JPH09273733A - Control method of combustion in incinerating furnace - Google Patents

Control method of combustion in incinerating furnace

Info

Publication number
JPH09273733A
JPH09273733A JP9022518A JP2251897A JPH09273733A JP H09273733 A JPH09273733 A JP H09273733A JP 9022518 A JP9022518 A JP 9022518A JP 2251897 A JP2251897 A JP 2251897A JP H09273733 A JPH09273733 A JP H09273733A
Authority
JP
Japan
Prior art keywords
combustion
amount
grate
air
damper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9022518A
Other languages
Japanese (ja)
Inventor
Satoshi Fujii
聡 藤井
Manabu Kuroda
学 黒田
Yuichi Nogami
祐一 野上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP9022518A priority Critical patent/JPH09273733A/en
Publication of JPH09273733A publication Critical patent/JPH09273733A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)
  • Incineration Of Waste (AREA)

Abstract

PROBLEM TO BE SOLVED: To incinerate wastes efficiently and supply steam stably. SOLUTION: A primary air damper 14 is controlled based on the measuring value of generating amount of steam, measured by a flow meter 12, and, at the same time, respective opening degrees of an air damper 13a below the fore part of drying grating, an air damper 13b below the fore part of combustion grating, an air damper 13c below the rear part of the combustion grating and an air damper 13d below the rear part of a rear combustion grating as well as the speed of a combustion grating 3b are controlled. The control of a secondary air volume damper 10b is controlled in parallel based on the measurement of a concentration meter 17 for exhaust gas O2 while synchronizing with the control of the air dampers. According to this method, wasteful blowing of air is eliminated and the generating amount of steam can be stabilized while the generation of unburned gas is restrained and utilizing efficiency of combustion energy of wastes can be increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は,火格子式ごみ焼却
炉の燃焼制御方法,特に空気量や燃焼火格子速度を制御
することによって燃焼の変動を防ぎ蒸気発生量を安定化
する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling combustion in a grate-type refuse incinerator, and more particularly to a method for preventing fluctuations in combustion and stabilizing the amount of steam generated by controlling the amount of air and the speed of a combustion grate.

【0002】[0002]

【従来の技術】都市ごみ焼却炉は,社会生活において排
出される様々な廃棄物を処理するという重要な役割を担
っている。近年では,廃棄物であるごみの焼却処理によ
って発生する膨大な熱エネルギの回収への関心が高ま
り,ボイラ発電設備のついたものが増加している。
2. Description of the Related Art Municipal solid waste incinerators play an important role in treating various wastes discharged in social life. In recent years, interest in recovering the enormous amount of heat energy generated by incineration of waste, which is waste, has increased, and the number of boilers equipped with a power generation facility has increased.

【0003】ごみ焼却炉では、ごみはクレーンによって
数10分間隔で間欠的にホッパに投入され、このホッパ
の下に乾燥火格子があり、乾燥火格子よって連続的にご
みは炉内に送り込まれる。乾燥火格子の下にはダンパが
あり、ここから吹き込まれる一次空気はごみを主として
乾燥する。乾燥火格子の後に燃焼火格子が続き順次ごみ
を送って行き、その送り量は火格子の速度によって変え
ることができる。
[0003] In a refuse incinerator, refuse is intermittently put into a hopper by a crane at intervals of several tens of minutes, a drying grate is provided under the hopper, and the refuse is continuously fed into the furnace by the drying grate. . There is a damper under the drying grate, and the primary air blown from here dries mainly the dust. The dry grate is followed by the combustion grate to sequentially send refuse, the amount of which can be varied by the speed of the grate.

【0004】燃焼火格子の下には前部ダンパと後部ダン
パがあり、これらから吹き込まれる一次空気は燃焼に使
われる。更に、燃焼火格子の後に後燃焼火格子が続き、
その下にもダンパがあり、これらから吹き込まれる一次
空気はごみを燃焼し尽くすために使われる。これらのダ
ンパは一次空気を分配するためのダンパであり、一次空
気の総量は一次空気ダンパによって調整される。
Below the combustion grate are a front damper and a rear damper, from which the primary air blown is used for combustion. In addition, the combustion grate is followed by the post-combustion grate,
There are also dampers below it, and the primary air blown from them is used to burn out the waste. These dampers are dampers for distributing primary air, and the total amount of primary air is adjusted by the primary air damper.

【0005】一方、燃焼帯の上方からは未燃焼ガスの完
全酸化を図るとともに炉内の温度コントロールのために
二次空気が吹き込まれる。二次空気は、燃焼ガスと炉出
口近くの混合室で混ざり合い、炉壁の過熱を防ぐととも
に残っている未燃焼成分を酸化する。混合したガスは、
炉出口に設けられた熱交換器でボイラに熱を与え、その
後排気される。
On the other hand, secondary air is blown from above the combustion zone to completely oxidize the unburned gas and to control the temperature in the furnace. The secondary air mixes with the combustion gas in the mixing chamber near the furnace outlet, prevents overheating of the furnace wall, and oxidizes the remaining unburned components. The mixed gas is
The heat exchanger provided at the outlet of the furnace gives heat to the boiler and then exhausts it.

【0006】このようなごみ焼却炉においては,ごみの
完全燃焼を期しごみの燃焼エネルギ回収の効率化を図る
とともに炉出口温度を安定化し一定の蒸気発生量を得る
ために、自動燃焼制御が行われている。その制御手段と
しては,一次空気量,二次空気量を制御し、或いはごみ
の送り量を制御する火格子速度制御等の手段がある。そ
して、通常は、数10分間隔で行われるホッパへのごみ
投入時毎に、それ以前の実績から、一次空気量、二次空
気量、火格子速度の基準値と発生蒸気量の目標量等が決
定される。
[0006] In such a refuse incinerator, automatic combustion control is performed in order to achieve complete combustion of the refuse and to improve the efficiency of recovery of the combustion energy of the refuse and to stabilize the furnace outlet temperature and obtain a constant steam generation amount. ing. As the control means, there is a means for controlling the primary air amount, the secondary air amount, or the grate speed control for controlling the feed amount of dust. Then, usually, every time dust is put into the hopper at intervals of several tens of minutes, based on the results before that, the primary air amount, the secondary air amount, the reference value of the grate velocity and the target amount of the generated steam amount, etc. Is determined.

【0007】しかし、焼却炉のホッパに投入されたごみ
は、その性状や成分が一定せず燃え易いものと燃え難い
ものとが混ざっている。したがって,一次空気量、二次
空気量や火格子速度等を基準値を保つように制御して
も、ごみの燃焼による発熱量は一定せずに,炉出口温度
や蒸気発生量の変動につながる。
However, the dust thrown into the hopper of the incinerator is not uniform in its properties and components, and is easily combustible and difficult to combust. Therefore, even if the primary air amount, the secondary air amount, the grate velocity, etc. are controlled so as to maintain the reference values, the calorific value due to the combustion of dust will not be constant, leading to fluctuations in the furnace outlet temperature and steam generation amount. .

【0008】従来、この変動を抑制するために、蒸気発
生量を常時測定し空気量を調整する方法が提案されてい
る。例えば,特開平4−371712号公報には,ごみ
の送り量を制御して蒸気発生量の長期的変動を抑制する
とともに、蒸気発生量の急激な変化に対して、燃焼室を
構成するボイラ水管パネル部での蒸発量を測定し、測定
値に基づき火格子下の一次空気総量と炉室へ直接吹き込
まれる二次空気量の割合を総風量一定のもとで調整する
制御方法が記載されている。この制御では、蒸気発生量
が目標量を上回った場合は一次空気量を減らし、下回っ
た場合は増やす。
Conventionally, in order to suppress this fluctuation, a method has been proposed in which the steam generation amount is constantly measured and the air amount is adjusted. For example, in Japanese Unexamined Patent Publication No. 4-371712, a boiler water pipe that constitutes a combustion chamber in response to a sudden change in the steam generation amount while controlling the amount of waste feed to suppress long-term fluctuations in the steam generation amount A control method is described that measures the amount of evaporation in the panel and adjusts the ratio of the total primary air amount under the grate and the secondary air amount blown directly into the furnace chamber based on the measured value under a constant total air amount. There is. In this control, when the steam generation amount exceeds the target amount, the primary air amount is reduced, and when it is below the target amount, the primary air amount is increased.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、上記の
制御方法では一次空気の総量は制御されるが、各火格子
下から吹き上げる空気量の配分が考慮されていない。こ
のため、期待する効果が得られないことがあった。例え
ば,蒸気発生量が目標量を下回った場合に,早く蒸気発
生量を回復させようとして、一次空気量を増やし燃焼を
活発化させようとする。このとき,各火格子下の空気量
の配分を考慮しないと,むだな一次空気が炉内に吹き込
まれ,この一次空気によって炉内を冷却し、却って燃焼
の回復を遅らせてしまう。この場合、蒸気発生量は回復
せず未燃焼ガスの発生量を増加させるだけである。
However, in the above control method, the total amount of primary air is controlled, but the distribution of the amount of air blown up from under each grate is not taken into consideration. Therefore, the expected effect may not be obtained. For example, when the steam generation amount falls below the target amount, the steam generation amount is quickly recovered to increase the primary air amount and activate combustion. At this time, if the distribution of the amount of air under each grate is not taken into consideration, useless primary air is blown into the furnace, which cools the inside of the furnace and rather delays the recovery of combustion. In this case, the amount of steam generated is not recovered, but only the amount of unburned gas generated is increased.

