JPH0927101A - Magnetic memory method and magnetic memory device - Google Patents

Magnetic memory method and magnetic memory device

Info

Publication number
JPH0927101A
JPH0927101A JP17235995A JP17235995A JPH0927101A JP H0927101 A JPH0927101 A JP H0927101A JP 17235995 A JP17235995 A JP 17235995A JP 17235995 A JP17235995 A JP 17235995A JP H0927101 A JPH0927101 A JP H0927101A
Authority
JP
Japan
Prior art keywords
recording
magnetic
time
medium
head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17235995A
Other languages
Japanese (ja)
Inventor
Hiroshi Tomiyama
大士 富山
Mikio Suzuki
幹夫 鈴木
公史 ▲高▼野
Koji Takano
Yoshihiro Shiroishi
芳博 城石
Reijirou Tsuchiya
鈴二朗 土屋
Shinya Matsuoka
伸也 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP17235995A priority Critical patent/JPH0927101A/en
Publication of JPH0927101A publication Critical patent/JPH0927101A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To attain high-density and high-frequency recording without changing a recording head material and specifically reducing the distance between a magnetic head and a magnetic recording medium and without deteriorating the overwriting characteristic of the magnetic recording medium, the magnetic head and a recording and reproducing amplifier. SOLUTION: The design of a magnetic memory device is executed in such a manner that the various parameters determined by the magnetic head, the magnetic recording medium, recording amplifier, etc., satisfy the following equation 1, equation 2 or equation 3: v×(tr +tf )/2<=L (1) v×(tr +tf )<=2π×Br×tmag / Hc (2) fw <=1/(tr +tf ) (3). In the equations, (v) is the relative speed (m/sec) between the head and the medium; tr is the rising time (sec) of the recording current, tf is the falling (sec) of the recording current; L is the magnetization inversion width on the medium; Br is the residual magnetic flux density (Gauss) of the magnetic recording medium; tmag is the magnetic film thickness (m) of the magnetic recording medium; Hc is the coercive force (Oe) of the magnetic recording medium; fw is a recording and reproducing frequency (Hz).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁気ディスク装置やV
TR等の磁気記憶装置に関し、特に1平方インチ当たり
2ギガビット以上の記録密度を有し、磁気ヘッドと磁気
記録媒体間の距離を特別に縮小することなく高周波記録
時の上書き特性を十分に確保し、再生分解能を向上させ
て、その結果、高密度、高周波記録を達成することので
きる磁気記憶装置に関する。
BACKGROUND OF THE INVENTION The present invention relates to a magnetic disk device and a V disk.
Regarding a magnetic storage device such as a TR, it has a recording density of 2 gigabits or more per square inch, and sufficiently secures overwrite characteristics during high frequency recording without particularly reducing the distance between the magnetic head and the magnetic recording medium. The present invention relates to a magnetic storage device capable of improving reproduction resolution and, as a result, achieving high density and high frequency recording.

【0002】[0002]

【従来の技術】磁気記憶装置において飽和磁気記録を行
う上で、上書き特性(以下、OW特性と略す)の向上は
重要である。OW特性は、次に示す方法で測定される。
まず、ある特定の周波数(以下1F周波数と称する)で
データを記録し、その基本波成分の信号パワーN'を測
定する。次に異なる周波数(以下2F周波数と称する)
でデータを上書きし、1F周波数における消え残り信号
のパワーをNを測定する。OW特性は、この信号パワー
N,N'により次式のように定義される。
2. Description of the Related Art To perform saturated magnetic recording in a magnetic storage device, it is important to improve overwrite characteristics (hereinafter abbreviated as OW characteristics). The OW characteristic is measured by the following method.
First, data is recorded at a specific frequency (hereinafter referred to as 1F frequency), and the signal power N ′ of the fundamental wave component is measured. Next different frequency (hereinafter referred to as 2F frequency)
The data is overwritten with and the power of the remaining signal at the 1F frequency is measured as N. The OW characteristic is defined by the signal powers N and N ′ as in the following equation.

