JPH0927103A - Magnetic sensor - Google Patents

Magnetic sensor

Info

Publication number
JPH0927103A
JPH0927103A JP17203795A JP17203795A JPH0927103A JP H0927103 A JPH0927103 A JP H0927103A JP 17203795 A JP17203795 A JP 17203795A JP 17203795 A JP17203795 A JP 17203795A JP H0927103 A JPH0927103 A JP H0927103A
Authority
JP
Japan
Prior art keywords
magnetic
magnetoresistive element
magnetic sensor
buffer layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP17203795A
Other languages
Japanese (ja)
Inventor
Yoshihiko Seyama
喜彦 瀬山
Naomi Kojima
尚美 小嶋
Yutaka Shimizu
豊 清水
Makoto Iijima
誠 飯島
Masashige Sato
雅重 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP17203795A priority Critical patent/JPH0927103A/en
Publication of JPH0927103A publication Critical patent/JPH0927103A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a magnetic sensor for which a magneto-resistive effect is utilized and which is used as an information reading out means of a hard disk device and which is capable of efficiently converting the magnetic fields impressed from outside to electric signals even if the change in the intensity thereof is small. SOLUTION: This magnetic sensor is a magnetic sensor which detects the intensity of the magnetic fields by utilizing the magneto-resistive effect of a magneto-resistive element consisting of magnetic metallic thin films. The magneto-resistive element 1 is disposed between a buffer layer 6 consisting of metal which has the electric resistance higher than the electric resistance of the magnetic metallic thin films and deprives oxygen in the magnetic metallic thin films and a cover layer 7.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はハードディスク装置にお
いて情報読出手段として利用されている磁気抵抗効果を
利用した磁気センサに係り、特に磁性金属薄膜生成過程
において混在する不純物に起因して生じる磁気抵抗素子
の特性劣化を防止する手段に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic sensor utilizing a magnetoresistive effect used as information reading means in a hard disk drive, and more particularly to a magnetoresistive element caused by impurities mixed in a magnetic metal thin film forming process. The present invention relates to means for preventing characteristic deterioration of

【0002】磁気ディスクに情報を記録するハードディ
スク装置は記憶容量の大型化が比較的容易で情報処理速
度が速いことから、コンピュータを始めとし各種情報処
理装置において情報処理手順やデータを記憶させる手段
として広く利用されている。
Since a hard disk device for recording information on a magnetic disk has a relatively large storage capacity and has a high information processing speed, it is used as a means for storing information processing procedures and data in various information processing devices including a computer. Widely used.

【0003】かかるハードディスク装置において従来の
磁気ヘッドは情報の書き込みや読み出しを行うためのコ
イルを具えており、磁気ディスクへの情報の書き込みや
磁気ディスクからの情報の読み出しは磁気ヘッドが有す
るコイルを介し行っていた。
In such a hard disk device, a conventional magnetic head has a coil for writing and reading information. For writing information to and reading information from the magnetic disk, a coil included in the magnetic head is used. I was going.

【0004】近年、ハードディスク装置の大容量化が更
に進み高記録密度化と情報処理速度の高速化に対する要
望が高まっており、磁気ディスクからの情報の読み出し
は磁気センサを磁気ヘッドに組み込んで磁気を直接検知
する方式に変わりつつある。
In recent years, the demand for higher recording density and higher information processing speed has increased as the capacity of hard disk devices has further increased, and in order to read information from a magnetic disk, a magnetic sensor is incorporated into a magnetic head to apply magnetism. The method of direct detection is changing.

【0005】中でも磁性金属薄膜からなる磁気抵抗素子
の磁気抵抗効果を利用して印加された磁界の強さを検知
する磁気センサは、小型/軽量化が可能で量産性に優れ
ていることからハードディスク装置に最も適した磁気セ
ンサとして着目されている。
Among them, a magnetic sensor for detecting the strength of a magnetic field applied by utilizing the magnetoresistive effect of a magnetoresistive element made of a magnetic metal thin film can be downsized / lightweight and is excellent in mass productivity, and thus hard disk. Attention has been paid to the most suitable magnetic sensor for the device.

【0006】しかし、ハードディスク装置の高記録密度
化に伴って1ビット当たりの面積が減少し磁界の強さが
弱くなりつつある。そこで印加される磁界強度の変化が
小さくても効率良く電気信号に変換可能な磁気センサの
実現が要望されている。
However, with the increase in recording density of hard disk devices, the area per bit is decreasing and the strength of the magnetic field is becoming weaker. Therefore, there is a demand for realization of a magnetic sensor that can be efficiently converted into an electric signal even if the change in applied magnetic field strength is small.

【0007】[0007]

【従来の技術】図3は磁気抵抗効果を利用した磁気セン
サの原理説明図、図4は従来の磁気センサの層構成を示
す模式図である。
2. Description of the Related Art FIG. 3 is an explanatory view of the principle of a magnetic sensor utilizing the magnetoresistive effect, and FIG. 4 is a schematic view showing a layer structure of a conventional magnetic sensor.