【0010】また,逆に蒸気発生量が目標量を上回った
場合に,早く蒸気発生量を目標量まで下げようとして一
次空気量を減らし,燃焼を抑えようとする。しかし,各
火格子下の空気量の配分を考慮しないと,燃焼が活発な
燃焼火格子部分の燃焼空気量が充分に減らず、燃焼を抑
制することができないことがある。
On the contrary, when the amount of steam generated exceeds the target amount, the amount of primary air is reduced in an attempt to quickly reduce the amount of steam generated to the target amount, thereby suppressing combustion. However, if the distribution of the amount of air under each grate is not taken into consideration, the amount of combustion air in the active combustion grate part may not be sufficiently reduced, and combustion may not be suppressed.

【0011】さらに,蒸気発生量が低下する場合には,
火格子上のごみの燃焼が不安定になっており,炉内のむ
だな空気のためにガス混合室の温度が低下し,ガス混合
室での二次燃焼反応が低下して排ガス中のCO等の未燃
焼成分が増えることがある。逆に,蒸気発生量が増加し
ている場合には,排ガス中のO2 濃度が低い状態である
ので,O2 不足によって未燃焼成分が発生することがあ
る。
Furthermore, when the amount of steam generated decreases,
The combustion of dust on the grate becomes unstable, the temperature of the gas mixing chamber decreases due to the dead air in the furnace, the secondary combustion reaction in the gas mixing chamber decreases, and the CO in the exhaust gas decreases. Unburned components such as may increase. On the contrary, when the amount of generated steam is increasing, the O 2 concentration in the exhaust gas is low, so that unburned components may be generated due to lack of O 2 .

【0012】この発明は,上述の問題点を解決するため
になされたもので、複数の空気ダンパを制御することに
よって一次空気量の配分を制御し、或いは同時に二次空
気量を制御し、又は、これらの空気量の制御とともに燃
焼火格子速度を制御することによりごみの燃焼エネルギ
回収の効率化を図り、蒸気発生量を安定化するとともに
未燃焼成分が発生することを防止するごみ焼却炉の燃焼
制御方法を提供しようとするものである。
The present invention has been made to solve the above-mentioned problems, and controls distribution of the primary air amount by controlling a plurality of air dampers, or simultaneously controls the secondary air amount, or By controlling the combustion grate velocity together with the control of the air volume, the efficiency of recovery of the combustion energy of the waste is improved, the amount of steam generated is stabilized, and the unburned components are prevented from being generated. It is intended to provide a combustion control method.

【0013】[0013]

【課題を解決するための手段】この目的を達成するため
の手段は、次の第1の手段乃至第7の手段である。
Means for achieving this object are the following first to seventh means.

【0014】第1の手段は、火格子上をごみを移動させ
ながらこれを燃焼し、その燃焼熱を蒸気発生に利用する
ごみ焼却炉の燃焼制御において、蒸気発生量を測定し、
測定値に基づいて一次空気ダンパ開度を制御するととも
に火格子下の個々のダンパ開度の制御を行って空気量を
調整するごみ焼却炉の燃焼制御方法である。
The first means is to measure the amount of steam generated in combustion control of a refuse incinerator that burns the waste while moving it on the grate and uses the combustion heat to generate steam.
This is a combustion control method for a refuse incinerator in which the primary air damper opening is controlled based on the measured value and the damper opening under each grate is controlled to adjust the air amount.

【0015】蒸気発生量を測定しながら、蒸気発生量が
一定の範囲から外れないように、ダンパ開度を制御する
が、一次空気は吹き込まれる位置によってその作用は少
しづつ異なる。乾燥火格子下に吹き込まれる空気は水分
を持ち去り、燃焼火格子下に吹き込まれる空気はO2
供給し、後燃焼火格子では灰となっているごみが多く、
ここに吹き込まれる空気は一部のO2 しか消費されな
い。
While measuring the amount of steam generated, the damper opening is controlled so that the amount of steam generated does not deviate from a certain range. However, the action is slightly different depending on the position where the primary air is blown. The air blown under the dry grate takes away moisture, the air blown under the combustion grate supplies O 2, and in the post-combustion grate there is much ash,
The air blown into here consumes only part of the O 2 .

【0016】このため、一次空気ダンパ開度を制御する
とともに、個々のダンパ開度を制御することによって期
待する効果を得ることができる。
Therefore, the expected effect can be obtained by controlling the primary air damper opening and controlling each damper opening.

【0017】第2の手段は、第1の手段において、蒸気
発生量が目標量よりも多いときは次の(A)の操作を選
択し、蒸気発生量が目標量よりも少ないときは次の
(B)の操作を選択してダンパ開度の制御を行い一次空
気量を調整するごみ焼却炉の燃焼制御方法である。
(A)は、一次空気ダンパの開度を小さくし,燃焼火格
子前部下空気ダンパおよび燃焼火格子後部下空気ダンパ
の開度を小さくし,乾燥火格子下空気ダンパと後燃焼火
格子下空気ダンパの開度を大きくする操作であり、
(B)は、一次空気ダンパの開度を大きくし、燃焼火格
子前部下空気ダンパおよび燃焼火格子後部下空気ダンパ
の開度を大きくし,乾燥火格子下空気ダンパと後燃焼火
格子下空気ダンパの開度を小さくする操作である。
A second means is to select the operation (A) below when the steam generation amount is larger than the target amount in the first means, and to perform the next operation when the steam generation amount is smaller than the target amount. This is a combustion control method for a refuse incinerator in which the operation of (B) is selected to control the damper opening to adjust the amount of primary air.
In (A), the opening of the primary air damper is reduced, the openings of the front lower air damper of the combustion grate and the lower rear air damper of the combustion grate are decreased, and the air damper under the dry grate and the air under the rear combustion grate are reduced. It is an operation to increase the opening of the damper,
(B) shows that the opening of the primary air damper is increased, the openings of the front lower air damper of the combustion grate and the rear lower air damper of the combustion grate are increased, and the air damper under the dry grate and the air under the post combustion grate are increased. This is an operation to reduce the opening of the damper.

【0018】蒸気発生量が多い時に一次空気ダンパの開
度を小さくして一次空気量を減らすと、燃焼速度が低下
し蒸気発生量が抑制される。しかし、個別に見ると減ら
さなければならないのは、燃焼火格子に供給される一次
空気量であって、乾燥火格子や後燃焼火格子に供給され
る一次空気ではない。後者の一次空気は一部しか燃焼に
使われないので、寧ろ冷却に作用する。
If the opening of the primary air damper is reduced to reduce the amount of primary air when the amount of steam generated is large, the combustion speed is reduced and the amount of steam generated is suppressed. However, when viewed individually, it is the amount of primary air supplied to the combustion grate, not the primary air supplied to the dry grate or post-combustion grate, that must be reduced. Since the latter primary air is only used for combustion, it acts rather on cooling.

【0019】このため、燃焼火格子前部下空気ダンパお
よび燃焼火格子後部下空気ダンパの開度を小さくし,乾
燥火格子下空気ダンパと後燃焼火格子下空気ダンパの開
度を大きくすることによって、蒸気発生量をより早く抑
えることができる。
For this reason, the opening degrees of the front lower air damper of the combustion grate and the lower rear air damper of the combustion grate are reduced, and the opening degrees of the air damper under the dry grate and the air damper under the rear combustion grate are increased. The amount of steam generated can be suppressed faster.

【0020】蒸気発生量が少ない時に一次空気ダンパの
開度を大きくして一次空気量を増やすと、燃焼が促進さ
れ蒸気発生量が増える。しかし、この場合も一次空気量
を増やす必要があるのは燃焼火格子である。乾燥火格子
や後燃焼火格子に供給される冷却作用を併せ持つ一次空
気は減らした方がよい。
When the opening amount of the primary air damper is increased to increase the primary air amount when the steam generation amount is small, combustion is promoted and the steam generation amount increases. However, also in this case, it is the combustion grate that needs to increase the primary air amount. It is better to reduce the primary air that also has a cooling effect that is supplied to the dry grate and the post-combustion grate.

【0021】このため、燃焼火格子前部下空気ダンパお
よび燃焼火格子後部下空気ダンパの開度を大きくし,乾
燥火格子下空気ダンパと後燃焼火格子下空気ダンパの開
度を小さくすることによって、蒸気発生量を早く増やす
ことができる。
Therefore, by increasing the openings of the combustion grate front lower air damper and the combustion grate rear lower air damper, and by decreasing the openings of the dry grate lower air damper and the post combustion grate lower air damper. The amount of steam generated can be increased quickly.

【0022】又、上記のように各空気ダンパの開度が個
別に制御されるので、むだな空気の吹き込みがなくなる
ので、燃焼帯を過剰に冷却することがなく未燃焼成分の
発生が防止される。
Further, since the opening degree of each air damper is individually controlled as described above, unnecessary air is not blown in, so that the combustion zone is not excessively cooled and the generation of unburned components is prevented. It

【0023】第3の手段は、第2の手段によって一次空
気量の調整を行うとともに、排ガス中のO2 濃度を測定
し、排ガス中O2 濃度が低い場合は、二次空気のダンパ
開度を大きくし、排ガス中O2 濃度が高い場合は、二次
空気のダンパ開度を小さくするダンパ開度の制御を行い
二次空気量を調整するごみ焼却炉の燃焼制御方法であ
る。
The third means adjusts the amount of primary air by the second means, measures the O 2 concentration in the exhaust gas, and when the O 2 concentration in the exhaust gas is low, the damper opening degree of the secondary air. Is large and the O 2 concentration in the exhaust gas is high, it is a combustion control method for a refuse incinerator in which the damper opening degree is controlled to reduce the secondary air damper opening degree to adjust the secondary air amount.