【0003】 OW(N'/N)[dB]≡20Log(N'/N) 従来、薄膜磁気記録媒体のOW特性は、記録ヘッドの発
生磁界と媒体内部の磁化分布により発生する内部磁界に
より決定されるといわれてきた(例えば、伊藤、田河、
中村:電気情報通信学会論文誌 C-II, Vol.J75-C-II, N
o.12, p.762, 1992)。このモデルにより、かなり定量
的にOW特性を解析できるようになってきた。
OW (N ′ / N) [dB] ≡20Log (N ′ / N) Conventionally, the OW characteristic of a thin film magnetic recording medium is determined by the magnetic field generated by the recording head and the internal magnetic field generated by the magnetization distribution inside the medium. It has been said that it will be done (for example, Ito, Tagawa,
Nakamura: IEICE Transactions C-II, Vol.J75-C-II, N
o.12, p.762, 1992). This model has made it possible to analyze the OW characteristics fairly quantitatively.

【0004】[0004]

【発明が解決しようとする課題】ところで、磁気記憶装
置に対する高記録密度化の要求が近年ますます高まって
いる。線記録密度の向上には媒体の保磁力を高める必要
があり、十分なOW特性を確保するためにはヘッドの構
造や材料の変更及び起磁力の増加が必要である。起磁力
を増加させるには記録電流値(以下、Iwと略す)を大
きくするか、または記録ヘッドの巻数を増加させる必要
がある。Iwの設定には記録アンプの設計が大きく関係
しており、そこでIwの上限値が決定される。自己録再
型の誘導型磁気ヘッドの設計では再生出力値を確保する
ためにヘッドのコイル巻数を増加させる必要があるが、
録再分離型磁気ヘッドの場合は記録再生回路(IC)で
許容される記録電流値と必要起磁力から記録ヘッドの巻
数を決定してよい。
By the way, in recent years, the demand for higher recording density of magnetic storage devices has been increasing. In order to improve the linear recording density, it is necessary to increase the coercive force of the medium, and in order to secure sufficient OW characteristics, it is necessary to change the head structure and material and increase the magnetomotive force. To increase the magnetomotive force, it is necessary to increase the recording current value (hereinafter abbreviated as I w ) or increase the number of turns of the recording head. The setting of the I w are related largely to design a recording amplifier, where the upper limit of I w is determined. In designing a self-recording / reproducing inductive magnetic head, it is necessary to increase the number of coil windings of the head in order to secure a reproduction output value.
In the case of a recording / reproducing separated type magnetic head, the number of turns of the recording head may be determined from the recording current value allowed by the recording / reproducing circuit (IC) and the required magnetomotive force.

【0005】また、高記録密度化の一方で、高速転送化
のために高周波記録が強く望まれている。これには、I
wの立上り立下がり時間(それぞれtr,tfと略す)を
小さくする必要があり、記録アンプにつながる負荷を小
さくする意味で記録ヘッドのインダクタンスを小さくす
ることと、記録アンプ自身の電流スイッチング特性を早
くすることが必要である。記録ヘッドのインダクタンス
を小さくするためにヘッドのコイル巻数を減少させると
起磁力が減少するので、十分なOW特性を確保するため
には、記録ヘッド磁極にCoNiFeやFeN等の高飽
和磁束密度材料を採用したり、ヘッド浮上量を小さくす
る必要がある。従来、ヘッド及び記録アンプのみならず
媒体をも考慮して、tr,tfとOW特性との関係を定量
的に検討した例はなかった。そのため、磁気記憶装置の
設計に際して、高周波領域で十分なOW特性を確保し、
S/N比の良い記録再生特性を得るために記録再生系に
要求される条件が明確ではなかった。
In addition to high recording density, high frequency recording is strongly desired for high speed transfer. This includes I
w rise and fall time of the (each t r, abbreviated as t f) the need to reduce, and to reduce the inductance of the recording head in the sense to reduce the load connected to the recording amplifier, current switching characteristics of the recording amplifier itself It is necessary to speed up. When the number of coil windings of the head is decreased to reduce the inductance of the recording head, the magnetomotive force decreases. Therefore, in order to ensure sufficient OW characteristics, a high saturation magnetic flux density material such as CoNiFe or FeN is used for the recording head magnetic pole. It is necessary to adopt it or reduce the flying height of the head. Conventionally, in consideration of the medium as well as the head and the recording amplifier only, t r, examples were quantitatively examined the relationship between t f and the OW characteristic was not. Therefore, when designing the magnetic storage device, ensure sufficient OW characteristics in the high frequency region,
The conditions required for the recording / reproducing system to obtain the recording / reproducing characteristics with a good S / N ratio were not clear.

