JPH09271909A - Cooling base board for producing quenched metal thin strip - Google Patents

Cooling base board for producing quenched metal thin strip

Info

Publication number
JPH09271909A
JPH09271909A JP8382696A JP8382696A JPH09271909A JP H09271909 A JPH09271909 A JP H09271909A JP 8382696 A JP8382696 A JP 8382696A JP 8382696 A JP8382696 A JP 8382696A JP H09271909 A JPH09271909 A JP H09271909A
Authority
JP
Japan
Prior art keywords
cooling
base board
cooling base
thin strip
ribbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8382696A
Other languages
Japanese (ja)
Inventor
Toshio Yamada
田 利 男 山
Hiroaki Sakamoto
本 広 明 坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP8382696A priority Critical patent/JPH09271909A/en
Publication of JPH09271909A publication Critical patent/JPH09271909A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0637Accessories therefor
    • B22D11/0648Casting surfaces
    • B22D11/0651Casting wheels

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent generation of air pocket and to uniformize and improve magnetic characteristic and mechanical characteristic of a metal thin strip by forming V-shaped grooves on the surface of a cooling base board (roll) used for producing the metal thin strip. SOLUTION: V-shaped grooves are formed on the surface of the moving cooling base board and constituted so as to direct the closed direction of these grooves to the moving direction (the arrow mark) of the cooling base board. By this constitution, atmospheric gas entrapped between molten metal and the cooling base board is efficiently ejected to the side direction of a paddle and the generation of the air pocket is prevented and cooling speed of the thin strip can be quickened. In this case, the angle θ of the V-shaped grooves is >0 deg. to <90 deg. angle to the upstream direction, desirably 20-70 deg. by using the moving axis of the cooling base board as a reference. further, the V grooves can be arranged at the different angle in the right and left sides, such as the figure (b), to the shifting axis of the cooling base board passing the closed part, but in this case, the difference of the θs at the right and the left sides is within ±10 deg. to stabilize the paddle.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電力用トランス、
高周波トランスなどの鉄心材に用いられる急冷金属薄帯
を製造するための装置用部材に関するものである。
TECHNICAL FIELD The present invention relates to a power transformer,
The present invention relates to a device member for producing a quenched metal ribbon used for an iron core material such as a high frequency transformer.

【0002】[0002]

【従来の技術】合金を溶融状態から急冷することによっ
て連続的に薄帯を製造する方法としては、遠心急冷法、
単ロール法、双ロール法、等が知られている。これらの
方法は、高速回転する金属製ドラムの内周面または外周
面に溶融金属をオリフィス等から噴出させることによっ
て、急速に溶融金属を凝固させて薄帯や線材を製造する
ものである。さらに、合金組成を適正に選ぶことによっ
て、液体金属に類似した非晶質合金を得ることができ、
磁気的性質、あるいは機械的性質に優れた材料を製造す
ることができる。
2. Description of the Related Art As a method for continuously producing a ribbon by rapidly cooling an alloy from a molten state, a centrifugal quenching method,
A single roll method, a twin roll method, etc. are known. In these methods, molten metal is jetted from an orifice or the like onto an inner peripheral surface or an outer peripheral surface of a metal drum rotating at high speed to rapidly solidify the molten metal to produce a ribbon or a wire. Furthermore, by properly selecting the alloy composition, an amorphous alloy similar to liquid metal can be obtained,
A material having excellent magnetic properties or mechanical properties can be manufactured.

【0003】これらの急冷金属薄帯は、上述したように
溶湯を冷却基板に接触させて、溶湯を急速抜熱して凝固
させることによって製造される。したがって、効率良く
急冷するためには溶湯と冷却基板との密着性を上げるこ
とが重要である。しかし、現実には溶湯と冷却基板の間
に雰囲気ガスが巻き込まれ、エアーポケットと呼ばれる
窪みが冷却基板に接触する薄帯面に生じてしまう。この
エアーポケットの部分は、薄帯が冷却基板に接触してい
ない部分であるから、薄帯が冷却基板に接触している部
分より冷却速度は遅くなる。その結果、エアーポケット
の部分で結晶化が起こり、磁気特性あるいは機械特性が
劣化してしまう。
These quenched metal ribbons are manufactured by bringing the molten metal into contact with a cooling substrate and rapidly removing the heat from the molten metal to solidify the molten metal as described above. Therefore, in order to quench efficiently and efficiently, it is important to improve the adhesion between the molten metal and the cooling substrate. However, in reality, the atmospheric gas is trapped between the molten metal and the cooling substrate, and a hollow called an air pocket is generated on the thin strip surface that contacts the cooling substrate. The air pocket portion is a portion where the ribbon is not in contact with the cooling substrate, and therefore, the cooling rate is slower than the portion where the ribbon is in contact with the cooling substrate. As a result, crystallization occurs in the air pockets, deteriorating the magnetic properties or mechanical properties.