【0024】排ガス中O2 濃度は燃焼状態を反映する。
ごみの燃焼が安定している状態では、排ガス中O2 濃度
は適正範囲に納まっている。第2の手段を講じても、ご
みの性状の不安定さから、ときに排ガス中O2 濃度が変
動することがある。
The O 2 concentration in the exhaust gas reflects the combustion state.
When the combustion of the waste is stable, the O 2 concentration in the exhaust gas is within the proper range. Even if the second measure is taken, the O 2 concentration in the exhaust gas may sometimes fluctuate due to the instability of the properties of dust.

【0025】この状況を検出するために排ガス中O2
測定し、一次空気の調整に加えて二次空気を調整するこ
とによってごみの性状の不安定さに対処する。
In order to detect this situation, the O 2 in the exhaust gas is measured and the secondary air is adjusted in addition to the adjustment of the primary air to deal with the instability of the property of the waste.

【0026】排ガス中O2 濃度が低いときはごみが燃え
難く不完全燃焼により未燃焼成分が増えている。このと
き、二次空気ダンパの開度を大きくして二次空気量を増
やし二次燃焼を促進し未燃焼成分を燃焼し尽くす。
When the O 2 concentration in the exhaust gas is low, the dust is difficult to burn and the unburned components increase due to incomplete combustion. At this time, the opening degree of the secondary air damper is increased to increase the amount of secondary air and promote secondary combustion to burn out unburned components.

【0027】反対に、排ガス中O2 濃度が高いときはご
みの燃焼に必要な量より多い空気が供給されている。こ
のとき、二次空気ダンパの開度を小さくして二次空気量
を減らす。
On the contrary, when the O 2 concentration in the exhaust gas is high, more air is supplied than is necessary for burning the dust. At this time, the opening of the secondary air damper is reduced to reduce the amount of secondary air.

【0028】これらの操作によって、更に、むだな空気
の吹き込みを防ぎ又ごみの燃焼エネルギを活用し尽くし
未燃焼成分の排出を抑えことができる。
By these operations, it is possible to further prevent waste air from being blown in and to fully utilize the combustion energy of dust to suppress the discharge of unburned components.

【0029】第4の手段は、第1の手段、第2の手段、
第3の手段で行う空気ダンパの制御にファジイ制御を用
いるごみ焼却炉の燃焼制御方法である。
The fourth means is the first means, the second means,
A third method is a combustion control method for a refuse incinerator that uses fuzzy control to control an air damper.

【0030】前述したようにごみの性状は不定で、燃焼
熱量が一定ではなく燃え易さも刻々と変わる。このた
め、蒸気発生量を測定して複数の空気ダンパを制御し、
或いは蒸気発生量と排ガス中O2 濃度を測定し複数の空
気ダンパを制御する。このように、複数の入力により複
数の出力を得る制御方法として、ファジイ制御が最も適
している。
As described above, the property of dust is indefinite, the amount of heat of combustion is not constant, and the easiness of burning changes every moment. Therefore, by measuring the amount of steam generated, controlling multiple air dampers,
Alternatively, a plurality of air dampers are controlled by measuring the steam generation amount and the O 2 concentration in the exhaust gas. As described above, the fuzzy control is the most suitable as a control method for obtaining a plurality of outputs from a plurality of inputs.

【0031】第5の手段は、第2の手段によって一次空
気量の調整を行うとともに、蒸気発生量が目標量よりも
少ないときは燃焼火格子速度を増速し、蒸気発生量が目
標量よりも多いときは燃焼火格子速度を減速する燃焼火
格子速度の制御を行うごみ焼却炉の燃焼制御方法であ
る。
The fifth means adjusts the primary air amount by the second means, and when the steam generation amount is smaller than the target amount, increases the combustion grate velocity so that the steam generation amount is smaller than the target amount. It is a combustion control method for a refuse incinerator that controls the combustion grate speed to reduce the combustion grate speed when there is too much.

【0032】蒸気発生量が目標量よりも少ないとき、第
2の手段によって燃焼火格子への空気の供給を増やす
が、同時に燃焼火格子速度を増速することによって燃料
も増やして燃焼を促進し、蒸気発生量を増やす。反対
に、燃焼が盛んで蒸気発生量が目標量よりも多いとき
は、第2の手段によって燃焼火格子への空気の供給を減
らすが、同時に燃焼火格子速度を減速することによって
燃料も減らして燃焼量を少なくする。このように、一次
空気量の調整とともに燃焼火格子速度を操作することに
よって蒸気発生量の目標量からの隔たりをより短時間で
解消することができる。
When the amount of steam generated is smaller than the target amount, the second means increases the supply of air to the combustion grate, but at the same time, by increasing the speed of the combustion grate, the fuel is also increased to promote combustion. , Increase steam generation. On the contrary, when the combustion is active and the amount of steam generated is larger than the target amount, the supply of air to the combustion grate is reduced by the second means, but at the same time, the fuel is also reduced by reducing the velocity of the combustion grate. Reduce the amount of combustion. In this way, the deviation of the steam generation amount from the target amount can be eliminated in a shorter time by adjusting the primary air amount and operating the combustion grate velocity.

【0033】第6の手段は、第3の手段によって一次空
気量及び二次空気量の調整を行うとともに、蒸気発生量
が目標量よりも少ないときは燃焼火格子速度を増速し、
蒸気発生量が目標量よりも多いときは燃焼火格子速度を
減速する燃焼火格子速度の制御を行うごみ焼却炉の燃焼
制御方法である。
The sixth means adjusts the primary air amount and the secondary air amount by the third means, and increases the combustion grate velocity when the steam generation amount is smaller than the target amount,
This is a combustion control method for a refuse incinerator, which controls the combustion grate speed to decelerate the combustion grate speed when the steam generation amount is larger than the target amount.

【0034】蒸気発生量が目標量よりも少ないとき、第
3の手段によって燃焼火格子への空気の供給を増やすと
ともに排ガス中のO2 濃度によって二次空気量を調整す
るが、同時に燃焼火格子速度を増速することによって燃
料も増やして燃焼を促進し、蒸気発生量を増やす。
When the amount of steam generated is smaller than the target amount, the supply of air to the combustion grate is increased by the third means and the amount of secondary air is adjusted by the O 2 concentration in the exhaust gas. By increasing the speed, fuel is also increased to promote combustion and increase the amount of steam generated.

【0035】反対に、燃焼が盛んで蒸気発生量が目標量
よりも多いときは、第3の手段によって燃焼火格子への
空気の供給を減らすとともに排ガス中のO2 濃度によっ
て二次空気量を調整するが、同時に燃焼火格子速度を減
速することによって燃料も減らして燃焼量を少なくす
る。
On the other hand, when combustion is vigorous and the amount of steam generated is larger than the target amount, the supply of air to the combustion grate is reduced by the third means and the amount of secondary air is adjusted by the O 2 concentration in the exhaust gas. Adjustment is made, but at the same time, the fuel amount is reduced by reducing the combustion grate velocity to reduce the combustion amount.

【0036】このように、一次空気量及び二次空気量の
調整とともに燃焼火格子速度を操作することによって、
無駄な空気の吹き込みを防ぎ未燃焼成分の排出を抑え、
且つ蒸気発生量の目標量からの隔たりをより短時間で解
消することができる。
Thus, by manipulating the combustion grate velocity as well as adjusting the primary and secondary air amounts,
Prevents the useless blowing of air and suppresses the discharge of unburned components,
Moreover, the deviation of the steam generation amount from the target amount can be eliminated in a shorter time.

【0037】第7の手段は、第5の手段または第6の手
段で行う空気ダンパ開度の制御及び燃焼火格子速度の制
御にファジィ制御を用いるごみ焼却炉の燃焼制御方法で
ある。
The seventh means is a combustion control method for a refuse incinerator which uses fuzzy control for controlling the air damper opening and controlling the combustion grate velocity, which is performed by the fifth means or the sixth means.

【0038】第5の手段では、炉内の燃焼状態を安定化
して発生蒸気量を一定にするために、複数の空気ダンパ
開度と燃焼火格子速度を制御する。そして、第6の手段
では、これに加えて、排ガス中の未燃焼成分を積極的に
抑える運転を行うために、排ガス中のO2 濃度を測定し
二次空気量の調整の行う。このように、複数の出力を必
要とし、或いは複数の入力を得る制御方法として、ファ
ジイ制御が適している。
In the fifth means, a plurality of air damper openings and a combustion grate velocity are controlled in order to stabilize the combustion state in the furnace and make the generated steam amount constant. Then, in addition to this, the sixth means measures the O 2 concentration in the exhaust gas and adjusts the secondary air amount in order to positively suppress the unburned components in the exhaust gas. In this way, fuzzy control is suitable as a control method that requires a plurality of outputs or obtains a plurality of inputs.