【0006】本発明は、このような背景のもとに、磁気
ディスク装置やVTR等の磁気記憶装置に用いられる磁
気記録媒体、磁気ヘッド及び記録再生アンプに関して、
記録ヘッド材料を変更したり磁気ヘッドと磁気記録媒体
間の距離を特別に縮小することなく、OW特性を劣化さ
せずに高密度、高周波記録を達成するための方式を提供
することを目的とする。
Against this background, the present invention relates to a magnetic recording medium, a magnetic head and a recording / reproducing amplifier used in a magnetic storage device such as a magnetic disk device or a VTR.
An object of the present invention is to provide a method for achieving high-density and high-frequency recording without changing the recording head material or reducing the distance between the magnetic head and the magnetic recording medium, without deteriorating the OW characteristics. .

【0007】[0007]

【課題を解決するための手段】本発明では、上記目的を
達成するために、磁気ヘッド、磁気記録媒体、記録再生
IC等によって決定される諸パラメータに関して、次の
(1)式、(2)式又は(3)式を満たすように磁気記
憶装置の設計を行う。 v×(tr+tf)/2≦L (1) v×(tr+tf)/2≦5×Br×tmag/Hc (2) fw≦1/(tr+tf) (3) ただし、v:ヘッド媒体間相対速度(m/sec) tr:記録電流立上り時間(sec) tf:記録電流立下り時間(sec) Br:磁気記録媒体の残留磁束密度(Gauss) tmag:磁気記録媒体の磁性膜厚(m) Hc:磁気記録媒体の保磁力(Oe) fw:記録再生周波数(Hz) ここで、記録電流立上り時間trは記録電流が増加しな
がらスイッチングする時に記録電流反転量の10%及び
90%を横切る間の時間をいい、記録電流立下り時間t
fは記録電流が減少しながらスイッチングする時に記録
電流反転量の10%及び90%を横切る間の時間をい
う。
In order to achieve the above object, the present invention relates to various parameters determined by a magnetic head, a magnetic recording medium, a recording / reproducing IC, etc., by the following expressions (1) and (2). The magnetic storage device is designed so as to satisfy the expression (3). v × (t r + t f ) / 2 ≦ L (1) v × (t r + t f) / 2 ≦ 5 × Br × t mag / Hc (2) f w ≦ 1 / (t r + t f) (3 ) However, v: between the head medium relative velocity (m / sec) t r: the recording current rise time (sec) t f: recording current fall time (sec) Br: residual magnetic flux density of the magnetic recording medium (Gauss) t mag : magnetic thickness of the magnetic recording medium (m) Hc: magnetic recording medium coercivity (Oe) f w: where recording frequency (Hz), the recording current rise time t r when the recording current is switched while increasing It is the time between 10% and 90% of the recording current reversal amount, which is the recording current fall time t.
f is the time taken to cross 10% and 90% of the recording current reversal amount when switching while the recording current is decreasing.

【0008】[0008]

【作用】前記条件(1),(2)又は(3)を満足する
ように装置設計を行うことにより、記録ヘッド材料を変
更したり、磁気ヘッドと磁気記録媒体間の距離を特別に
縮小することなく、OW特性を劣化させずに高密度、高
周波記録を達成することができる。その理由を以下に示
す。
By designing the device so as to satisfy the above condition (1), (2) or (3), the material of the recording head is changed or the distance between the magnetic head and the magnetic recording medium is particularly reduced. It is possible to achieve high-density, high-frequency recording without degrading the OW characteristics. The reason is shown below.

【0009】理想的な条件で記録を行った時の磁化遷移
幅Loは、ウイリアムズ−コムストックモデル(M. L.
Willaims et al., A. I. P. Conf. Proc., 5, 7387, 19
72)によると、πaというパラメータによって記述され
る(Lo≒πa)。ここでaは、Mrを媒体残留磁化、
Hcを媒体保磁力、S*を媒体角形比、glを記録ヘッド
ギャップ長、hmをヘッド媒体間スペーシング、tを媒
体磁性膜厚として、下式によって表される。
The magnetization transition width Lo at the time of recording under ideal conditions is the Williams-Comstock model (ML
Willaims et al., AIP Conf. Proc., 5, 7387, 19
According to 72), it is described by the parameter πa (Lo≈πa). Where a is M r the medium residual magnetization,
Hc the media coercivity, S * medium squareness ratio, g l a recording head gap length, the head medium between the spacing of h m, a magnetic medium film thickness t, is expressed by the following equation.

