04-15 Method for controlling coiler for hot rolled stock

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11705696A JPH09276929A (en) 1996-04-15 1996-04-15 Method for controlling coiler for hot rolled stock

Publications (1)

Publication Number Publication Date
JPH09276929A true JPH09276929A (en) 1997-10-28

Family

ID=14702340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11705696A Pending JPH09276929A (en) 1996-04-15 1996-04-15 Method for controlling coiler for hot rolled stock

Country Status (1)

Country Link
JP (1) JPH09276929A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102847746A (en) * 2012-09-06 2013-01-02 中冶南方工程技术有限公司 Coiler self-adaptation eccentricity compensation method and system thereof
WO2018158828A1 (en) * 2017-02-28 2018-09-07 東芝三菱電機産業システム株式会社 Mathematical model calculation apparatus for seat material production line, and control apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102847746A (en) * 2012-09-06 2013-01-02 中冶南方工程技术有限公司 Coiler self-adaptation eccentricity compensation method and system thereof
WO2018158828A1 (en) * 2017-02-28 2018-09-07 東芝三菱電機産業システム株式会社 Mathematical model calculation apparatus for seat material production line, and control apparatus
CN109843764A (en) * 2017-02-28 2019-06-04 东芝三菱电机产业系统株式会社 The mathematical model computing device and control device of sheet production line
CN109843764B (en) * 2017-02-28 2020-08-18 东芝三菱电机产业系统株式会社 Mathematical model calculation device and control device for sheet production line

Similar Documents

Publication Publication Date Title
JP5230509B2 (en) Rolling mill control device and control method thereof
JP2000312909A (en) Plate width controller
JPH09276929A (en) Method for controlling coiler for hot rolled stock
JPH0952119A (en) Method for controlling coiler for hot rolling
JP2964892B2 (en) Control method of hot continuous finishing mill
JP3320974B2 (en) Thickness control device for reversible rolling mill
JP3771734B2 (en) High-precision winding method for rolled steel strip
JPS5942568B2 (en) Tension control method for temper rolling equipment
JP2021079411A (en) Winding control device, coiler, winding control method and method for producing hot-rolled metal strip
JP3324642B2 (en) Control method of tension between roll stands of metal strip
JP3102961B2 (en) Method of controlling the tension at the entrance to the rolling mill of a continuous cold rolling mill
JP2001058212A (en) Method and device for controlling tension of beltlike material
JP3453931B2 (en) Rolling mill acceleration / deceleration control method
JPS6083719A (en) Plate thickness controlling method of strip mill
JP2538936B2 (en) Tension control method
JP2000288612A (en) Method for controlling rolling equipment
JPH0639418A (en) Method for controlling tension in rolling mill having automatic thickness controller
JPH07214125A (en) Sheet thickness control method for tandem rolling mill
JPH06297015A (en) Method for controlling necking in hot take-up machine
JPH0857510A (en) Method for controlling speed of deflector roll
JPH067813A (en) Motor controller for driving rolling mill
JPH0592217A (en) Tension controller
JP2020196034A (en) Speed control device of roller, method thereof, and rolling system
JPH06142736A (en) Speed controller of tandem roller
JPS6240085B2 (en)