【0008】磁気抵抗効果を利用した磁気センサは図3
に示す如くある種の磁性金属薄膜で形成された磁気抵抗
素子1を具えており、磁気抵抗素子1は磁気抵抗効果に
よって外部から印加された磁界に対応しその比抵抗が変
化するという性質を有する。
A magnetic sensor utilizing the magnetoresistive effect is shown in FIG.
The magnetoresistive element 1 formed of a magnetic metal thin film of some kind as shown in FIG. 2 has a property that the magnetoresistive element 1 changes its specific resistance in response to a magnetic field applied from the outside by a magnetoresistive effect. .

【0009】磁気抵抗素子1は例えば磁気ディスクが有
する記録トラック2と隙間を介して1側面が対向するよ
う配設されており、両端に接続された導体パターン11を
介し磁気抵抗素子1に供給された電流は記録トラック2
の面と平行な方向に流れる。
The magnetoresistive element 1 is arranged so that one side surface thereof faces the recording track 2 of the magnetic disk with a gap, and is supplied to the magnetoresistive element 1 through the conductor patterns 11 connected to both ends. Recording current 2
Flows in a direction parallel to the plane of.

【0010】また、磁気センサは磁気抵抗素子1と平行
に配設され隙間を介して対向する軟磁性体からなるバイ
アス層3を具え、磁気抵抗素子1に通電するとその電流
磁界によってバイアス層3が磁化され磁気抵抗素子1に
バイアス磁界が印加される。
Further, the magnetic sensor comprises a bias layer 3 made of a soft magnetic material which is arranged in parallel with the magnetoresistive element 1 and faces each other with a gap. When the magnetoresistive element 1 is energized, the bias layer 3 is formed by the current magnetic field. A bias magnetic field is applied to the magnetized magnetoresistive element 1.

【0011】一方、磁気的に情報が記録される記録トラ
ック2には数多くの磁区21が大きい矢印で示す進行方向
に配列されており、磁区21はそこに記録された情報の
“1”または“0”に対応してそれぞれ進行方向、また
は反対方向に磁化されている。
On the other hand, on the recording track 2 on which information is magnetically recorded, a large number of magnetic domains 21 are arranged in the traveling direction shown by a large arrow, and the magnetic domain 21 is "1" or "1" of the information recorded therein. It is magnetized in the traveling direction or the opposite direction corresponding to 0 ".

【0012】かかる磁区21による磁界の方向がバイアス
層3の磁界の方向と合致すると磁気抵抗素子1に大きい
磁界が印加され、磁区21による磁界の方向が反対の場合
はバイアス層3による磁界が弱められ磁気抵抗素子1に
印加される磁界が弱くなる。
When the direction of the magnetic field due to the magnetic domain 21 coincides with the direction of the magnetic field of the bias layer 3, a large magnetic field is applied to the magnetoresistive element 1, and when the direction of the magnetic field due to the magnetic domain 21 is opposite, the magnetic field due to the bias layer 3 is weakened. The magnetic field applied to the magnetoresistive element 1 is weakened.

【0013】その結果、磁気抵抗効果を有する磁気抵抗
素子1の抵抗は磁区21によって印加される磁界の方向に
対応して変化し、磁気抵抗素子1の導体パターン11間の
電位差を検出することで記録トラック2に記録された情
報を読み取ることができる。
As a result, the resistance of the magnetoresistive element 1 having the magnetoresistive effect changes in accordance with the direction of the magnetic field applied by the magnetic domain 21, and the potential difference between the conductor patterns 11 of the magnetoresistive element 1 is detected. The information recorded on the recording track 2 can be read.

【0014】このように印加磁界に応答し一斉に同一方
向に磁化させるには磁気抵抗素子1内に単一磁区構造を
形成する必要がある。そこで磁気抵抗素子1の磁化方向
を揃える強磁性体からなる単磁区化層12が磁気抵抗素子
1の両端に配設されている。
As described above, in order to simultaneously magnetize in the same direction in response to the applied magnetic field, it is necessary to form a single magnetic domain structure in the magnetoresistive element 1. Therefore, the single domain domainization layers 12 made of a ferromagnetic material for aligning the magnetization directions of the magnetoresistive element 1 are arranged at both ends of the magnetoresistive element 1.

【0015】従来の磁気センサは図4に示す如く例えば
アルミナ(Al2O3) からなる基板4上に積層し形成され
た、Taからなる2本の導体パターン11と、Fe−Mn合金か
らなる2本の単磁区化層12と、パーマロイ(Ni−Fe合
金) からなる磁気抵抗素子1とを有し、磁気抵抗素子1
上に更にTaからなるバッファ層13と、Ni−Fe─Rh合金か
らなるバイアス層3と、Al2O3 からなる保護膜層5とが
層状に形成されている。
As shown in FIG. 4, the conventional magnetic sensor is composed of two conductor patterns 11 made of Ta and Fe-Mn alloy, which are laminated on a substrate 4 made of alumina (Al 2 O 3 ). The magnetoresistive element 1 has two single domain layers 12 and a magnetoresistive element 1 made of permalloy (Ni—Fe alloy).
A buffer layer 13 made of Ta, a bias layer 3 made of a Ni—Fe—Rh alloy, and a protective film layer 5 made of Al 2 O 3 are further formed thereon in layers.