【0010】a=a1/2r+[(a1/2r)2+2πχ
ta1/r]1/21/2r=y(1−S*)/πQ+[{y(1−S*
/πQ}2+(2Mrt/Hc)(2y/Qr)]1/2 y=[hm(hm+t)]1/2 Q=0.866−0.216exp(−5y/3gl) r=1−χ(1−S*)Hc/Mr χ=Mr/4Hc 記録電流波形1が図1(a)に示すようなスイッチング
特性を有し、ウイリアムズ−コムストックの磁化遷移長
Lo(≒πa)に比べて記録電流反転距離(t r×v)
あるいは(tf×v)が小さい時には、図1(b)に示
すように、実際に磁気記録媒体2上に形成される磁化遷
移領域4の幅LはLoにほぼ等しくなる。図1(b)中
の矢印3は記録磁化の向きを表す。しかし、逆にπaに
比べて記録電流反転距離(tr×v)あるいは(tf×
v)が大きい時には、図2(a),(b)に示すよう
に、磁気記録媒体2上に形成される磁化遷移領域4の幅
Lは(t r×v)あるいは(tf×v)にほぼ等しくな
る。磁化遷移部は記録電流反転部に対応しており、十分
な記録磁界が発生しない。そのため、磁化遷移幅が大き
くなると、十分なOW特性を確保することが困難となる
と考えられる。
A = a1/ 2r + [(a1/ 2r)Two+ 2πχ
ta1/ R]1/2 a1/ 2r = y (1-S*) / ΠQ + [{y (1-S*)
/ ΠQ}Two+ (2Mrt / Hc) (2y / Qr)]1/2 y = [hm(Hm+ T)]1/2 Q = 0.866-0.216exp (-5y / 3gl) r = 1-χ (1-S*) Hc / Mr χ = Mr/ 4Hc Recording current waveform 1 is switching as shown in FIG.
Magnetization transition length of Williams-Comstock with characteristics
Recording current reversal distance (t rXv)
Or (tfWhen xv) is small, it is shown in Fig. 1 (b).
As described above, the magnetization transition actually formed on the magnetic recording medium 2
The width L of the transfer region 4 becomes substantially equal to Lo. In Fig. 1 (b)
The arrow 3 indicates the direction of recording magnetization. However, conversely to πa
The recording current reversal distance (tr× v) or (tf×
When v) is large, as shown in FIGS. 2 (a) and 2 (b)
And the width of the magnetization transition region 4 formed on the magnetic recording medium 2.
L is (t r× v) or (tfXv) is almost equal to
You. The magnetization transition part corresponds to the recording current reversal part,
Recording magnetic field does not occur. Therefore, the magnetization transition width is large.
Becomes difficult to secure sufficient OW characteristics.
it is conceivable that.

【0011】実際に上記モデルを確認するために、図3
に示すように記録ヘッド5に直列にインダクタンスL7
を付加し、Lの値を変化させることによってtr,tf
変化させてOW特性を評価した。図中、6は記録アンプ
である。OW特性評価実験時の条件を以下に示す。低密
度信号15.6kFCIの上に、高密度信号88kFC
Iを記録し、15.6kFCI信号のオーバライト消去
比、すなわちオーバライト前の15.6kFCI信号強
度とオーバライト後の消え残った15.6kFCI信号
成分強度の比を測定評価した。ヘッド媒体間相対速度v
を25.6m/sとし、ヘッド浮上量を50nmとして
OW特性を評価した。媒体の(Br×tma g/Hc)値
は、36〜50nmであり、πa値は160〜240n
mである。
In order to actually confirm the above model, FIG.
As shown in, the inductance L7 is connected in series with the recording head 5.
Adding, to evaluate the OW characteristic by changing t r, t f by varying the value of L. In the figure, 6 is a recording amplifier. The conditions for the OW characteristic evaluation experiment are shown below. High density signal 88kFC on top of low density signal 15.6kFCI
I was recorded, and the overwrite erasing ratio of the 15.6 kFCI signal, that is, the ratio of the 15.6 kFCI signal intensity before overwriting and the 15.6 kFCI signal component intensity that remained after overwriting was evaluated. Relative velocity between head media v
Was set to 25.6 m / s and the flying height of the head was set to 50 nm to evaluate the OW characteristics. (Br × t ma g / Hc ) values of the medium are 36~50Nm,? Pa value 160~240n
m.