【0039】[0039]

【発明の実施の形態】図を用いて発明の実施の形態を説
明する。図1は、ごみ焼却炉と制御系の概念を示す図で
ある。図1において,1は炉であり,ごみ投入口2,乾
燥火格子3a,燃焼火格子3b,後燃焼火格子3c,灰
落下口4を有する。各火格子の下からは、一次空気ブロ
ワ5によって供給される乾燥空気或いは燃焼空気が吹き
上げられ、ごみ投入口2から投入されたごみは,乾燥火
格子3aで乾燥され,燃焼火格子3bで燃焼し,後燃焼
火格子3cでは完全に燃焼され灰となる。この灰は灰落
下口4から炉外へ排出される。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the invention will be described with reference to the drawings. FIG. 1 is a diagram showing the concept of a refuse incinerator and a control system. In FIG. 1, reference numeral 1 designates a furnace, which has a dust inlet 2, a dry grate 3a, a combustion grate 3b, a post-combustion grate 3c, and an ash drop port 4. Dry air or combustion air supplied by the primary air blower 5 is blown up from under each grate, and the dust introduced from the dust inlet 2 is dried by the dry grate 3a and burned by the combustion grate 3b. However, the post-combustion grate 3c is completely combusted to form ash. This ash is discharged out of the furnace through the ash drop port 4.

【0040】一方、燃焼帯の上方には、二次空気が吹き
込み口9から吹き込まれ、未燃焼成分を酸化するととも
に炉の過熱を防いでいる。この二次空気は二次空気ブロ
ワ10aによって供給され、二次空気ダンパ10bによ
ってその量が調整される。
On the other hand, above the combustion zone, secondary air is blown from the blowing port 9 to oxidize unburned components and prevent overheating of the furnace. This secondary air is supplied by the secondary air blower 10a, and its amount is adjusted by the secondary air damper 10b.

【0041】二次空気が燃焼ガスと良く混ざるように、
吹き込み口9の上方に傾斜した仕切り壁6が設けられて
いる。混合された燃焼ガスと二次空気とは仕切り壁6を
迂回してその上方の混合室7に流れ込み、ここで酸化反
応を完結し炉出口へ向かう。
In order for the secondary air to mix well with the combustion gas,
An inclined partition wall 6 is provided above the blow-in port 9. The mixed combustion gas and secondary air bypass the partition wall 6 and flow into the mixing chamber 7 above the partition wall 6, where the oxidation reaction is completed and the mixture goes to the furnace outlet.

【0042】排ガスが放出される炉出口には熱交換器8
aを備えた蒸気発生用のボイラ8bが設置されており、
排ガスはここでボイラ水に熱を与えた後煙突に導かれて
炉外へ排出される。11は排ガス中の炉出口温度を測る
温度計,12は蒸気発生量を測る流量計である。
At the furnace outlet from which exhaust gas is discharged, a heat exchanger 8
a steam generating boiler 8b equipped with a is installed,
Exhaust gas is heated here to the boiler water and then guided to the chimney and discharged outside the furnace. Reference numeral 11 is a thermometer for measuring the furnace outlet temperature in the exhaust gas, and 12 is a flow meter for measuring the steam generation amount.

【0043】一次空気は,一次空気ダンパ14により総
量を調整され、乾燥火格子への空気量を調節する乾燥火
格子下空気ダンパ13a,燃焼火格子前半部への空気量
を調節する燃焼火格子前部下空気ダンパ13b,燃焼火
格子後半部への空気量を調節する燃焼火格子後部下空気
ダンパ13c,及び後燃焼火格子への空気量を調節する
後燃焼火格子下空気ダンパ13dで配分される。15は
一次空気・火格子下空気ダンパ制御手段であり,12の
蒸気流量計の信号を入力とし,一次空気ダンパ14,乾
燥火格子下空気ダンパ13a,燃焼火格子前部下空気ダ
ンパ13b,燃焼火格子後部下空気ダンパ13c,後燃
焼火格子下空気ダンパ13dに信号を出力する。
The total amount of the primary air is adjusted by the primary air damper 14, and the air grate under the dry grate 13a for adjusting the amount of air to the dry grate and the combustion grate for adjusting the amount of air to the first half of the combustion grate. It is distributed by a front lower air damper 13b, a combustion grate rear lower air damper 13c that adjusts the amount of air to the latter half of the combustion grate, and a rear combustion grate lower air damper 13d that adjusts the amount of air to the rear combustion grate. It Reference numeral 15 is a primary air / under-grate air damper control means, which receives a signal from the steam flow meter 12 as an input, and receives the primary air damper 14, the dry grate lower air damper 13a, the combustion grate front lower air damper 13b, and the combustion fire. Signals are output to the rear lower air damper 13c of the grate and the lower air damper 13d of the post combustion grate.

【0044】16は排ガスCO濃度計,17は排ガスO
2 濃度計である。18は二次空気ダンパ制御手段であ
り,排ガスO2 濃度計17及び蒸気発生量を測る流量計
12の信号を入力とし,二次空気ダンパ10bに信号を
出力する。
16 is an exhaust gas CO concentration meter, 17 is an exhaust gas O
2 is a densitometer. Reference numeral 18 denotes a secondary air damper control means, which receives signals from the exhaust gas O 2 concentration meter 17 and the flow meter 12 for measuring the amount of steam generated, and outputs the signals to the secondary air damper 10b.

【0045】20は燃焼火格子速度制御手段であり、流
量計12の信号を入力とし、燃焼火格子駆動装置19に
信号を出力することによって、燃焼火格子3bの速度を
制御する。一次空気・火格子下空気ダンパ制御手段1
5、二次空気ダンパ制御手段18及び燃焼火格子速度制
御手段20には,例えば,コンピュータを使用する。
Reference numeral 20 denotes a combustion grate speed control means, which receives a signal from the flow meter 12 and outputs a signal to the combustion grate driving device 19 to control the speed of the combustion grate 3b. Primary air / under-grate air damper control means 1
For example, a computer is used for the secondary air damper control means 18 and the combustion grate speed control means 20.

【0046】先ず、一次空気及びその分配について、空
気ダンパ開度の制御を説明する。各火格子下の空気ダン
パ開度は,各々次の(1)式〜(4)式を用いてその制
御値を算出する。
First, the control of the air damper opening for the primary air and its distribution will be described. The control value of the air damper opening under each grate is calculated using the following equations (1) to (4).

【0047】[0047]

【数1】 [Equation 1]

【0048】[0048]

【数2】 [Equation 2]

【0049】[0049]

【数3】 (Equation 3)

【0050】[0050]

【数4】 (Equation 4)

【0051】ここで,D1 は乾燥火格子下空気ダンパ制
御値,D2 は燃焼火格子前部下空気ダンパ制御値,D3
は燃焼火格子後部下空気ダンパ制御値,D4 は後燃焼火
格子下空気ダンパ制御値である。又、D10は乾燥火格子
下空気ダンパ基準値,D20は燃焼火格子前部下空気ダン
パ基準値,D30は燃焼火格子後部下空気ダンパ基準値,
40は後燃焼火格子下空気ダンパ基準値である。
Here, D 1 is a dry grate lower air damper control value, D 2 is a combustion grate front lower air damper control value, D 3
Is a control value for the rear lower air damper of the combustion grate, and D 4 is a control value for the lower air damper of the rear combustion grate. Further, D 10 is a dry grate lower air damper reference value, D 20 is a combustion grate front lower air damper reference value, D 30 is a combustion grate rear lower air damper reference value,
D 40 is an air damper reference value under the post-combustion grate.

【0052】更に、k1 は乾燥火格子下空気ダンパ制御
パラメータ,k2 は燃焼火格子前部下空気ダンパ制御パ
ラメータ,k3 は燃焼火格子後部下空気ダンパ制御パラ
メータ,k4 は後燃焼火格子下空気ダンパ制御パラメー
タである。なお、 STMNOW は蒸気発生量を表し、 STM
SET は目標蒸気発生量を表わす。
Further, k 1 is a dry grate lower air damper control parameter, k 2 is a combustion grate front lower air damper control parameter, k 3 is a combustion grate rear lower air damper control parameter, and k 4 is a post combustion grate. This is a lower air damper control parameter. Note that STM NOW represents the amount of steam generated,
SET represents the target steam generation rate.

【0053】一次空気ダンパの開度は,蒸気発生量と目
標蒸気発生量の偏差に基づき,比例、積分、微分動作を
行うPID演算器によって制御値を算出する。一次空気
ダンパ制御値D5 は次の(5)式で求められる。
The control value of the opening of the primary air damper is calculated by a PID calculator that performs proportional, integral, and derivative operations based on the deviation between the steam generation amount and the target steam generation amount. The primary air damper control value D 5 is calculated by the following equation (5).

【0054】[0054]

【数5】 (Equation 5)

【0055】ここで、D50は一次空気ダンパ基準値、k
5P、k5I、k5Dは一次空気ダンパ制御パラメータ、S は
ラプラス演算子である。
Where D 50 is the primary air damper reference value, k
5P , k5I , k5D are primary air damper control parameters, and S is a Laplace operator.

【0056】次に、一次空気量の調整とともに二次空気
量の調整を行う場合を説明する。この場合は、次の
(6)式で二次空気ダンパ制御値D6 を求める。
Next, the case where the secondary air amount is adjusted together with the primary air amount will be described. In this case, the secondary air damper control value D 6 is calculated by the following equation (6).

【0057】[0057]

【数6】 (Equation 6)

【0058】ここで、D60は二次空気ダンパ基準値、k
6P、k6I、k6Dは二次空気ダンパ制御パラメータ、S は
ラプラス演算子である。
Here, D 60 is the secondary air damper reference value, k
6P , k6I , k6D are secondary air damper control parameters, and S is a Laplace operator.