【0016】[0016]

【発明が解決しようとする課題】ハードディスク装置の
高記録密度化に伴って記録トラックの各磁区が矮小化し
て印加される磁界が弱くなりつつある。そこで印加され
る磁界強度の変化が小さくても効率良く電気信号に変換
できる磁気センサの実現が強く要望されている。
With the increase in recording density of hard disk devices, each magnetic domain of a recording track is becoming smaller and the applied magnetic field is becoming weaker. Therefore, there is a strong demand for realization of a magnetic sensor that can efficiently convert an electric signal even if the change in the applied magnetic field strength is small.

【0017】しかし、上記磁気センサを製造する工程に
おいて磁気抵抗素子の成膜手段として一般にスパッタ法
が用いられており、少量ではあるがチャンバ内の吸着物
やスパッタ用ターゲットに含有されている不純物が磁気
抵抗素子内に取り込まれる。
However, a sputtering method is generally used as a film forming means for a magnetoresistive element in the process of manufacturing the above-mentioned magnetic sensor, and a small amount of an adsorbed substance in the chamber or impurities contained in the sputtering target is generated. It is taken into the magnetoresistive element.

【0018】成膜工程において磁気抵抗素子の内部に不
純物が取り込まれることによって磁気センサの特性に種
々悪影響が生じるが、中でも磁気抵抗素子の内部に酸素
が介在すると磁気特性が劣化し磁気センサのSN比が低
下するという問題があった。
Impurities are taken into the magnetoresistive element in the film forming process, which has various adverse effects on the characteristics of the magnetic sensor. Above all, when oxygen is present inside the magnetoresistive element, the magnetic characteristics are deteriorated and the SN of the magnetic sensor is deteriorated. There was a problem that the ratio decreased.

【0019】本発明の目的は外部から印加される磁界強
度の変化が小さくても効率良く電気信号に変換可能な磁
気センサを提供することにある。
An object of the present invention is to provide a magnetic sensor that can efficiently convert an electric signal even if the change in the magnetic field strength applied from the outside is small.

【0020】[0020]

【課題を解決するための手段】図1は本発明になる磁気
センサの層構成を示す模式図である。なお全図を通し同
じ対象物は同一記号で表している。
FIG. 1 is a schematic view showing the layer structure of a magnetic sensor according to the present invention. Note that the same object is denoted by the same symbol throughout the drawings.

【0021】上記課題は磁性金属薄膜からなる磁気抵抗
素子の磁気抵抗効果を利用し外部から印加された磁界の
強さを検知する磁気センサであって、前記磁気抵抗素子
1は、電気抵抗が前記磁性金属薄膜より大きく該磁性金
属薄膜中の酸素を奪う金属からなるバッファ層6とカバ
ー層7との間に、配設されてなる本発明の磁気センサに
よって達成される。
The above problem is a magnetic sensor for detecting the strength of a magnetic field applied from the outside by utilizing the magnetoresistive effect of a magnetoresistive element made of a magnetic metal thin film. This is achieved by the magnetic sensor of the present invention which is disposed between the buffer layer 6 and the cover layer 7 which are made of a metal that deprives oxygen of the magnetic metal thin film to a greater extent than the magnetic metal thin film.

【0022】[0022]

【作用】図1において磁気抵抗素子の両面に磁性金属薄
膜の酸素を奪う金属からなるバッファ層とカバー層を配
設することで、成膜後の熱処理により磁気抵抗素子内の
酸素はバッファ層またはカバー層に移動し磁気抵抗素子
内の酸素量が低下する。
In FIG. 1, a buffer layer and a cover layer made of a metal that deprives the magnetic metal thin film of oxygen are provided on both surfaces of the magnetoresistive element, so that oxygen in the magnetoresistive element can be converted into oxygen in the buffer layer by heat treatment after film formation. The amount of oxygen in the magnetoresistive element decreases by moving to the cover layer.

【0023】その結果、磁気特性を低下させる磁気抵抗
素子内の酸素が低減されSN比の高い磁気センサの実現
が可能になる。即ち、外部から印加される磁界強度の変
化が小さくても効率良く電気信号に変換可能な磁気セン
サを実現することができる。
As a result, oxygen in the magnetoresistive element which deteriorates the magnetic characteristics is reduced, and a magnetic sensor having a high SN ratio can be realized. That is, it is possible to realize a magnetic sensor that can be efficiently converted into an electric signal even if the change in the magnetic field strength applied from the outside is small.