【0012】OW(N'/N)の記録電流反転距離[(tr
+tf)×v/2]依存性測定結果を図4に示す。図4
より、記録電流反転距離[(tr+tf)×v/2]が2
00nm以下と小さな領域では[(tr+tf)×v/
2]に対するOW(N'/N)の変化はないが、それ以上
の[(tr+tf)×v/2]の大きな領域では[(tr
+tf)×v/2]の増加とともにOW(N'/N)が低下
している。十分小さな記録電流反転領域でのOW(N'/
N)値に対して3dBだけOW(N'/N)が低下する記録
電流反転距離を「OW3dB低下長さ」と定義する。図
5は、OW3dB低下長さを160〜20nmの間の4
種類のπaの媒体に対してプロットしたものである。図
5から、OW3dB低下長さはほぼ1.2πaであるこ
とがわかる。すなわち、記録電流反転距離がπa程度に
なるとOW特性が低下し始める。これは、本モデルの正
当性を示している。
OW (N '/ N) recording current reversal distance [(t r
+ T f ) × v / 2] dependence measurement result is shown in FIG. FIG.
Therefore, the recording current reversal distance [(t r + t f ) × v / 2] is 2
[(T r + t f ) × v /
2], there is no change in OW (N ′ / N), but in the larger region of [(t r + t f ) × v / 2] beyond that, [(t r
+ T f ) × v / 2] increases, and OW (N ′ / N) decreases. OW (N '/ in a sufficiently small recording current reversal area
The recording current reversal distance at which OW (N ′ / N) decreases by 3 dB with respect to the (N) value is defined as “OW3 dB decrease length”. FIG. 5 shows that the OW 3 dB reduction length is 4 between 160 and 20 nm.
It is plotted for various types of media of πa. From FIG. 5, it can be seen that the OW3 dB reduction length is approximately 1.2πa. That is, when the recording current reversal distance becomes about πa, the OW characteristic starts to deteriorate. This shows the validity of this model.

【0013】一方、単純なモデルでは、媒体の磁気遷移
幅は媒体内記録反磁界(Br×tma g/Hc)に比例す
る(松本光功他著「磁気記録工学」共立出版、第51
頁)。ここで、Hc、Br、tmagはそれぞれ媒体の保
磁力、残留磁束密度、磁性膜厚を表す。上述したのと同
様の手法で、OW3dB低下長さをBrt/Hcに対し
てプロットした結果を図6に示す。図6より、OW3d
B低下長さは5Brt/Hcとなっていることがわか
る。よって、十分なOW特性を確保するためには記録電
流反転距離を5Brt/Hc以下にする必要がある。こ
れが(2)式の意味するところである。
Meanwhile, in the simple model, the magnetic transition width of the medium is proportional to the medium in the recording demagnetization (Br × t ma g / Hc ) ( Matsumoto HikariIsao et al., "Magnetic recording Engineering", Kyoritsu Shuppan, Chapter 51
page). Here, Hc, Br, and t mag represent the coercive force, residual magnetic flux density, and magnetic film thickness of the medium, respectively. FIG. 6 shows the result of plotting the OW3 dB reduction length against Brt / Hc by the same method as described above. From FIG. 6, OW3d
It can be seen that the B reduction length is 5 Brt / Hc. Therefore, in order to secure a sufficient OW characteristic, it is necessary to set the recording current reversal distance to 5 Brt / Hc or less. This is what the expression (2) means.

【0014】また、前述のOW特性測定条件でtr,tf
を変化させて、2F周波数に対するOW(N'/N)をプ
ロットして、OW特性悪化開始周波数FWを図7に示す
ように定義する。図8に、FWの1/(tr+tf)依存
性を示す。図8より、次式の関係が成り立っていること
がわかる。 FW=1/(tr+tf) これは、1/(tr+tf)以上の周波数で記録を行うと
隣接する記録電流反転が干渉し、記録電流設定値を保つ
ことができないことに起因すると推察される。記録電流
値が設定記録周波数とともに減衰し、主として記録磁界
の低下により十分なOW特性を保持することが困難とな
る。
[0014] In addition, in the OW characteristic measurement conditions of the above-mentioned t r, t f
Is changed and OW (N ′ / N) is plotted with respect to the 2F frequency, and the OW characteristic deterioration start frequency FW is defined as shown in FIG. 7. FIG. 8 shows the 1 / (t r + t f ) dependence of FW. It can be seen from FIG. 8 that the following relationship holds. FW = 1 / (t r + t f ) This is because when recording is performed at a frequency of 1 / (t r + t f ) or higher, adjacent recording current inversions interfere and the recording current setting value cannot be maintained. Then it is speculated. The recording current value attenuates with the set recording frequency, and it becomes difficult to maintain a sufficient OW characteristic mainly due to a decrease in the recording magnetic field.