【0004】エアーポケットを減少させるために、一酸
化炭素と酸素を所定の割合で移動可能冷却体上のパドル
(湯溜まり)近傍で燃焼させて、パドル近傍を低密度還
元炎性雰囲気として鋳造雰囲気を制御する方法が開示さ
れている(特表平1−501924号公報)。しかし、
この方法は設備が複雑になるばかりでなく、製造コスト
も高くなってしまう。また、一酸化炭素を使用するため
操業上の安全性にも問題が出てくる。
In order to reduce air pockets, carbon monoxide and oxygen can be moved at a predetermined ratio and burned in the vicinity of a paddle (a pool of water) on a cooling body to create a casting atmosphere with a low density reducing flame atmosphere near the paddle. Is disclosed (Japanese Patent Publication No. 1-501924). But,
This method not only complicates the equipment, but also increases the manufacturing cost. Further, since carbon monoxide is used, there is a problem in operational safety.

【0005】また、薄帯表面の傷やクラックを減少させ
るために、表面がバフ研磨によってミクロンオーダー以
下の凹凸である冷却体(特開昭62−166059号公
報)、薄帯自由面の粗さを低減させるために、冷却ロー
ル表面を砥粒No600〜1000番の研磨紙で研磨し
て得られる粗さにする方法(特開平4−288952号
公報)、薄帯の磁区細分化を狙いとし、冷却ロール表面
に回転方向に対して斜めにスクラッチがある冷却体およ
びそれによって製造した薄帯(特開昭60−72648
号公報)、等がある。しかし、これらの公知例にはいづ
れもエアーポケットに関する記載はない。
Further, in order to reduce scratches and cracks on the surface of the ribbon, the surface of the cooling body has irregularities of micron order or less by buffing (Japanese Patent Laid-Open No. 166059/1987) and roughness of the free surface of the ribbon. In order to reduce the surface roughness of the cooling roll by polishing with abrasive paper of abrasive grain No. 600 to No. 1000 (Japanese Patent Laid-Open No. 4-288952), for the purpose of subdividing the magnetic domain of the ribbon, A cooling body having scratches on the surface of the cooling roll obliquely to the direction of rotation and a ribbon produced by the cooling body (JP-A-60-72648).
Gazette), etc. However, none of these known examples mention air pockets.

【0006】[0006]

【発明が解決しようとする課題】従来、エアーポケット
を低減する方法として、設備が簡便なものがなく、ま
た、設備が簡便である表面形状が制御された冷却基板で
も、エアーポケットを低減させることができなった。本
発明は、パドルと溶湯との間にエアーが巻き込まれて
も、その排出が効率良く行われて容易に薄帯のエアーポ
ケットを減少させ、冷却基板と溶湯との接触を効率よく
維持し、特性が良好な薄帯が得られる、急冷金属薄帯製
造用の冷却基板を提供することを目的とする。
Conventionally, as a method for reducing air pockets, there is no simple equipment, and it is possible to reduce air pockets even with a cooling substrate whose surface shape is controlled, which is simple equipment. No longer possible. The present invention, even if air is trapped between the paddle and the molten metal, is efficiently discharged to easily reduce the air pockets in the ribbon, and efficiently maintain the contact between the cooling substrate and the molten metal. An object of the present invention is to provide a cooling substrate for producing a quenched metal ribbon, which can obtain a ribbon having excellent characteristics.

【0007】[0007]

【課題を解決するための手段】本発明は、以下に記載の
通りのものである。移動する冷却基板上に、スリット状
の開口部を有する注湯ノズルを介して溶融金属を噴出
し、急冷凝固させて急冷金属薄帯を製造する装置におい
て、冷却基板の表面にV字状の溝を有し、かつ該V字状
の溝の閉じた方向が冷却基板の移動方向に向いているこ
とを特徴とする冷却基板。
The present invention is as described below. In a device for producing a quenched metal ribbon by jetting a molten metal onto a moving cooling substrate through a pouring nozzle having a slit-shaped opening, a V-shaped groove is formed on the surface of the cooling substrate. And a closed direction of the V-shaped groove is oriented in the moving direction of the cooling substrate.