【0024】[0024]

【実施例】以下添付図により本発明の実施例について説
明する。なお、図2は本発明の他の実施例における層構
成を示す模式図である。
Embodiments of the present invention will be described below with reference to the accompanying drawings. Note that FIG. 2 is a schematic diagram showing a layer structure in another embodiment of the present invention.

【0025】本発明になる磁気センサは図1に示す如く
アルミナ基板4の上に積層し形成されたバッファ層6と
カバー層7とを有し、磁気抵抗素子1と2本の導体パタ
ーン11および単磁区化層12とはバッファ層6とカバー層
7との間に配設されている。
The magnetic sensor according to the present invention has a buffer layer 6 and a cover layer 7 which are laminated and formed on an alumina substrate 4 as shown in FIG. 1. The magnetoresistive element 1 and two conductor patterns 11 and The single domain layer 12 is provided between the buffer layer 6 and the cover layer 7.

【0026】なお、磁気抵抗素子1はNi−Fe合金、導体
パターン11は例えばTaやW、単磁区化層12はFe−Mn合金
を用いて形成され、バッファ層6とカバー層7にはNi−
Fe合金やFe−Mn合金等の磁性金属薄膜と比べて酸化しや
すい例えばTiを用いている。
The magnetoresistive element 1 is made of Ni--Fe alloy, the conductor pattern 11 is made of Ta or W, the single domain domain layer 12 is made of Fe--Mn alloy, and the buffer layer 6 and the cover layer 7 are made of Ni. −
For example, Ti which is more easily oxidized than a magnetic metal thin film such as Fe alloy or Fe-Mn alloy is used.

【0027】金属からなるバッファ層6やカバー層7を
両側に設けることで通常は磁気抵抗素子1の磁気抵抗効
果が損なわれるが、Ni−Fe合金の比抵抗約25μΩ・cmに
比べTiの比抵抗55μΩ・cmの方が遙に大きく磁気抵抗効
果が損なわれることはない。
Although the magnetoresistive effect of the magnetoresistive element 1 is usually impaired by providing the buffer layer 6 and the cover layer 7 made of metal on both sides, the ratio of Ti is higher than that of the specific resistance of Ni—Fe alloy of about 25 μΩ · cm. The resistance of 55 μΩ · cm is much larger and the magnetoresistive effect is not impaired.

【0028】本発明の効果を確認するためアルミナ基板
の代わりに膜厚が1500ÅのAl2O3 膜が表面に生成された
ガラス基板を用い、Al2O3 膜上に膜厚が70ÅのTi膜から
なるバッファ層と、膜厚が 200ÅのNi−Fe合金膜からな
る磁気抵抗素子と、膜厚が70ÅのTi膜からなるカバー層
とを成膜した。
[0028] Alternatively thickness using a glass substrate having the Al 2 O 3 film was formed on the surface of 1500Å on the alumina substrate for confirming the effect of the present invention, the film thickness on the Al 2 O 3 film is 70 Å Ti A buffer layer made of a film, a magnetoresistive element made of a Ni-Fe alloy film having a film thickness of 200Å, and a cover layer made of a Ti film having a film thickness of 70Å were formed.

【0029】また、特性の比較対象品としてガラス基板
上にバッファ層とカバー層とを除いたAl2O3 膜と磁気抵
抗素子とを成膜し、両者を 300℃の真空中に1時間放置
して熱処理を施した後、B−Hトレーサを利用しそれぞ
れ磁気特性の測定を行った。
As a product for comparison of characteristics, an Al 2 O 3 film excluding a buffer layer and a cover layer and a magnetoresistive element were formed on a glass substrate, and both were left in a vacuum at 300 ° C. for 1 hour. After heat treatment, the BH tracer was used to measure the magnetic properties.

【0030】表1における本発明は前者の層構成を有す
るものの測定結果、従来品は後者の層構成を有するもの
の測定結果である。なお、磁気抵抗素子の電気抵抗は4
端子法で測定し抵抗変化率は次式により算出した(式
中、ρ0 は保磁力が0エルステッドの時の抵抗値、ρ20
は保磁力が20エルステッドの時の抵抗値を示す)。
The present invention in Table 1 shows the measurement results of the former having the layer constitution, and the conventional product shows the measurement results of the latter having the layer constitution. The electric resistance of the magnetoresistive element is 4
The resistance change rate was measured by the terminal method and calculated by the following equation (where ρ 0 is the resistance value when the coercive force is 0 Oersted, ρ 20
Indicates the resistance value when the coercive force is 20 Oersted).

【0031】 抵抗変化率(%)=(ρ0 −ρ20)/ρ20× 100Resistance change rate (%) = (ρ 0 −ρ 20 ) / ρ 20 × 100

【0032】[0032]

【表1】 [Table 1]

【0033】表1から膜厚が70ÅのTi膜をバッファ層お
よびカバー層として付加することにより磁気抵抗素子の
磁気特性が向上し、同時に抵抗変化率も増大して磁気抵
抗素子の磁気抵抗効果を利用した磁気センサにおけるS
N比の向上は明らかである。
From Table 1, by adding a Ti film having a film thickness of 70Å as a buffer layer and a cover layer, the magnetic characteristics of the magnetoresistive element are improved, and at the same time, the rate of change in resistance is increased to improve the magnetoresistive effect of the magnetoresistive element. S in the magnetic sensor used
The improvement of the N ratio is clear.