【0015】[0015]

【実施例】以下、実施例により本発明を詳細に説明す
る。 〔実施例1〕磁気記憶装置として、図13に概念図を示
すものを用意した。この磁気記憶装置は、磁気情報を記
録する磁気記録媒体2、磁気記録媒体2に対して情報の
記録、再生を行う磁気ヘッド10、記録アンプ6を備え
記録用磁気ヘッドに記録信号を発生する記録回路16、
プリアンプ17及び弁別回路18を備え再生ヘッドから
の信号を処理する再生回路19、コントローラ14、C
PU15等を含む周知の構成のものである。CPU15
の制御下に、コントローラ14から位置決め回路13に
出された指令に従って磁気ヘッド10は磁気記録媒体2
の所望のトラック11に位置決めされ、そのトラック上
で磁気情報の記録あるいは再生を行う。
The present invention will be described in detail below with reference to examples. [Embodiment 1] As a magnetic storage device, a magnetic storage device whose conceptual diagram is shown in FIG. 13 was prepared. This magnetic storage device includes a magnetic recording medium 2 for recording magnetic information, a magnetic head 10 for recording and reproducing information on and from the magnetic recording medium 2, and a recording amplifier 6 for recording a recording signal to a recording magnetic head. Circuit 16,
A reproducing circuit 19 including a preamplifier 17 and a discrimination circuit 18 for processing a signal from a reproducing head, a controller 14, C
It has a well-known configuration including the PU 15 and the like. CPU15
Under the control of the magnetic head 10, the magnetic head 10 moves in accordance with a command issued from the controller 14 to the positioning circuit 13.
Is positioned on the desired track 11, and magnetic information is recorded or reproduced on that track.

【0016】作用の項で述べたように、媒体内記録反磁
界(Br×tmag/Hc)に比例する磁化遷移幅Lo
(≒πa)に比べて記録電流反転距離(tr×v)及び
(tf×v)が小さい時には、図1に示すように実際に
媒体上に形成される磁化遷移領域の幅LはLoに一致す
る。しかし、逆にLoに比べて記録電流反転距離(tr
×v)及び(tf×v)が大きい時には、図2に示すよ
うに媒体上に形成される磁化遷移領域の幅Lは(tr×
v)及び(tf×v)によって決定される。磁化遷移部
は記録電流反転部に対応しており、十分な記録磁界が発
生しない。そのため、磁化遷移幅が大きくなると、十分
なOW特性を確保することが困難になる。また、さらに
記録周波数を1/(tr+tf)以下にすることによりO
W低下を抑止することができる。
As described in the section of operation, the magnetization transition width Lo proportional to the recording demagnetizing field (Br × t mag / Hc) in the medium.
When the recording current reversal distances (t r × v) and (t f × v) are smaller than (≈πa), the width L of the magnetization transition region actually formed on the medium is Lo as shown in FIG. Matches However, on the contrary, the recording current reversal distance (t r
Xv) and (t f × v) are large, the width L of the magnetization transition region formed on the medium is (t r ×
v) and (t f × v). The magnetization transition part corresponds to the recording current reversal part, and a sufficient recording magnetic field is not generated. Therefore, if the magnetization transition width becomes large, it becomes difficult to secure sufficient OW characteristics. Further, by further setting the recording frequency to 1 / (t r + t f ) or less, O
The decrease in W can be suppressed.