【0008】以下に、本発明を詳細に説明する。図2に
示すように、エアーポケットは、パドル2に上流側から
巻き込まれた雰囲気ガス(エアー)が溶湯の熱で膨張
し、それがそのまま凝固することによって形成される。
従来の冷却基板は、研磨によって形成された冷却基板の
回転方向と平行方向に凹状の溝を有し、パドル内に巻き
込まれたエアーはパドルの上流側に押し出されるように
移動する。しかし、上流側からは新たなエアーが連続的
に入ってくるため、この凹状の溝を通じて上流側にエア
ーが抜けることは困難になる。
Hereinafter, the present invention will be described in detail. As shown in FIG. 2, the air pocket is formed by the atmospheric gas (air) caught in the paddle 2 from the upstream side being expanded by the heat of the molten metal and solidified as it is.
A conventional cooling substrate has a groove formed by polishing in a direction parallel to the rotation direction of the cooling substrate, and the air caught in the paddle moves so as to be pushed out to the upstream side of the paddle. However, since new air continuously enters from the upstream side, it becomes difficult for the air to escape to the upstream side through the concave groove.

【0009】本発明は、このような従来の溝部とは異な
り、図1に示すように冷却基板上にV字状の溝を形成す
ることによって、エアーをパドル上流側でなく側面に効
率良く排出し、エアーポケットを減少させることを狙っ
て種々の実験を重ね、完成に至ったものである。本発明
のポイントは、いったん巻き込まれたエアーをエアーの
巻き込みが無いパドル側面から排出させることである。
これによってエアーを容易に抜くことが可能となった。
従来の冷却ロールの回転方向に対して斜めにスクラッチ
がある冷却体においても、同様な効果を期待したが、実
際に試してみたところ、エアーポケットを低減させるこ
とができなかった。これは、巻き込まれたエアーがパド
ルの片側の側面のみに排出されようとする結果、かえっ
てパドルが不安定になったためである。
Unlike the conventional groove portion, the present invention forms the V-shaped groove on the cooling substrate as shown in FIG. 1 so that the air is efficiently discharged to the side surface instead of the upstream side of the paddle. However, various experiments were repeated with the aim of reducing the number of air pockets, and they were completed. The point of the present invention is to discharge the air that has been once caught from the side surface of the paddle where the air is not caught.
This made it possible to easily remove the air.
Similar effects were expected in a conventional cooling body having scratches obliquely to the rotation direction of the cooling roll, but when actually tested, the air pockets could not be reduced. This is because the trapped air became rather unstable as a result of the trapped air being discharged to only one side surface of the paddle.

【0010】本発明においてV字状の溝は、図1(a)
(b)および(c)に示すように、冷却基板の移動方向
に対して閉じる様に配置されている。この配置によっ
て、エアーは、パドル側面方向に効率良く排出される。
V字状の溝の配置が冷却基板の移動方向に対して開く様
に配置された場合は、押し出されたエアーが薄帯幅方向
の中央部に集合するため、エアーの排出が行われず従来
同様エアーポケットは減少しない。生産性を上げる場合
には、図1(c)に示す形態の冷却基板を用いればよ
い。
In the present invention, the V-shaped groove is shown in FIG.
As shown in (b) and (c), they are arranged so as to be closed in the moving direction of the cooling substrate. With this arrangement, the air is efficiently discharged in the paddle side surface direction.
When the V-shaped groove is arranged so as to open with respect to the moving direction of the cooling substrate, the extruded air gathers in the central portion in the width direction of the ribbon, so that the air is not discharged and it is the same as the conventional case. Air pockets do not decrease. In order to increase the productivity, the cooling substrate having the form shown in FIG. 1 (c) may be used.

【0011】[0011]

【発明の実施の形態】本発明の急冷金属薄帯製造用の冷
却基板について説明する。冷却基板の材質は、熱伝導率
の大きいものが良い。例えば、Cu、Cu合金、Fe合
金、あるいは、それらにCrメッキを施したものが適し
ている。冷却基板としては、単ロール法、双ロール法等
のロール方式が安定して薄帯を製造できるために適して
いるが、ベルト法でも本発明の効果は得られる。
BEST MODE FOR CARRYING OUT THE INVENTION A cooling substrate for producing a quenched metal ribbon according to the present invention will be described. The material of the cooling substrate is preferably one having a high thermal conductivity. For example, Cu, Cu alloy, Fe alloy, or those obtained by plating them with Cr are suitable. As a cooling substrate, a roll method such as a single roll method or a twin roll method is suitable because a ribbon can be stably manufactured, but the belt method can also obtain the effect of the present invention.