【0034】なお、バッファ層とカバー層の膜厚最適値
は成膜時の条件変化、即ちNi−Fe合金膜内の酸素量の変
化により異なるが、実験によればバッファ層とカバー層
の膜厚が共に50Å未満の場合には酸素吸着効果が小さく
磁気特性の向上は望めない。
The optimum film thicknesses of the buffer layer and the cover layer differ depending on the change of the conditions during film formation, that is, the change of the oxygen content in the Ni-Fe alloy film. When both thicknesses are less than 50Å, the oxygen adsorption effect is small and improvement in magnetic properties cannot be expected.

【0035】ただし、それぞれの層の膜厚が50Å以上あ
る必要がなく、少なくともバッファ層またはカバー層の
いずれか一方の膜厚が50Å以上あれば、他の一方の膜厚
が0であっても後述の実験例でも明らかな如く磁気特性
を向上させることができる。
However, it is not necessary that the film thickness of each layer is 50 Å or more. If at least one of the buffer layer and the cover layer has a film thickness of 50 Å or more, even if the other film thickness is 0, The magnetic characteristics can be improved as will be apparent from the experimental examples described later.

【0036】また、バッファ層とカバー層との膜厚の合
計値、またはいずれか一方の膜厚が200Åを超えた場合
は抵抗値が減少し、バッファ層やカバー層を介して流れ
る電流が増大するため磁気抵抗素子の抵抗変化率を減少
させるという問題が生じる。
Further, when the total value of the film thicknesses of the buffer layer and the cover layer, or one of the film thicknesses exceeds 200Å, the resistance value decreases and the current flowing through the buffer layer and the cover layer increases. Therefore, there arises a problem that the resistance change rate of the magnetoresistive element is reduced.

【0037】即ち、少なくともバッファ層またはカバー
層のいずれか一方が50Å以上の膜厚を有し、かつバッフ
ァ層とカバー層の膜厚合計値が50〜 200Åの範囲にある
場合に、磁気抵抗素子の磁気特性を向上させ抵抗変化率
を増大させることができる。
That is, when at least one of the buffer layer and the cover layer has a film thickness of 50Å or more, and the total film thickness of the buffer layer and the cover layer is in the range of 50 to 200Å, the magnetoresistive element is formed. It is possible to improve the magnetic characteristics of and improve the rate of resistance change.

【0038】更に、本発明の効果を確認するため、バッ
ファ層とカバー層の材質をTi膜からMg膜に置き換えて同
様の実験を行った。その結果、Ti膜をMg膜に置き換えて
も同様に磁気抵抗素子の磁気特性が向上し抵抗変化率が
増大することを確認できた。
Further, in order to confirm the effect of the present invention, the same experiment was conducted by replacing the material of the buffer layer and the cover layer with the Ti film from the Mg film. As a result, it was confirmed that even if the Ti film was replaced with the Mg film, the magnetic characteristics of the magnetoresistive element were similarly improved and the resistance change rate was increased.

【0039】ただし、Mg膜の場合はTi膜と異なりバッフ
ァ層とカバー層の一方が50Å以上の膜厚を有し、かつバ
ッファ層とカバー層の膜厚合計が50〜 100Åの範囲にあ
るとき、磁気抵抗素子の磁気特性を向上させ抵抗変化率
を増大させることができる。
However, the Mg film is different from the Ti film when one of the buffer layer and the cover layer has a film thickness of 50 Å or more and the total film thickness of the buffer layer and the cover layer is in the range of 50 to 100 Å. The magnetic characteristics of the magnetoresistive element can be improved and the rate of resistance change can be increased.

【0040】なお、バッファ層とカバー層の材質はTiや
Mg以外に磁性金属より電気抵抗が大きく酸化しやすい金
属であればよく、バッファ層とカバー層とがそれぞれ異
なる金属であっても前記条件を充たしていれば同等の効
果を得ることも可能である。
The material of the buffer layer and the cover layer is Ti or
Any metal other than Mg, which has a larger electric resistance and is more easily oxidized than a magnetic metal, can be obtained even if the buffer layer and the cover layer are different metals, provided that the above conditions are satisfied. .

【0041】本発明になる磁気センサの他の実施例は図
2に示す如くアルミナ基板4の上に形成されたバッファ
層6を具えており、アルミナ基板4とバッファ層6との
間に磁気抵抗素子1と2本の導体パターン11および単磁
区化層12が形成されている。
Another embodiment of the magnetic sensor according to the present invention comprises a buffer layer 6 formed on an alumina substrate 4 as shown in FIG. 2, and a magnetic resistance is provided between the alumina substrate 4 and the buffer layer 6. The element 1, two conductor patterns 11 and a single magnetic domain layer 12 are formed.