【0059】なお、 STMNOW は蒸気発生量, STMSET
目標蒸気発生量を表わし、 OXGNOWは排ガス中O2
度、 OXGSET は排ガス中O2 濃度基準値を表す。又、各
ダンパの基準値はごみ質や焼却量に依存するパラメータ
であり、一般にはごみの収集地域や季節によって異な
る。
Note that STM NOW represents the steam generation amount, STM SET represents the target steam generation amount, OXG NOW represents the O 2 concentration in the exhaust gas, and OXG SET represents the O 2 concentration reference value in the exhaust gas. Further, the reference value of each damper is a parameter that depends on the quality of waste and the amount of incineration, and generally varies depending on the waste collection area and season.

【0060】更に、一次空気量の調整とともに、もしく
は一次空気量と二次空気量の調整とともに燃焼火格子速
度の制御を行う場合について述べる。この場合、燃焼火
格子速度の制御値は次の(7)式で求められる。
Further, the case where the combustion grate velocity is controlled together with the adjustment of the primary air amount or the adjustment of the primary air amount and the secondary air amount will be described. In this case, the control value of the combustion grate velocity is calculated by the following equation (7).

【0061】[0061]

【数7】 (Equation 7)

【0062】ここで、S1 は燃焼火格子速度制御値、S
10は燃焼火格子速度基準値、ks は燃焼火格子速度制御
パラメータ、STM NOW は蒸発量、 STMSET は目標蒸発量
を表す。燃焼火格子速度基準値も又ごみ質や焼却量に依
存するパラメータである。
Where S 1 is the combustion grate velocity control value, S
10 is a combustion grate velocity reference value, k s is a combustion grate velocity control parameter, STM NOW is an evaporation amount, and STM SET is a target evaporation amount. The reference value of combustion grate velocity is also a parameter that depends on the quality of waste and the amount of incineration.

【0063】次に、ファジイ制御を行う場合について、
一次空気及びその分配から説明する。ファジィ制御の規
則を表1に示す。
Next, regarding the case of performing fuzzy control,
The primary air and its distribution will be described. Table 1 shows the rules of fuzzy control.

【0064】[0064]

【表1】 [Table 1]

【0065】表1の規則(1)〜(3)を前件部と後件
部について整理し、後件部において推論を行うために、
後件部制御パラメータYを定めて表2に示す。Yn1は増
分で正、Yn2は0、Yn3は減分で負である。
In order to organize rules (1) to (3) in Table 1 for the antecedent part and the consequent part, and to make an inference in the consequent part,
The consequent part control parameter Y is defined and shown in Table 2. Y n1 is positive in increments, Y n2 is 0, and Y n3 is negative in decrements.

【0066】[0066]

【表2】 [Table 2]

【0067】これらの規則(1)〜(3)の演算は,図
2に示したメンバーシップ関数に基づいて行われる。一
次空気・火格子下空気ダンパ制御手段によって求まった
各規則の後件部推論結果を統合して,規則全体の推論結
果が出力される。各規則の後件部推論結果の統合には,
ファジィ演算の一般的な手法,例えば,min−max
重心法やシングルトン法等が用いられる。
The operations of these rules (1) to (3) are performed based on the membership function shown in FIG. The inference result of the consequent part of each rule obtained by the primary air / under-grate air damper control means is integrated, and the inference result of the entire rule is output. To integrate the consequent reasoning results of each rule,
A general method of fuzzy operation, for example, min-max
The center of gravity method and the singleton method are used.

【0068】以下に、演算が早く実用的なシングルトン
法による演算を例示する。図2で、蒸気発生量の偏差が
eであったとする。eの前件部の規則(1)に対する適
合度はa3 である。同じく、規則(2)に対してa2
あり、規則(3)に対してa1 である。
The operation by the singleton method, which is fast and practical, will be exemplified below. In FIG. 2, it is assumed that the deviation of the steam generation amount is e. The degree of conformity of e to the rule (1) of the antecedent part is a 3 . Similarly, it is a 2 for rule (2) and a 1 for rule (3).

【0069】表2に定めた後件部制御パラメータYを用
いて、乾燥火格子下空気ダンパ開度制御値D1 を(1
1)式により演算する。
Using the consequent control parameter Y defined in Table 2, the dry damper grate air damper opening control value D 1 is set to (1
It is calculated by the equation 1).

【0070】[0070]

【数8】 (Equation 8)

【0071】以下同様に、燃焼火格子前部下空気ダンパ
制御値D2 、燃焼火格子後部下空気ダンパ制御値D3
後燃焼火格子下空気ダンパ制御値D4 、および一次空気
ダンパ制御値D5 を各々(12)式、(13)式、(1
4)式、および(15)式で演算する。
Similarly, the combustion grate front lower air damper control value D 2 , the combustion grate rear lower air damper control value D 3 ,
The post-combustion grate below air damper control value D 4 and the primary air damper control value D 5 are respectively expressed by equations (12), (13) and (1).
The calculation is performed using the equations (4) and (15).

【0072】[0072]

【数9】 [Equation 9]

【0073】[0073]

【数10】 (Equation 10)

【0074】[0074]

【数11】 [Equation 11]

【0075】[0075]

【数12】 (Equation 12)

【0076】但し、D10は乾燥火格子下空気ダンパ基準
値,D20は燃焼火格子前部下空気ダンパ基準値,D30
燃焼火格子後部下空気ダンパ基準値,D40は後燃焼火格
子下空気ダンパ基準値,D50は一次空気ダンパ基準値で
ある。更に、k1 は乾燥火格子下空気ダンパ制御パラメ
ータ,k2 は燃焼火格子前部下空気ダンパ制御パラメー
タ,k3 は燃焼火格子後部下空気ダンパ制御パラメー
タ,k4 は後燃焼火格子下空気ダンパ制御パラメータ、
5 は一次空気ダンパ制御パラメータである。
Where D 10 is a dry grate lower air damper reference value, D 20 is a combustion grate front lower air damper reference value, D 30 is a combustion grate rear lower air damper reference value, and D 40 is a post combustion grate. The lower air damper reference value, D 50 is the primary air damper reference value. Further, k 1 is a dry grate below air damper control parameter, k 2 is a combustion grate front lower air damper control parameter, k 3 is a combustion grate rear lower air damper control parameter, and k 4 is a post combustion grate below air damper control parameter. Control parameters,
k 5 is a primary air damper control parameter.

【0077】一次空気量とともに二次空気量を調整する
場合は、次のように行う。この場合のファジィ制御の規
則を表3に示す。
When adjusting the amount of secondary air together with the amount of primary air, the procedure is as follows. Table 3 shows the rules of fuzzy control in this case.

【0078】[0078]

【表3】 [Table 3]

【0079】表3の規則(1)〜(7)を前件部と後件
部について整理し、後件部制御パラメータYを定めて表
4に示す。Yn1は増分で正、Yn2は0、Yn3は減分で負
である。
The rules (1) to (7) in Table 3 are organized for the antecedent part and the consequent part, and the consequent part control parameter Y is determined and shown in Table 4. Y n1 is positive in increments, Y n2 is 0, and Y n3 is negative in decrements.

【0080】[0080]

【表4】 [Table 4]

【0081】図2に示す蒸気発生量偏差の適合度a1
2 、a3 、および図3に示す排ガス中O2 濃度の測定
値cの適合度b1 ,b2 、b3 を求め、表4の規則
(1)〜(7)の前件部に対する適合度X1 〜X7
(21)式〜(27)式により求める。
The suitability a 1 of the steam generation deviation shown in FIG.
a 2, a 3, and obtains the fitness b 1, b 2, b 3 measurements c of the exhaust gas in the O 2 concentrations shown in Figure 3, for antecedent rules in Table 4 (1) to (7) adaptability X 1 to X 7 (21) determined by the formula - (27).

【0082】[0082]

【数13】 (Equation 13)

【0083】[0083]

【数14】 [Equation 14]

【0084】[0084]

【数15】 (Equation 15)

【0085】[0085]

【数16】 (Equation 16)

【0086】[0086]

【数17】 [Equation 17]

【0087】[0087]

【数18】 (Equation 18)

【0088】[0088]

【数19】 [Equation 19]

【0089】そして、後件部の推論では、表4の規則
(1)〜(7)に基づき、後件部制御パラメータYを用
いて、乾燥火格子下空気ダンパ制御値D1 、燃焼火格子
前部下空気ダンパ制御値D2 、燃焼火格子後部下空気ダ
ンパ制御値D3 、後燃焼火格子下空気ダンパ制御値
4 、一次空気ダンパ制御値D5 、二次空気ダンパ制御
値D 6 および燃焼火格子速度制御値S1 を各々(31)
式、(32)式、(33)式、(34)式、(35)
式、(36)式および(37)式により演算する。
Then, in the consequent reasoning, the rules in Table 4 are used.
Use the consequent part control parameter Y based on (1) to (7)
And the air damper control value D under the dry grate1 , Burning grate
Front lower air damper control value DTwo, Combustion grate rear lower air duct
Control value DThree, After-combustion grate below air damper control value
DFour, Primary air damper control value DFive, Secondary air damper control
Value D 6And combustion grate velocity control value S1 Each (31)
Expression, (32) Expression, (33) Expression, (34) Expression, (35)
The calculation is performed using the equation, the equation (36), and the equation (37).