【0012】冷却基板上のV字状の溝は、図1(a)、
(b)および(c)に示すように冷却基板の移動方向に
対して閉じるように配置される。溝の角度θは、図1
(d)に示すように冷却基板の移動軸を基準とし、上流
方向とのなす角が0゜を超え90゜未満である。エアー
が効率良く排出され、より大きな効果を得るためには、
その角度が20゜〜70゜が望ましい。また溝は、V字
状の閉じた部分を通る冷却基板の移動軸に対し、図1
(b)のように左右異なった角度で配置されても良い。
その場合、パドルを安定させるために、左右のθの差は
±10゜以内にすることが望ましい。V字状の溝の閉じ
た頂点部分は、薄帯幅の範囲内にあればよいが、薄帯幅
方向の中央付近にある方がより好ましい。
The V-shaped groove on the cooling substrate is shown in FIG.
As shown in (b) and (c), they are arranged so as to be closed in the moving direction of the cooling substrate. The groove angle θ is shown in FIG.
As shown in (d), the angle formed with the upstream direction with respect to the movement axis of the cooling substrate is more than 0 ° and less than 90 °. In order for air to be discharged efficiently and to obtain a greater effect,
The angle is preferably 20 ° to 70 °. Further, the groove is shown in FIG. 1 with respect to the moving axis of the cooling substrate passing through the V-shaped closed portion.
It may be arranged at right and left different angles as shown in (b).
In that case, in order to stabilize the paddle, it is desirable that the difference between the left and right θ be within ± 10 °. The closed apex portion of the V-shaped groove may be within the range of the ribbon width, but it is more preferably near the center in the ribbon width direction.

【0013】溝の開口幅は、0.1〜50μm程度が好
ましい。0.1μm程度より小さくなるとエアーが効率
良く溝の中を移動しなくなり、50μm程度より大きく
なると溶湯も溝の中に入ってしまう確率が高くなり、エ
アーの移動を妨げてしまうからである。溝は、連続して
いることが好ましい。溝が連続していることによって、
エアーが効率良く排出されるからである。溝の深さは1
0μm程度以上あれば良い。10μm程度より小さくな
ると、エアーが効率良く溝の中を移動しなくなるからで
ある。
The opening width of the groove is preferably about 0.1 to 50 μm. If it is smaller than about 0.1 μm, the air does not move efficiently in the groove, and if it is larger than about 50 μm, the molten metal has a high probability of entering the groove, which hinders the movement of the air. The grooves are preferably continuous. By the continuous groove,
This is because the air is efficiently discharged. The depth of the groove is 1
It may be about 0 μm or more. This is because if it is smaller than about 10 μm, the air does not move efficiently in the groove.

【0014】V字状の溝の閉じた頂点部分は、1mm程
度以下の交差部があってもよい。交差部には下流側から
移動してくるエアーが集まるが、V字状の溝とつながっ
ているため、エアーが滞留する事はない。より大きな効
果を得るには、交差部が完全に閉じていることが好まし
い。溝と溝の間隔(ピッチ)は、200μm程度以下で
あれば良い。ピッチが200μm程度より大きくなる
と、巻き込んだエアーが効率良く排出されなくからであ
る。冷却基板の溝は、機械研削、回転ブラシ、スタンプ
などによって形成することができる。また、これらの方
式は、オンラインでも行うことができる。
The closed apex portion of the V-shaped groove may have an intersection of about 1 mm or less. Air moving from the downstream side gathers at the intersection, but since it is connected to the V-shaped groove, the air does not stay. To obtain a greater effect, it is preferable that the intersection is completely closed. The distance (pitch) between the grooves may be about 200 μm or less. This is because the entrained air cannot be efficiently discharged if the pitch is larger than about 200 μm. The groove of the cooling substrate can be formed by mechanical grinding, a rotating brush, a stamp or the like. Also, these methods can be performed online.