【0042】前記実施例と同様に磁気抵抗素子1はNi−
Fe合金、導体パターン11はTaやW、単磁区化層12はFe−
Mn合金で形成され、バッファ層6にはNi−Fe合金やFe−
Mn合金等の磁性金属薄膜より酸化しやすい金属、例えば
Tiの薄膜が用いられている。
The magnetoresistive element 1 is made of Ni--
Fe alloy, conductor pattern 11 is Ta or W, and single domain domain layer 12 is Fe-
The buffer layer 6 is made of Mn alloy, and the buffer layer 6 is made of Ni-Fe alloy or Fe-
Metals that are more easily oxidized than magnetic metal thin films such as Mn alloys, for example
A thin film of Ti is used.

【0043】前記実施例のときと同様に本実施例の効果
を確認するためガラス基板上に膜厚が1500ÅのAl2O3
を成膜したあと、Al2O3 膜上に膜厚が 100ÅのTi膜から
なるバッファ層と膜厚が 200ÅのNi−Fe合金膜からなる
磁気抵抗素子とを成膜した。
[0043] After the film thickness on a glass substrate in order to confirm the effect of the present embodiment as in the case of the embodiment was formed an Al 2 O 3 film of 1500 Å, film thickness on the Al 2 O 3 film A buffer layer made of a 100 Å Ti film and a magnetoresistive element made of a Ni-Fe alloy film having a film thickness of 200 Å were formed.

【0044】また、特性の比較対象品としてガラス基板
上にTi膜からなるバッファ層を除いたAl2O3 膜と磁気抵
抗素子とを成膜し、両者を 300℃の真空中に1時間放置
して熱処理を施した後、B−Hトレーサを利用しそれぞ
れ磁気特性の測定を行った。
As a product for comparison of characteristics, an Al 2 O 3 film and a magnetoresistive element excluding a Ti film buffer layer were formed on a glass substrate, and both were left in a vacuum at 300 ° C. for 1 hour. After heat treatment, the BH tracer was used to measure the magnetic properties.

【0045】表2における本発明は前者の層構成を有す
るものの測定結果、従来品は後者の層構成を有するもの
の測定結果である。
The present invention in Table 2 shows the measurement results of the former having the layer constitution, and the conventional product shows the measurement results of the latter having the layer constitution.

【0046】[0046]

【表2】 [Table 2]

【0047】表2から膜厚が 100ÅのTi膜をバッファ層
として付加することにより従来の磁気抵抗素子と比べて
磁気特性が向上し、同時に抵抗変化率も増大して磁気抵
抗素子の磁気抵抗効果を利用した磁気センサにおけるS
N比の向上は明らかである。
From Table 2, by adding a Ti film having a film thickness of 100Å as a buffer layer, the magnetic characteristics are improved as compared with the conventional magnetoresistive element, and at the same time, the rate of change in resistance is increased to increase the magnetoresistive effect of the magnetoresistive element. In a magnetic sensor using
The improvement of the N ratio is clear.

【0048】なお、バッファ層の膜厚最適値は、磁気抵
抗素子を成膜する時の条件変化によって異なるが50Å未
満では磁気特性の向上は望めず、 200Åを超えた場合は
バッファ層を流れる電流が増大し磁気抵抗素子の抵抗変
化率を減少させると言う問題がある。即ち、バッファ層
の膜厚は50〜 200Åの範囲にある場合に磁気抵抗素子の
磁気特性を向上させ抵抗変化率を増大させることができ
る。
The optimum value of the film thickness of the buffer layer varies depending on the change in conditions when the magnetoresistive element is formed, but if it is less than 50 Å, the magnetic characteristics cannot be improved, and if it exceeds 200 Å, the current flowing through the buffer layer is increased. Is increased and the resistance change rate of the magnetoresistive element is decreased. That is, when the thickness of the buffer layer is in the range of 50 to 200Å, the magnetic characteristics of the magnetoresistive element can be improved and the rate of resistance change can be increased.

【0049】本発明の他の実施例の効果を確認するため
バッファ層の材質をTi膜からMg膜に置き換え同様の実験
を行った。その結果、Ti膜をMg膜に置き換えても同様に
磁気抵抗素子の磁気特性が向上し抵抗変化率が増大す
る。ただし、Mg膜の場合はTi膜の場合とは異なり、バッ
ファ層の膜厚が50〜 100Åのときに磁気抵抗素子の磁気
特性を向上させ抵抗変化率を増大させることができる。
In order to confirm the effect of another embodiment of the present invention, the same experiment was conducted by changing the material of the buffer layer from the Ti film to the Mg film. As a result, even if the Ti film is replaced with the Mg film, the magnetic characteristics of the magnetoresistive element are similarly improved, and the resistance change rate is increased. However, unlike the case of the Ti film, the Mg film can improve the magnetic characteristics of the magnetoresistive element and increase the resistance change rate when the thickness of the buffer layer is 50 to 100 Å.