【0017】本実施例では、図13に示した磁気記憶装
置により、πa=204nmの媒体に対して1平方イン
チ当たり2ギガビットの記録密度で飽和磁気記録を行っ
て上書き特性を調べた。ここで、線記録密度117kB
PI(RLL 1,7コード)、トラック密度17kT
PIとした。すなわち磁化反転密度は88kFCI、ト
ラックピッチは1.5μmである。図4に示したよう
に、ヘッドと媒体間の相対速度v=25.6m/se
c、記録電流反転距離[(tr+tf)×v/2]<20
4nm、すなわち(tr+tf)/2<8.0nsecの
条件で記録した場合には、OW特性の劣化を抑止するこ
とができたが、[(tr+tf)×v/2]=269n
m、すなわち(tr+tf)/2=10.5nsecの条
件で記録した場合には[(tr+tf)×v/2]<20
4nmの時に比べて4.3dBの上書き特性の劣化が認
められた。
In the present embodiment, the magnetic memory device shown in FIG. 13 was used to perform saturated magnetic recording on a medium of πa = 204 nm at a recording density of 2 gigabits per square inch, and the overwrite characteristics were examined. Here, the linear recording density is 117 kB
PI (RLL 1,7 code), track density 17kT
It was set as PI. That is, the magnetization reversal density is 88 kFCI and the track pitch is 1.5 μm. As shown in FIG. 4, the relative velocity between the head and the medium v = 25.6 m / se
c, recording current reversal distance [(t r + t f ) × v / 2] <20
When recorded under the condition of 4 nm, that is, (t r + t f ) / 2 <8.0 nsec, deterioration of the OW characteristic could be suppressed, but [(t r + t f ) × v / 2] = 269n
m, that is, [(t r + t f ) × v / 2] <20 when recorded under the condition of (t r + t f ) /2=10.5 nsec.
A deterioration of the overwrite characteristic of 4.3 dB was recognized as compared with the case of 4 nm.

【0018】〔実施例2〕図9に磁気ヘッドを含む記録
アンプの等価回路図を示す。V5,V8によって記録のタ
イミングを合わせ、V1,V2,V3,V4にhigh及び
lowレベルのデータを与えることによって記録電流の
波形パターンを決定する。記録アンプに与える電源電圧
がVEの絶対値に対応する。具体的な記録アンプの動作
状態を図10に示す。状態Aでは、トランジスタQ1
4のベースにhighレベル、トランジスタQ2,Q3
のベースにlowレベルを与えている。この時、トラン
ジスタQ1,Q4がオン、Q2,Q3がオフになり、記録電
流Iwは図に示すように向かって左から右へ定常的に流
れる。状態Cは、状態Aとは逆にトランジスタQ1,Q4
のベースにlowレベル、トランジスタQ2,Q3のベー
スにhighレベルを与えている。この時、トランジス
タQ1,Q4がオフ、Q2,Q3がオンになり、記録電流I
wは図に示すように状態Aとは逆に向かって右から左へ
流れる。状態Bに、状態Aから状態Cへの過渡状態を示
す。記録ヘッドのインダクタンス及び抵抗値をそれぞれ
H,RHとし、トランジスタQ1,Q2のベースエミッタ
間電圧をそれぞれVBEQ1,VBEQ2とする。R1とR2、Q
1とQ2にそれぞれ同じ特性の抵抗、トランジスタを配置
することで、トランジスタQ1,Q2のベース電位のhi
gh,lowレベルはいずれもほぼ同じ値をとることが
できる。状態BにおけるQ1,Q2のエミッタ電位をそれ
ぞれe1,e2とすると、次式が成立する。
[Embodiment 2] FIG. 9 shows an equivalent circuit diagram of a recording amplifier including a magnetic head. V 5, timed recording by V 8, determines the waveform pattern of recording current by providing data of high and low level V 1, V 2, V 3 , V 4. The power supply voltage applied to the recording amplifier corresponds to the absolute value of V E. A concrete operation state of the recording amplifier is shown in FIG. In state A, the transistor Q 1 ,
High level on the base of Q 4 , transistors Q 2 and Q 3
Gives a low level to the base. At this time, the transistors Q 1 and Q 4 are turned on and the transistors Q 2 and Q 3 are turned off, and the recording current I w constantly flows from left to right as shown in the figure. Contrary to the state A, the state C is the transistor Q 1 , Q 4
Of the transistor Q 2 and Q 3 is given a high level. At this time, the transistors Q 1 and Q 4 are turned off, Q 2 and Q 3 are turned on, and the recording current I
As shown in the figure, w flows from right to left in the opposite direction to state A. State B shows a transient state from state A to state C. Each L H inductance and the resistance value of the recording head, and R H, transistors Q 1, Q 2 of the base-emitter voltage of the respective V BEQ1, V BEQ2. R 1 and R 2 , Q
By arranging resistors and transistors having the same characteristics in 1 and Q 2 , respectively, the base potential hi of the transistors Q 1 and Q 2 is hi.
The gh and low levels can take almost the same value. When the emitter potentials of Q 1 and Q 2 in the state B are e 1 and e 2 , respectively, the following equation holds.