【0015】[0015]

【実施例】以下、本発明を実施例と比較例に基づいてさ
らに説明する。実施例1 本発明であるV字状の溝を有した冷却ロール(外径が5
80mmのCu製冷却ロール)を用いた単ロール法によ
り薄帯を製造した。冷却ロールは、ロール表面を一旦鏡
面状に研磨した後、機械研削でV字状の溝を形成させ
た。この溝は、V字状の閉じた部分を通る冷却ロールの
移動軸を基準とし、上流方向とのなす角が左右とも45
゜の角度を持ち、溝の開口幅は30μm、溝の深さは1
6μm、溝のピッチは130μmであった。
EXAMPLES The present invention will be further described below based on Examples and Comparative Examples. Example 1 A cooling roll having an V-shaped groove according to the present invention (having an outer diameter of 5
A thin strip was manufactured by a single roll method using an 80 mm Cu cooling roll). The cooling roll had a V-shaped groove formed by mechanical grinding after the roll surface was once polished to a mirror surface. This groove has an angle formed with the upstream direction of 45 degrees on both sides with respect to the movement axis of the cooling roll passing through the V-shaped closed portion.
The groove has an opening width of 30 μm and a groove depth of 1 °.
The groove pitch was 6 μm and the groove pitch was 130 μm.

【0016】比較例1 比較例1として、通常のエメリー紙による研磨を施した
冷却ロール(外径が580mmのCu製冷却ロール)を
用いた単ロール法により薄帯を製造した。この冷却ロー
ルは600番のエメリー紙を用い、冷却ロールの移動方
向に平行な研磨溝を有している。
Comparative Example 1 As Comparative Example 1, a ribbon was manufactured by a single roll method using a cooling roll (Cu cooling roll having an outer diameter of 580 mm) which was polished by ordinary emery paper. This cooling roll uses No. 600 emery paper and has polishing grooves parallel to the moving direction of the cooling roll.

【0017】比較例2 比較例2としては、本発明のV字状の溝の方向と逆であ
る冷却基板の移動方向に開いたV字状の溝を配置した冷
却ロール(外径が580mmのCu製冷却ロール)を用
いた単ロール法により薄帯を製造した。この冷却ロール
は、本発明の実施例1の冷却ロールと同様に、ロール表
面を一旦鏡面状に研磨した後、機械研削でV字状の溝を
形成させた。この溝は、V字状の閉じた部分を通る冷却
ロールの移動軸を基準とし、上流方向とのなす角が左右
とも120゜の角度を持ち、溝の開口幅は30μm、溝
の深さは16μm、溝のピッチは130μmであった。
Comparative Example 2 In Comparative Example 2, a cooling roll (having an outer diameter of 580 mm) having V-shaped grooves opened in the moving direction of the cooling substrate, which is the reverse of the direction of the V-shaped grooves of the present invention, is arranged. A thin strip was produced by a single roll method using a Cu cooling roll). Similar to the cooling roll of Example 1 of the present invention, this cooling roll had a V-shaped groove formed by mechanical grinding after the roll surface was once polished to a mirror surface. This groove has an angle of 120 ° to the left and right with the upstream direction with respect to the axis of movement of the cooling roll passing through the V-shaped closed portion, the groove opening width is 30 μm, and the groove depth is The groove pitch was 16 μm and the groove pitch was 130 μm.

【0018】本発明材および比較材1,2の薄膜の合金
は、いずれも組成がFe80.5Si6.5B12Cl
(原子%)である。この母合金750gを石英るつぼに
装填し、高周波溶解した後、スリット状の開口部を持つ
ノズルから周速24m/秒で高速回転する上記冷却ロー
ル上に溶湯を噴出させ薄帯を得た。使用したノズルは単
一スリットノズル(幅0.4mm、長さ25mm)であ
る。得られた薄帯は、いずれも幅が25mm、板厚は2
7μmある。
The thin film alloys of the present invention material and the comparative materials 1 and 2 all have a composition of Fe80.5Si6.5B12Cl.
(Atomic%). 750 g of this mother alloy was loaded into a quartz crucible and subjected to high frequency melting, and then a molten metal was ejected from a nozzle having a slit-shaped opening portion onto the cooling roll rotating at a high peripheral speed of 24 m / sec to obtain a ribbon. The nozzle used is a single slit nozzle (width 0.4 mm, length 25 mm). Each of the obtained ribbons has a width of 25 mm and a plate thickness of 2
There is 7 μm.