【0050】このように磁性金属薄膜中の酸素を奪う金
属からなるバッファ層とカバー層を磁気抵抗素子の両面
に配設することで、成膜後熱処理を施すと磁気抵抗素子
内の酸素がバッファ層またはカバー層に移動して磁気抵
抗素子内の酸素は低下する。
By thus disposing the buffer layer and the cover layer made of a metal that deprives oxygen in the magnetic metal thin film on both sides of the magnetoresistive element, oxygen in the magnetoresistive element is buffered by heat treatment after film formation. The oxygen in the magnetoresistive element is lowered by moving to the layer or the cover layer.

【0051】その結果、磁気抵抗素子内の酸素が低減さ
れて磁気特性が改善されSN比の高い磁気センサの実現
が可能になる。即ち、外部から印加される磁界強度の変
化が小さくても効率良く電気信号に変換可能な磁気セン
サを実現することができる。
As a result, oxygen in the magnetoresistive element is reduced, magnetic characteristics are improved, and a magnetic sensor having a high SN ratio can be realized. That is, it is possible to realize a magnetic sensor that can be efficiently converted into an electric signal even if the change in the magnetic field strength applied from the outside is small.

【0052】[0052]

【発明の効果】上述の如く本発明によれば外部から印加
される磁界強度の変化が小さくても、効率良く電気信号
に変換可能な磁気センサを提供することができる。
As described above, according to the present invention, it is possible to provide a magnetic sensor which can be efficiently converted into an electric signal even if the change in the magnetic field strength applied from the outside is small.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明になる磁気センサの層構成を示す模式
図である。
FIG. 1 is a schematic view showing a layer structure of a magnetic sensor according to the present invention.

【図2】 本発明の他の実施例における層構成を示す模
式図である。
FIG. 2 is a schematic view showing a layer structure in another example of the present invention.

【図3】 磁気抵抗効果を利用した磁気センサの原理説
明図である。
FIG. 3 is an explanatory view of the principle of a magnetic sensor utilizing the magnetoresistive effect.

【図4】 従来の磁気センサの層構成を示す模式図であ
る。
FIG. 4 is a schematic diagram showing a layer structure of a conventional magnetic sensor.

【符号の説明】[Explanation of symbols]

1 磁気抵抗素子 3 バイアス層 4 基板 5 保護膜層 6 バッファ層 7 カバー層 11 導体パターン 12 単磁区化層 1 Magnetoresistive Element 3 Bias Layer 4 Substrate 5 Protective Layer 6 Buffer Layer 7 Cover Layer 11 Conductor Pattern 12 Single Domain Domain Layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 清水 豊 神奈川県川崎市中原区上小田中1015番地 富士通株式会社内 (72)発明者 飯島 誠 神奈川県川崎市中原区上小田中1015番地 富士通株式会社内 (72)発明者 佐藤 雅重 神奈川県川崎市中原区上小田中1015番地 富士通株式会社内 ─────────────────────────────────────────────────── --- Continuation of the front page (72) Yutaka Shimizu Inventor Yutaka Shimizu 1015 Kamiodanaka, Nakahara-ku, Kawasaki City, Kanagawa Prefecture, Fujitsu Limited (72) Inventor, Makoto Iijima 1015 Kamedotachu, Nakahara-ku, Kawasaki City, Kanagawa Prefecture, Fujitsu Limited ( 72) Inventor Masashige Sato 1015 Kamiodanaka, Nakahara-ku, Kawasaki City, Kanagawa Prefecture, Fujitsu Limited