【0090】[0090]

【数20】 (Equation 20)

【0091】[0091]

【数21】 (Equation 21)

【0092】[0092]

【数22】 (Equation 22)

【0093】[0093]

【数23】 (Equation 23)

【0094】[0094]

【数24】 (Equation 24)

【0095】[0095]

【数25】 (Equation 25)

【0096】但し、D60は二次空気ダンパ開度基準値、
6 は二次空気ダンパ制御パラメータである。
However, D 60 is the secondary air damper opening reference value,
k 6 is a secondary air damper control parameter.

【0097】次に、空気量とともに燃焼火格子速度を制
御する場合のファジイ制御について、最初に一次空気量
と燃焼火格子速度の制御、次いで一次空気量と二次空気
量及び燃焼火格子速度の制御を説明する。
Next, regarding the fuzzy control when controlling the combustion grate velocity together with the air amount, first the primary air amount and the combustion grate velocity are controlled, then the primary air amount and the secondary air amount and the combustion grate velocity are controlled. The control will be described.

【0098】表5に、一次空気量と燃焼火格子速度のフ
ァジイ制御の規則を示す。
Table 5 shows the rules for fuzzy control of the primary air amount and the combustion grate velocity.

【0099】[0099]

【表5】 [Table 5]

【0100】これらの規則を前件部と後件部について整
理し、後件部制御パラメータYを定め表6に示す。
These rules are organized for the antecedent part and the consequent part, and the consequent part control parameter Y is determined and shown in Table 6.

【0101】[0101]

【表6】 [Table 6]

【0102】図2に示したメンバーシップ関数に基づい
て、規則(1)〜(3)の演算をおこない、蒸気発生量
偏差eの適合度a1 、a2 、a3 を求める。そして、後
件部の推論で、規則(1)〜(3)に基づき、乾燥火格
子下空気ダンパ制御値D1 、燃焼火格子前部下空気ダン
パ制御値D2 、燃焼火格子後部下空気ダンパ制御値
3 、後燃焼火格子下空気ダンパ制御値D4 、一次空気
ダンパ制御値D5 及び燃焼火格子速度制御値S1 を各々
(41)式、(42)式、(43)式、(44)式、
(45)式、(46)式により演算する。
Based on the membership function shown in FIG.
The calculation of rules (1) to (3)
Goodness of fit of deviation e1 , ATwo, AThreeAsk for. And after
Based on the rules (1) to (3), the dry fire rating was applied based on the reasoning of the section.
Child air damper control value D1 , Combustion grate front lower air dan
Power control value DTwo, Combustion grate rear lower air damper control value
D Three, After-combustion grate air damper control value DFour, Primary air
Damper control value DFiveAnd combustion grate velocity control value S1 Each
Expression (41), Expression (42), Expression (43), Expression (44),
The calculation is performed using the equations (45) and (46).

【0103】[0103]

【数26】 (Equation 26)

【0104】[0104]

【数27】 [Equation 27]

【0105】[0105]

【数28】 [Equation 28]

【0106】[0106]

【数29】 (Equation 29)

【0107】[0107]

【数30】 [Equation 30]

【0108】[0108]

【数31】 (Equation 31)

【0109】但し、D10は乾燥火格子下空気ダンパ基準
値,D20は燃焼火格子前部下空気ダンパ基準値,D30
燃焼火格子後部下空気ダンパ基準値,D40 は後燃焼火
格子下空気ダンパ基準値,D50は一次空気ダンパ基準
値、S10は燃焼火格子速度基準値である。更に、k1
乾燥火格子下空気ダンパ制御パラメータ,k2 は燃焼火
格子前部下空気ダンパ制御パラメータ,k3 は燃焼火格
子後部下空気ダンパ制御パラメータ,k4 は後燃焼火格
子下空気ダンパ制御パラメータ、k5 は一次空気ダンパ
制御パラメータ、k7 は燃焼火格子速度制御パラメータ
である。
However, D 10 is a dry grate lower air damper reference value, D 20 is a combustion grate front lower air damper reference value, D 30 is a combustion grate rear lower air damper reference value, and D 40 is a post combustion grate. Lower air damper reference value, D 50 is primary air damper reference value, and S 10 is combustion grate velocity reference value. Further, k 1 is a dry grate below air damper control parameter, k 2 is a combustion grate front lower air damper control parameter, k 3 is a combustion grate rear lower air damper control parameter, and k 4 is a post combustion grate below air damper control parameter. Control parameters, k 5 is a primary air damper control parameter, and k 7 is a combustion grate velocity control parameter.

【0110】最後に、一次空気量と二次空気量および燃
焼火格子速度のファジイ制御を説明する。この場合のフ
ァジィ制御の規則を表7に示す。
Finally, fuzzy control of the primary and secondary air amounts and the combustion grate velocity will be described. Table 7 shows the rules of fuzzy control in this case.

【0111】[0111]

【表7】 [Table 7]

【0112】表7の規則を前件部と後件部について整理
し、後件部制御パラメータYを定めて表8に示す。
The rules of Table 7 are summarized for the antecedent part and consequent part, and the consequent part control parameter Y is determined and shown in table 8.

【0113】[0113]

【表8】 [Table 8]

【0114】図2に示す蒸気発生量偏差eの適合度
1 ,a2 、a3 、および図3に示す排ガス中O2 濃度
の測定値cの適合度b1 ,b2 、b3 を求め、表7の規
則(1)〜(7)の前件部に対する適合度X1 〜X7
(51)式〜(57)式により求める。
The suitability a 1 , a 2 , a 3 of the steam generation deviation e shown in FIG. 2 and the suitability b 1 , b 2 , b 3 of the measured value c of the O 2 concentration in the exhaust gas shown in FIG. Then, the goodnesses of fit X 1 to X 7 for the antecedent parts of the rules (1) to (7) of Table 7 are obtained from the equations (51) to (57).

【0115】[0115]

【数32】 (Equation 32)

【0116】[0116]

【数33】 [Equation 33]

【0117】[0117]

【数34】 (Equation 34)

【0118】[0118]

【数35】 (Equation 35)

【0119】[0119]

【数36】 [Equation 36]

【0120】[0120]

【数37】 (37)

【0121】[0121]

【数38】 (38)

【0122】そして、後件部の推論では、表8の規則
(1)〜(7)に基づき、乾燥火格子下空気ダンパ制御
値D1 、燃焼火格子前部下空気ダンパ制御値D2 、燃焼
火格子後部下空気ダンパ制御値D3 、後燃焼火格子下空
気ダンパ制御値D4 、一次空気ダンパ制御値D5 、二次
空気ダンパ制御値D6 及び燃焼火格子速度制御値S1
各々(61)式、(62)式、(63)式、(64)
式、(65)式、(66)式および(67)式により演
算する。
In the consequent reasoning, based on the rules (1) to (7) in Table 8, the dry grate lower air damper control value D 1 , the combustion grate front lower air damper control value D 2 , and the combustion grate front lower air damper control value D 2 The grate rear lower air damper control value D 3 , the post-combustion grate lower air damper control value D 4 , the primary air damper control value D 5 , the secondary air damper control value D 6, and the combustion grate velocity control value S 1 , respectively. Expression (61), Expression (62), Expression (63), (64)
The calculation is performed using the equation, the equation (65), the equation (66), and the equation (67).

【0123】[0123]

【数39】 [Equation 39]

【0124】[0124]

【数40】 (Equation 40)

【0125】[0125]

【数41】 [Equation 41]

【0126】[0126]

【数42】 (Equation 42)

【0127】[0127]

【数43】 [Equation 43]

【0128】[0128]

【数44】 [Equation 44]

【0129】[0129]

【数45】 [Equation 45]

【0130】但し、D10は乾燥火格子下空気ダンパ基準
値,D20は燃焼火格子前部下空気ダンパ基準値,D30
燃焼火格子後部下空気ダンパ基準値,D40 は後燃焼火
格子下空気ダンパ基準値,D50は一次空気ダンパ基準
値、D60は一次空気ダンパ基準値、S10は燃焼火格子速
度基準値である。更に、k1 は乾燥火格子下空気ダンパ
制御パラメータ,k2 は燃焼火格子前部下空気ダンパ制
御パラメータ,k3 は燃焼火格子後部下空気ダンパ制御
パラメータ,k4 は後燃焼火格子下空気ダンパ制御パラ
メータ、k5 は一次空気ダンパ制御パラメータ、k6
二次空気ダンパ制御パラメータ、k7 は燃焼火格子速度
制御パラメータである。
However, D 10 is a dry grate lower air damper reference value, D 20 is a combustion grate front lower air damper reference value, D 30 is a combustion grate rear lower air damper reference value, and D 40 is a post combustion grate. Lower air damper reference value, D 50 is primary air damper reference value, D 60 is primary air damper reference value, and S 10 is combustion grate velocity reference value. Further, k 1 is a dry grate below air damper control parameter, k 2 is a combustion grate front lower air damper control parameter, k 3 is a combustion grate rear lower air damper control parameter, and k 4 is a post combustion grate below air damper control parameter. Control parameters, k 5 is a primary air damper control parameter, k 6 is a secondary air damper control parameter, and k 7 is a combustion grate velocity control parameter.