【0019】薄帯の冷却ロール接触面(ロール面)を光
顕写真に撮り、画像処理装置を用いてエアーポケットの
面積率を調べた。また、この薄帯を360℃で1時間、
窒素雰囲気中で磁場焼鈍し、SSTで磁気特性を測定し
た。その結果を、表1に示す。
The cooling roll contact surface (roll surface) of the ribbon was photographed with a light microscope and the area ratio of air pockets was examined using an image processing apparatus. In addition, this thin strip at 360 ℃ for 1 hour,
Magnetic field annealing was performed in a nitrogen atmosphere, and magnetic properties were measured by SST. Table 1 shows the results.

【0020】[0020]

【表1】 [Table 1]

【0021】エアーポケットの面積率は、比較材1の薄
帯が21%、比較材2の薄帯が25%であるのに対し、
本発明の冷却ロールで作製した薄帯は10%であった。
比較材2の光学顕微鏡観察ではV字状の溝の閉じた部分
に相当する場所に大きなエアーポケットが観察された。
また、各々の薄帯の鉄損値は、比較材1がW13/50
(磁束密度1.3T、50Hzにおける鉄損値)で0.
14W/kg、比較材2が0.16W/kgであるのに
対し、本発明材は0.10W/kgであった。これらの
結果が示すように、本発明の冷却基板は、薄帯のエアー
ポケットを減少させ、それによって薄帯の磁気特性が改
善される。
The area ratio of the air pockets is 21% for the thin strip of Comparative Material 1 and 25% for the thin strip of Comparative Material 2.
The ribbon produced by the cooling roll of the present invention was 10%.
A large air pocket was observed at a position corresponding to the closed portion of the V-shaped groove by the optical microscope observation of the comparative material 2.
Further, the iron loss value of each ribbon is W13 / 50 for Comparative Material 1.
(Magnetic flux density of 1.3 T, iron loss value at 50 Hz) of 0.
14 W / kg, Comparative material 2 was 0.16 W / kg, whereas the material of the present invention was 0.10 W / kg. As these results show, the cooling substrate of the present invention reduces the air pockets in the ribbon, thereby improving the magnetic properties of the ribbon.

【0022】[0022]

【発明の効果】本発明によれば、複雑な雰囲気ガス装置
や、補助冷却ロールなどを用いることなく、容易に薄帯
の冷却速度を大きくすることができ、薄帯の特性を向上
させることができると同時に、複雑な雰囲気ガス装置や
補助冷却ロールなどの設備が不要であることから、製造
コストを安くできる。また、成分系や、薄帯の板厚によ
らず大きな冷却効果が得られるため、適用範囲が広い。
さらに、エアーポケットが減少することによって、凹凸
の小さい表面性状の良好な薄帯が得られる。これは、巻
き鉄心や、積み鉄心にした場合の占積率の向上にもつな
がる。
According to the present invention, the cooling rate of the ribbon can be easily increased without using a complicated atmosphere gas device or auxiliary cooling roll, and the characteristics of the ribbon can be improved. At the same time, the manufacturing cost can be reduced because a complicated atmosphere gas device and equipment such as auxiliary cooling rolls are not required. Further, since a large cooling effect can be obtained regardless of the component system and the thickness of the thin strip, the application range is wide.
Further, by reducing the air pockets, it is possible to obtain a thin strip having small surface irregularities and good surface properties. This also leads to an improvement in the space factor when using a wound iron core or a laminated iron core.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の冷却基板およびV字状溝のパターンを
示す模式図であり、(a)は、V字状の溝が冷却基板の
移動軸に対して左右対称である例、(b)は、V字状の
溝が冷却基板の移動軸に対して左右の角度が異なってい
る例、および(c)は、同時に2種類の薄帯を製造する
場合の例を示したものであり、(d)は、溝の角度θの
定義を示したものである。
FIG. 1 is a schematic view showing a pattern of a cooling substrate and a V-shaped groove of the present invention, FIG. 1A shows an example in which the V-shaped groove is symmetrical with respect to a moving axis of the cooling substrate, and FIG. ) Shows an example in which the V-shaped groove has different left and right angles with respect to the movement axis of the cooling substrate, and (c) shows an example in which two kinds of ribbons are manufactured at the same time. , (D) show the definition of the groove angle θ.