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 磁性金属薄膜からなる磁気抵抗素子の磁
気抵抗効果を利用し外部から印加された磁界の強さを検
知する磁気センサであって、 前記磁気抵抗素子は、電気抵抗が前記磁性金属薄膜より
大きく該磁性金属薄膜中の酸素を奪う金属からなるバッ
ファ層とカバー層との間に、配設されてなることを特徴
とする磁気センサ。
1. A magnetic sensor for detecting the strength of a magnetic field applied from the outside by utilizing the magnetoresistive effect of a magnetoresistive element made of a magnetic metal thin film, wherein the magnetoresistive element has an electric resistance of the magnetic metal. A magnetic sensor, which is disposed between a cover layer and a buffer layer made of a metal that deprives oxygen of the magnetic metal thin film to a greater extent than the thin film.
【請求項2】 前記バッファ層とカバー層とがTiからな
り、該バッファ層または該カバー層の少なくとも一方が
50Å以上の膜厚を有し、且つ該バッファ層と該カバー層
との膜厚合計が50〜 200Åの範囲にある請求項1記載の
磁気センサ。
2. The buffer layer and the cover layer are made of Ti, and at least one of the buffer layer and the cover layer is
The magnetic sensor according to claim 1, wherein the magnetic sensor has a film thickness of 50 Å or more, and a total film thickness of the buffer layer and the cover layer is in a range of 50 to 200 Å.
【請求項3】 前記バッファ層とカバー層とがMgからな
り、該バッファ層または該カバー層の少なくとも一方が
50Å以上の膜厚を有し、且つ該バッファ層と該カバー層
との膜厚合計が50〜 100Åの範囲にある請求項1記載の
磁気センサ。
3. The buffer layer and the cover layer are made of Mg, and at least one of the buffer layer and the cover layer is
The magnetic sensor according to claim 1, which has a film thickness of 50 Å or more, and a total film thickness of the buffer layer and the cover layer is in a range of 50 to 100 Å.
【請求項4】 前記磁気センサにおいて、カバー層が無
く前記磁気抵抗素子は、電気抵抗が前記磁性金属薄膜よ
り大きく該磁性金属薄膜中の酸素を奪う金属からなるバ
ッファに、添設されてなることを特徴とする磁気セン
サ。
4. The magnetic sensor according to claim 1, wherein the magnetoresistive element is provided without a cover layer, and the magnetoresistive element is attached to a buffer made of a metal whose electric resistance is larger than that of the magnetic metal thin film and deprives oxygen in the magnetic metal thin film. Magnetic sensor characterized by.
【請求項5】 前記バッファ層が50〜 200Åの膜厚を有
するTi、若しくは50〜 100Åの膜厚を有するMgからなる
請求項4記載の磁気センサ。
5. The magnetic sensor according to claim 4, wherein the buffer layer is made of Ti having a film thickness of 50 to 200Å or Mg having a film thickness of 50 to 100Å.
JP17203795A 1995-07-07 1995-07-07 Magnetic sensor Withdrawn JPH0927103A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17203795A JPH0927103A (en) 1995-07-07 1995-07-07 Magnetic sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17203795A JPH0927103A (en) 1995-07-07 1995-07-07 Magnetic sensor

Publications (1)

Publication Number Publication Date
JPH0927103A true JPH0927103A (en) 1997-01-28

Family

ID=15934363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17203795A Withdrawn JPH0927103A (en) 1995-07-07 1995-07-07 Magnetic sensor

Country Status (1)

Country Link
JP (1) JPH0927103A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6867951B1 (en) 2000-07-12 2005-03-15 Hitachi Global Storage Technologies Netherlands B.V. Spin valve magnetic properties with oxygen-rich NiO underlayer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6867951B1 (en) 2000-07-12 2005-03-15 Hitachi Global Storage Technologies Netherlands B.V. Spin valve magnetic properties with oxygen-rich NiO underlayer

Similar Documents

Publication Publication Date Title
US5898548A (en) Shielded magnetic tunnel junction magnetoresistive read head
JP3022023B2 (en) Magnetic recording / reproducing device
US5688380A (en) Method of producing giant magnetoresistive material film and magnetic head
CN1167050C (en) Magnetic tunnel junction magnetoresistive read head with sensing layer as flux guide
US6023395A (en) Magnetic tunnel junction magnetoresistive sensor with in-stack biasing
KR100261385B1 (en) Spin valve magnetoresistive sensor with antiparallel pinned layer and improved bias layer, and magnetic recording system using the sensor
JP3188212B2 (en) Thin film magnetic head
JP3574186B2 (en) Magnetoresistance effect element
JP2004103204A (en) Perpendicular writer with magnetically soft and stable high magnetic moment main pole
US6331773B1 (en) Pinned synthetic anti-ferromagnet with oxidation protection layer
JPH06244028A (en) Magnetic laminar structure and manufacture thereof
US7957109B2 (en) Magnetic head of magnetoresistance effect type with high resistance to external stress
US5872690A (en) Magnetic transducer and magnetic recording device utilizing material in which undirectional anisotropy can be formed
JPH07220246A (en) Magneto-resistance effect film, magneto-resistance effect type head and magnetic recording and reproducing device
JPH0927103A (en) Magnetic sensor
JP3384494B2 (en) Magnetoresistive material and magnetic field sensor using the same
JPH0774022A (en) Multilayer magnetoresistance-effect film and magnetic head
JP3840826B2 (en) Magnetoresistive sensor and method for manufacturing magnetic head provided with the sensor
JP2699959B2 (en) Magnetoresistance effect element
JPH05258248A (en) Multilayer magnetoresistance effect film, magnetic head, and magnetic recording and reproducing device
JP2003006818A (en) Magnetic-reluctance reproducing head with two ferromagnetic films bound to each other in nonpararrel
JP3008910B2 (en) Magnetoresistive element, magnetoresistive head and magnetic recording / reproducing apparatus using the same
JPH09251619A (en) Magnetiresistive magnetic head and magnetic recording and reproducing device
JPH07320235A (en) Magneto-resistance effect type head and its production
JP3204871B2 (en) Magnetoresistive head

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20021001