【0131】[0131]

【実施例】一次空気量とその配分及び二次空気量を制御
し、蒸気発生量の安定度合いとごみの燃焼エネルギの有
効回収度合いを調べた。有効回収度合いは、排ガス中の
未燃焼成分としてCO濃度を測定することによって評価
した。
[Examples] The primary air amount, its distribution, and the secondary air amount were controlled, and the degree of stability of the amount of steam generated and the degree of effective recovery of combustion energy of dust were examined. The effective recovery degree was evaluated by measuring the CO concentration as an unburned component in the exhaust gas.

【0132】図4(a),図4(b)及び図4(c)
は,一次空気量とその配分及び二次空気量を制御するこ
の発明の制御方法を適用した結果であり,図5(a),
図5(b)及び図5(c)は,比較のために行った従来
の制御方法による試験結果である。従来の制御方法で
は、空気総量は変えず、蒸気発生量が目標量よりも多い
場合に一次空気量を減らし二次空気量を増やし、蒸気発
生量が目標量よりも少ない場合に一次空気量を増やし二
次空気量を減らす制御を行った。
4 (a), 4 (b) and 4 (c)
Is a result of applying the control method of the present invention for controlling the primary air amount and its distribution and the secondary air amount.
FIG. 5B and FIG. 5C are test results by a conventional control method performed for comparison. In the conventional control method, the total air amount is not changed, the primary air amount is decreased when the steam generation amount is larger than the target amount, the secondary air amount is increased, and the primary air amount is decreased when the steam generation amount is smaller than the target amount. Control was performed to increase the secondary air amount.

【0133】本発明を適用した実施例では,図4(a)
に示すように蒸気発生量は目標蒸気発生量20ton/hour
に対して±1ton/hour程度の変動で収まり,図4(b)
に示すように排ガス中O2 濃度も4〜7%程度の範囲に
収まっている。同時に、図4(c)に示すように排ガス
CO濃度も低い状態が維持されている。これは、炉内の
各位置で必要な空気量が確保され且つ無駄な空気を吹き
込むことがなく、このため、ごみの燃焼が安定し、その
エネルギが有効な蒸気として回収されていることを物語
っている。
In the embodiment to which the present invention is applied, as shown in FIG.
As shown in, the target steam generation rate is 20 ton / hour.
To ± 1 ton / hour, and it is within the range of Fig. 4 (b).
As shown in, the O 2 concentration in the exhaust gas is also within the range of about 4 to 7%. At the same time, as shown in FIG. 4C, the exhaust gas CO concentration is also kept low. This shows that the required amount of air is secured at each position in the furnace and that no unnecessary air is blown in, so the combustion of the waste is stable and the energy is recovered as effective steam. ing.

【0134】一方,従来の制御方法では,一次空気の配
分が行われていないので、燃焼が安定せず、図5(a)
に示すように目標蒸気発生量20ton/hourに対して蒸気
発生量が15ton/hourまで落ち込んだ状態が4時間の間
に二度も起こっている。しかも,蒸気発生量が落ち込ん
だときに図5(c)に示すように,排ガスCO濃度が約
60〜70ppmまで上昇している。また,図5(b)に
示すように排ガス中O2 濃度も4〜12%と大きく変動
している。
On the other hand, in the conventional control method, the distribution of primary air is
Since combustion has not been performed, combustion is not stable, and Fig. 5 (a)
As shown in, steam for target steam generation rate of 20 ton / hour
The generated amount has dropped to 15ton / hour for 4 hours.
Has happened to twice. Moreover, the amount of steam generated fell
Then, as shown in Fig. 5 (c), the exhaust gas CO concentration is about
It has risen to 60 to 70 ppm. In addition, in FIG.
As shown in the exhaust gas OTwo Concentration also fluctuates greatly with 4-12%
doing.

【0135】[0135]

【発明の効果】蒸気発生量の測定値に基づき蒸気発生量
が一定の範囲内に入るように,一次空気ダンパ,乾燥火
格子前部下空気ダンパ,燃焼火格子前部下空気ダンパ,
燃焼火格子後部下空気ダンパ,後燃焼火格子後部下空気
ダンパの各々の開度を制御し一次空気量とその配分を調
整し、若しくはこの調整とともに燃焼火格子速度を制御
するので、適切量の燃焼空気量が適所に吹き込まれると
ともにごみ量も適切に制御される。このため、無駄な空
気の吹き込みやごみの供給が防がれ、速やかに蒸気発生
量の変動が修正される。又、これらの制御に合わせて,
排ガス中のO2 濃度を測定し、二次空気量も制御するの
で、更に未燃焼ガスの発生も抑制される。
EFFECTS OF THE INVENTION A primary air damper, a dry lower front grate air damper, a combustion grate lower front air damper, so that the steam generation amount falls within a certain range based on the measured value of the steam generation amount.
The primary air amount and its distribution are adjusted by controlling the opening of each of the combustion grate rear lower air damper and the post combustion grate rear lower air damper, or the combustion grate velocity is controlled together with this adjustment. The amount of combustion air is blown into place and the amount of dust is also controlled appropriately. Therefore, it is possible to prevent the useless blowing of air and the supply of dust, and the fluctuation of the steam generation amount is promptly corrected. Also, according to these controls,
Since the O 2 concentration in the exhaust gas is measured and the amount of secondary air is also controlled, the generation of unburned gas is further suppressed.

【0136】このように、廃棄物であるごみの焼却処理
によって発生する膨大な熱エネルギの回収を効率的に行
い、且つ有害ガスの発生も抑えることを可能としたこの
発明の効果は大きい。
As described above, the great effect of the present invention is that the enormous amount of heat energy generated by the incineration process of waste as waste can be efficiently collected and the generation of harmful gas can be suppressed.

【図面の簡単な説明】[Brief description of drawings]

【図1】発明の実施の形態を説明するためのごみ焼却炉
とその制御系の概念図である。
FIG. 1 is a conceptual diagram of a refuse incinerator and its control system for explaining an embodiment of the invention.

【図2】蒸気発生量偏差についての前件部のメンバーシ
ップ関数を示す図である。
FIG. 2 is a diagram showing a membership function of an antecedent part regarding a steam generation amount deviation.

【図3】排ガス中O2 濃度についての前件部のメンバー
シップ関数を示す図である。
FIG. 3 is a diagram showing a membership function of an antecedent part regarding O 2 concentration in exhaust gas.

【図4】発明の燃焼制御方法よる制御試験結果を示す図
である。
FIG. 4 is a diagram showing a control test result by the combustion control method of the invention.

【図5】従来の燃焼制御方法による制御試験結果を示す
図である。
FIG. 5 is a diagram showing a control test result by a conventional combustion control method.

【符号の説明】[Explanation of symbols]

1 炉 2 ごみ投入口 3a 乾燥火格子 3b 燃焼火格子 3c 後燃焼火格子 4 灰落下口 5 一次空気ブロワ 6 仕切り壁 7 ガス混合室 8a 熱交換器 8b ボイラ 9 二次空気吹き込み口 10a 二次空気ブロワ 10b 二次空気ダンパ 11 温度計 12 流量計 13a 乾燥火格子下空気ダンパ 13b 燃焼火格子前部下空気ダンパ 13c 燃焼火格子後部下空気ダンパ 13d 後燃焼火格子下空気ダンパ 14 一次空気ダンパ 15 一次空気・火格子下空気ダンパ制御手段 16 排ガスCO濃度計 17 排ガスO2 濃度計 18 二次空気ダンパ制御手段 19 燃焼火格子駆動装置 20 燃焼火格子速度制御手段。1 Furnace 2 Waste input port 3a Dry grate 3b Combustion grate 3c Post-combustion grate 4 Ash drop port 5 Primary air blower 6 Partition wall 7 Gas mixing chamber 8a Heat exchanger 8b Boiler 9 Secondary air injection port 10a Secondary air Blower 10b Secondary air damper 11 Thermometer 12 Flowmeter 13a Dry grate lower air damper 13b Combustion grate front lower air damper 13c Combustion grate rear lower air damper 13d After combustion grate lower air damper 14 Primary air damper 15 Primary air -Under-grate air damper control means 16 Exhaust gas CO concentration meter 17 Exhaust gas O 2 concentration meter 18 Secondary air damper control means 19 Combustion grate drive device 20 Combustion grate speed control means

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F22B 35/00 F22B 35/00 J ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location F22B 35/00 F22B 35/00 J