【図2】薄帯製造における、エアーポケットのできる原
理を示す説明図であり、(a)は、冷却基板の上方から
見た模式図、(b)は、冷却基板の側面から見た模式図
である。
2A and 2B are explanatory views showing a principle of forming an air pocket in thin ribbon manufacturing, wherein FIG. 2A is a schematic view seen from above a cooling substrate, and FIG. 2B is a schematic view seen from a side surface of the cooling substrate. Is.

【符号の説明】[Explanation of symbols]

1 冷却基板 2 パドル 3 溶湯 4 ノズル 5 薄帯 1 Cooling board 2 Paddle 3 Molten metal 4 Nozzle 5 Thin strip

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】移動する冷却基板上に、スリット状の開口
部を有する注湯ノズルを介して溶融金属を噴出させ、急
冷凝固させて急冷金属薄帯を製造する装置において、冷
却基板の表面にV字状の溝を有し、かつ該V字状の溝の
閉じた方向が冷却基板の移動方向に向いていることを特
徴とする、急冷金属薄帯製造用冷却基板。
Claim: What is claimed is: 1. An apparatus for producing a rapidly cooled metal ribbon by ejecting molten metal onto a moving cooling substrate through a pouring nozzle having a slit-shaped opening and rapidly solidifying the molten metal on the surface of the cooling substrate. A cooling substrate for producing a quenched metal ribbon, comprising a V-shaped groove, and the closed direction of the V-shaped groove is oriented in the moving direction of the cooling substrate.
JP8382696A 1996-04-05 1996-04-05 Cooling base board for producing quenched metal thin strip Withdrawn JPH09271909A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8382696A JPH09271909A (en) 1996-04-05 1996-04-05 Cooling base board for producing quenched metal thin strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8382696A JPH09271909A (en) 1996-04-05 1996-04-05 Cooling base board for producing quenched metal thin strip

Publications (1)

Publication Number Publication Date
JPH09271909A true JPH09271909A (en) 1997-10-21

Family

ID=13813504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8382696A Withdrawn JPH09271909A (en) 1996-04-05 1996-04-05 Cooling base board for producing quenched metal thin strip

Country Status (1)

Country Link
JP (1) JPH09271909A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003052778A1 (en) * 2001-12-18 2003-06-26 Showa Denko K.K. Alloy flake for rare earth magnet, production method thereof, alloy powder for rare earth sintered magnet, rare earth sintered magnet, alloy powder for bonded magnet and bonded magnet
US6796363B2 (en) 2000-05-30 2004-09-28 Seiko Epson Corporation Cooling roll, ribbon-shaped magnetic materials, magnetic powders and bonded magnets
US6830633B2 (en) * 2000-05-30 2004-12-14 Seiko Epson Corporation Magnetic material manufacturing method, ribbon-shaped magnetic materials, powdered magnetic materials and bonded magnets
US6872326B2 (en) * 2000-07-31 2005-03-29 Seiko Epson Corporation Method of manufacturing magnetic powder, magnetic powder and bonded magnets
US6892792B2 (en) 2000-04-12 2005-05-17 Seiko Epson Corporation Cooling roll, ribbon-shaped magnetic materials, magnetic powders and bonded magnets
US6916385B2 (en) 2000-04-12 2005-07-12 Seiko Epson Corporation Method of manufacturing magnet materials, and ribbon-shaped magnet materials, powdered magnet materials and bonded magnets
EP2982460A1 (en) * 2014-08-07 2016-02-10 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Apparatus and method of manufacturing metallic or inorganic strands having a thickness in the micron range by melt spinning

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6942930B2 (en) * 2000-04-12 2005-09-13 Seiko Epson Corporation Cooling roll, ribbon-shaped magnetic materials, magnetic powders and bonded magnets
US6892792B2 (en) 2000-04-12 2005-05-17 Seiko Epson Corporation Cooling roll, ribbon-shaped magnetic materials, magnetic powders and bonded magnets
US6916385B2 (en) 2000-04-12 2005-07-12 Seiko Epson Corporation Method of manufacturing magnet materials, and ribbon-shaped magnet materials, powdered magnet materials and bonded magnets
US6796363B2 (en) 2000-05-30 2004-09-28 Seiko Epson Corporation Cooling roll, ribbon-shaped magnetic materials, magnetic powders and bonded magnets
US6830633B2 (en) * 2000-05-30 2004-12-14 Seiko Epson Corporation Magnetic material manufacturing method, ribbon-shaped magnetic materials, powdered magnetic materials and bonded magnets
US6838014B2 (en) 2000-05-30 2005-01-04 Seiko Epson Corporation Cooling roll, ribbon-shaped magnetic materials, magnetic powders and bonded magnets
US7138070B2 (en) 2000-05-30 2006-11-21 Seiko Epson Corporation Magnetic material manufacturing method, ribbon-shaped magnetic materials, powdered magnetic material and bonded magnets
US6872326B2 (en) * 2000-07-31 2005-03-29 Seiko Epson Corporation Method of manufacturing magnetic powder, magnetic powder and bonded magnets
WO2003052778A1 (en) * 2001-12-18 2003-06-26 Showa Denko K.K. Alloy flake for rare earth magnet, production method thereof, alloy powder for rare earth sintered magnet, rare earth sintered magnet, alloy powder for bonded magnet and bonded magnet
US7442262B2 (en) 2001-12-18 2008-10-28 Showa Denko K.K. Alloy flake for rare earth magnet, production method thereof, alloy powder for rare earth sintered magnet, rare earth sintered magnet, alloy powder for bonded magnet and bonded magnet
US7571757B2 (en) 2001-12-18 2009-08-11 Showa Denko K.K. Alloy flake for rare earth magnet, production method thereof, alloy powder for rare earth sintered magnet, rare earth sintered magnet, alloy powder for bonded magnet and bonded magnet
EP2982460A1 (en) * 2014-08-07 2016-02-10 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Apparatus and method of manufacturing metallic or inorganic strands having a thickness in the micron range by melt spinning
WO2016020493A1 (en) * 2014-08-07 2016-02-11 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Apparatus and method of manufacturing metallic or inorganic strands having a thickness in the micron range by melt spinning
KR20190029793A (en) * 2014-08-07 2019-03-20 막스-플랑크-게젤샤프트 츄어 푀르더룽 데어 비쎈샤프텐 에.파우. Apparatus and method of manufacturing metallic or inorganic strands having a thickness in the micron range by melt spinning
CN106470783B (en) * 2014-08-07 2019-11-05 马克斯·普朗克科学促进学会 For producing the device and method of long and thin metal wire rod
US10987728B2 (en) 2014-08-07 2021-04-27 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Apparatus and method of manufacturing metallic or inorganic strands having a thickness in the micron range by melt spinning

Similar Documents

Publication Publication Date Title
US5301742A (en) Amorphous alloy strip having a large thickness
JPS6046846A (en) Manufacture of continuous strip of crystalline metal
US20030041931A1 (en) Method for producing amorphous alloy ribbon, and method for producing nano-crystalline alloy ribbon with same
JPH09271909A (en) Cooling base board for producing quenched metal thin strip
CA1160423A (en) Apparatus and method for chill casting of metal strip employing a chromium chill surface
JP2002316243A (en) Method of manufacturing thin amorphous alloy strip and method of manufacturing thin nanocrystal alloy strip using the same
JP2020175394A (en) Chill roll, twin roll type continuous casting device, thin casting piece casting method, and chill roll production method
JP2708681B2 (en) Method for producing ultrathin amorphous alloy ribbon
KR960003714B1 (en) Method and apparatus for manufacturing a thin metal strip by quenching and solidification
US4663242A (en) Method for producing a metal alloy strip
JP4529106B2 (en) Method for producing amorphous alloy ribbon
JPH0698469B2 (en) Apparatus and method for manufacturing quenched metal ribbon
JPH10323742A (en) Soft magnetic amorphous metal thin band
JP4037989B2 (en) Fe-based amorphous alloy ribbon with ultrathin oxide layer
US4648437A (en) Method for producing a metal alloy strip
EP0148306A2 (en) Method for producing a metal alloy strip
JP2002205148A (en) Method for producing amorphous alloy strip
JP3266404B2 (en) Metal ribbon manufacturing method and apparatus
WO1984003852A1 (en) Apparatus and method for producing thin metal strip
JPS60108144A (en) Production of thin metallic strip
JP4214143B2 (en) Aluminum alloy plate for magnetic disk, aluminum alloy substrate for magnetic disk, and method for producing the alloy plate
JP2002283010A (en) Method for casting good strip with single roll method
JP3100798B2 (en) Quenched metal strip manufacturing equipment
JP3373316B2 (en) Winding method of rapidly solidified ribbon
JPS5815219B2 (en) Manufacturing method of amorphous alloy

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030701