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】火格子上をごみを移動させながらこれを燃
焼し、その燃焼熱を蒸気発生に利用するごみ焼却炉の燃
焼制御において、蒸気発生量を測定し、測定値に基づい
て一次空気ダンパ開度を制御するとともに火格子下の個
々のダンパ開度の制御を行って空気量を調整することを
特徴とするごみ焼却炉の燃焼制御方法。
1. In a combustion control of a refuse incinerator that combusts waste while moving it on a grate and uses the heat of combustion to generate steam, the steam generation amount is measured and the primary air is measured based on the measured value. A method for controlling combustion in a refuse incinerator, which comprises controlling damper openings and controlling individual damper openings under a grate to adjust the air amount.
【請求項2】蒸気発生量が目標量よりも多いときは次の
(A)の操作を選択し、蒸気発生量が目標量よりも少な
いときは次の(B)の操作を選択してダンパ開度の制御
を行い一次空気量を調整する請求項1記載のごみ焼却炉
の燃焼制御方法。 (A)一次空気ダンパの開度を小さくし,燃焼火格子前
部下空気ダンパおよび燃焼火格子後部下空気ダンパの開
度を小さくし,乾燥火格子下空気ダンパと後燃焼火格子
下空気ダンパの開度を大きくする操作 (B)一次空気ダンパの開度を大きくし、燃焼火格子前
部下空気ダンパおよび燃焼火格子後部下空気ダンパの開
度を大きくし,乾燥火格子下空気ダンパと後燃焼火格子
下空気ダンパの開度を小さくする操作。
2. When the steam generation amount is larger than the target amount, the operation (A) is selected, and when the steam generation amount is smaller than the target amount, the operation (B) is selected and the damper is selected. The combustion control method for a refuse incinerator according to claim 1, wherein the opening degree is controlled to adjust the primary air amount. (A) The opening of the primary air damper is reduced, the openings of the front lower air damper of the combustion grate and the lower rear air damper of the combustion grate are decreased, and the air damper of the dry grate and the lower air damper of the post combustion grate are reduced. Operation to increase the opening (B) Increase the opening of the primary air damper to increase the opening of the front lower air damper of the combustion grate and the lower rear air damper of the combustion grate to dry the lower air damper and post-combustion grate Operation to reduce the opening of the air damper under the grate.
【請求項3】請求項2記載の一次空気量の調整を行うと
ともに、排ガス中のO2 濃度を測定し、排ガス中O2
度が低い場合は、二次空気のダンパ開度を大きくし、排
ガス中O2 濃度が高い場合は、二次空気のダンパ開度を
小さくするダンパ開度の制御を行い二次空気量を調整す
ることを特徴とするごみ焼却炉の燃焼制御方法。
3. Adjusting the primary air amount according to claim 2, measuring the O 2 concentration in the exhaust gas, and increasing the damper opening of the secondary air when the O 2 concentration in the exhaust gas is low, When the O 2 concentration in the exhaust gas is high, a method for controlling combustion in a refuse incinerator, which comprises controlling the damper opening for reducing the damper opening of the secondary air to adjust the amount of secondary air.
【請求項4】空気ダンパ開度の制御にファジィ制御を用
いる請求項1、請求項2又は請求項3記載のごみ焼却炉
の燃焼制御方法。
4. The combustion control method for a refuse incinerator according to claim 1, 2 or 3, wherein fuzzy control is used to control the air damper opening.
【請求項5】請求項2記載の一次空気量の調整を行うと
ともに、蒸気発生量が目標量よりも少ないときは燃焼火
格子速度を増速し、蒸気発生量が目標量よりも多いとき
は燃焼火格子速度を減速する燃焼火格子速度の制御を行
うことを特徴とするごみ焼却炉の燃焼制御方法。
5. The primary air amount is adjusted according to claim 2, and when the steam generation amount is smaller than the target amount, the combustion grate velocity is increased, and when the steam generation amount is larger than the target amount. A method for controlling combustion in a refuse incinerator, which comprises controlling a combustion grate speed for reducing a combustion grate speed.
【請求項6】請求項3記載の一次空気量及び二次空気量
の調整を行うとともに、蒸気発生量が目標量よりも少な
いときは燃焼火格子速度を増速し、蒸気発生量が目標量
よりも多いときは燃焼火格子速度を減速する燃焼火格子
速度の制御を行うことを特徴とするごみ焼却炉の燃焼制
御方法。
6. The primary air amount and the secondary air amount according to claim 3 are adjusted, and when the steam generation amount is smaller than the target amount, the combustion grate speed is increased so that the steam generation amount is the target amount. A combustion control method for a refuse incinerator, which comprises controlling the combustion grate speed so as to reduce the combustion grate speed when the number is larger than the above.
【請求項7】空気ダンパ開度の制御及び燃焼火格子速度
の制御にファジィ制御を用いる請求項5又は請求項6記
載のごみ焼却炉の燃焼制御方法。
7. A combustion control method for a refuse incinerator according to claim 5, wherein fuzzy control is used for controlling the air damper opening and controlling the combustion grate velocity.
JP9022518A 1996-02-06 1997-02-05 Control method of combustion in incinerating furnace Pending JPH09273733A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9022518A JPH09273733A (en) 1996-02-06 1997-02-05 Control method of combustion in incinerating furnace

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-20274 1996-02-06
JP2027496 1996-02-06
JP9022518A JPH09273733A (en) 1996-02-06 1997-02-05 Control method of combustion in incinerating furnace

Publications (1)

Publication Number Publication Date
JPH09273733A true JPH09273733A (en) 1997-10-21

Family

ID=26357186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9022518A Pending JPH09273733A (en) 1996-02-06 1997-02-05 Control method of combustion in incinerating furnace

Country Status (1)

Country Link
JP (1) JPH09273733A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008057935A (en) * 2006-09-04 2008-03-13 Mitsubishi Heavy Ind Ltd Stoker type incinerator and its combustion control method
WO2008029712A1 (en) * 2006-09-04 2008-03-13 Mitsubishi Heavy Industries, Ltd. Stoker-type incinerator and method for controlling combustion in the incinerator
JP2008064361A (en) * 2006-09-06 2008-03-21 Mitsubishi Heavy Ind Ltd Stoker-type incinerator and combustion control method therefor
JP2021501867A (en) * 2017-09-11 2021-01-21 エネロ ソリューションズ インコーポレイテッド Dynamic heat generation calculations to improve feedback control of solid fuel-based combustion processes

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58195707A (en) * 1982-05-11 1983-11-15 Kawasaki Heavy Ind Ltd Combustion control method for refuse incinerator
JPS59180212A (en) * 1983-03-30 1984-10-13 Kawasaki Heavy Ind Ltd Combustion controller in refuse incinerator
JPS61143615A (en) * 1984-12-17 1986-07-01 Hitachi Zosen Corp Method of preventing corrosion for boiler tube using combustion exhaust gas
JPH0476307A (en) * 1990-07-18 1992-03-11 Hitachi Zosen Corp Method of burner control

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58195707A (en) * 1982-05-11 1983-11-15 Kawasaki Heavy Ind Ltd Combustion control method for refuse incinerator
JPS59180212A (en) * 1983-03-30 1984-10-13 Kawasaki Heavy Ind Ltd Combustion controller in refuse incinerator
JPS61143615A (en) * 1984-12-17 1986-07-01 Hitachi Zosen Corp Method of preventing corrosion for boiler tube using combustion exhaust gas
JPH0476307A (en) * 1990-07-18 1992-03-11 Hitachi Zosen Corp Method of burner control

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008057935A (en) * 2006-09-04 2008-03-13 Mitsubishi Heavy Ind Ltd Stoker type incinerator and its combustion control method
WO2008029712A1 (en) * 2006-09-04 2008-03-13 Mitsubishi Heavy Industries, Ltd. Stoker-type incinerator and method for controlling combustion in the incinerator
JP4701138B2 (en) * 2006-09-04 2011-06-15 三菱重工環境・化学エンジニアリング株式会社 Stoker-type incinerator and its combustion control method
JP2008064361A (en) * 2006-09-06 2008-03-21 Mitsubishi Heavy Ind Ltd Stoker-type incinerator and combustion control method therefor
JP4701140B2 (en) * 2006-09-06 2011-06-15 三菱重工環境・化学エンジニアリング株式会社 Stoker-type incinerator and its combustion control method
JP2021501867A (en) * 2017-09-11 2021-01-21 エネロ ソリューションズ インコーポレイテッド Dynamic heat generation calculations to improve feedback control of solid fuel-based combustion processes
US11867391B2 (en) 2017-09-11 2024-01-09 Enero Inventions Inc. Dynamic heat release calculation for improved feedback control of solid-fuel-based combustion processes

Similar Documents

Publication Publication Date Title
KR100304244B1 (en) Combustion control method and apparatus for waste incinerators
JPH0781701B2 (en) A device for estimating unburned content in ash of a coal combustion furnace
RU2070688C1 (en) Method of combustion control in furnace for burning waste in fluidized bed
JPH1068514A (en) Combustion controlling method for refuse incinerating furnace
JPH1194227A (en) Method of presuming low heating value of combustible waste and presuming heating value of combustible part of garbage of garbage incinerator
JP3030614B2 (en) Estimation method of waste layer thickness index and combustion control method of waste incinerator using the method
JPH09273733A (en) Control method of combustion in incinerating furnace
JP4099195B2 (en) Combustion control system for waste incinerator without boiler equipment
JP3956862B2 (en) Combustion control method for waste incinerator and waste incinerator
JPH04324014A (en) Method of introducing air into rotary incinerator
JP7397627B2 (en) Incineration plant and its combustion control method
JP2001033017A (en) Method for controlling combustion of refuse incinerator
WO2020189394A1 (en) Incinerator
JP3247066B2 (en) Freeboard temperature control method for fluidized bed incinerator.
JP3425707B2 (en) Combustion control device and method for refuse incinerator
JPH0470528B2 (en)
JP2004239508A (en) Combustion control method of refuse incinerator, and refuse incinerator
JPH09273732A (en) Control method of combustion in incinerating furnace
KR100194446B1 (en) Combustion control method and apparatus for waste incinerator
JP3936884B2 (en) Control method of stoker type incinerator
JP2002147732A (en) Refuse incinerator
JPS6246119A (en) Burning control method of classified waste incinerator
JP3844333B2 (en) Combustion control system for waste incinerator without boiler equipment
KR100306291B1 (en) Control method of flue gas mixture discharged from garbage incinerator
JPH03125808A (en) Fluidized-bed type refuse incinerator