【0019】 e1=VL1−VBEQ1, e2=VH1−VBEQ2 ここで、VBEQ1とVBEQ2がほぼ等しいとすると、 |e1−e2|=VH1−VL1 となる。ここで、VB=VH1−VL1 とすると、 VB=RH・Iw(t)+LH・dIw(t)/dt なる微分方程式が成立する。ただし、Iw(t)は時刻t
における記録電流値である。これを解くと、 Iw(t)=VB/RH−(VB/RH+Iw)exp(−RH/LH
・t) となる。ただし、Iwは状態Aにおける記録電流値であ
る。tr,tfを記録電流反転量の10%及び90%を横
切る時間と定義すると、次式(4)が得られる。
E 1 = V L1 −V BEQ1 , e 2 = V H1 −V BEQ2 Here, assuming that V BEQ1 and V BEQ2 are substantially equal, | e 1 −e 2 | = V H1 −V L1 . Here, when V B = V H1 -V L1, V B = R H · I w (t) + L H · dI w (t) / dt becomes a differential equation is established. However, I w (t) is the time t
Is the recording current value at. Solving this, I w (t) = V B / R H - (V B / R H + I w) exp (-R H / L H
・ T). However, I w is the recording current value in the state A. t r, when the t f is defined as a time across the 10% and 90% of the recording current reversal amount, the following equation (4) is obtained.

【0020】 tr,tf=t[Iw(t)=0.8Iw]−t[Iw(t)=-0.8Iw] =(LH/RH)・Ln[1+1.6Iw/(VB/RH−0.8Iw)] (4) あるいは、 ta≡(tr+tf)/2 =t[Iw(t)=0.8Iw]−t[Iw(t)=-0.8Iw] =(LH/RH)・Ln[1+1.6Iw/(VB/RH−0.8Iw)] これを変形すると次式が得られる。[0020] t r, t f = t [ I w (t) = 0.8I w] -t [I w (t) = - 0.8I w] = (L H / R H) · Ln [1 + 1.6I w / (V B / RH −0.8I w )] (4) Alternatively, t a ≡ (t r + t f ) / 2 = t [I w (t) = 0.8 I w ] -t [I w (t ) = - 0.8I w] = ( L H / R H) · Ln [1 + 1.6I w / (V B / R H -0.8I w)] By transforming this equation is obtained.

【0021】 Iw=(VB/RH)/[1.6/[exp(ta・RH/LH)−1]+0.8] (5) 上記理論の実験検証を以下に示す。実際にはほとんどの
場合、記録系最適化の結果、VBは記録アンプに与える
電源電圧VEの半分程度に相当する。8.6V及び5.2
Vの電源電圧で駆動される記録アンプに対してVBをそ
れぞれ4.2V,2.2Vと設定し、ヘッドのコイル巻き
数を17,30,40ターンと変化させ、かつ、記録ヘ
ッドと記録アンプの間に直列にインダクタンス(0〜
1.2μH)を挿入することでtr,tfを変化させた。
(4)式より計算で求めたtrと実験により求めた(tr
+tf)/2の関係をプロットしたものを図11に示
す。図より、実験は理論とよく合うことが分かる。
I w = (V B / R H ) / [1.6 / [exp (t a R H / L H ) −1] +0.8] (5) Experimental verification of the above theory is shown below. . Actually, in most cases, as a result of the recording system optimization, V B corresponds to about half the power supply voltage V E given to the recording amplifier. 8.6V and 5.2
For the recording amplifier driven by the power supply voltage of V, V B is set to 4.2 V and 2.2 V, respectively, the number of coil windings of the head is changed to 17, 30 and 40 turns, and the recording head and recording are performed. Inductance (0 to 0
T r by inserting a 1.2μH), was varied t f.
The value of t r calculated by the equation (4) and the value of t r calculated by the experiment (t r
FIG. 11 shows a plot of the relationship of + t f ) / 2. The figure shows that the experiment fits well with the theory.

【0022】1平方インチ当たり2ギガビット以上の磁
気記憶装置では媒体の高保磁力化が求められる。保磁力
Hc=2.3〜3.8kOeの媒体に対して高飽和磁束密
度材料Co-Ni-Fe(Bs=1.7T)を用いた記録
ヘッドを使用して記録再生実験を行った。起磁力の増加
に対して再生出力が飽和するような起磁力をHcに対し
てプロットした結果を図12に示す。この結果より、記
録に必要な起磁力は、Hc=2.5kOeの媒体に対し
て0.53Aturn、Hc=3kOeに対して0.62Atu
rn、Hc=3.5kOeに対して0.73Aturnであるこ
とがわかった。つまり、記録ヘッドターン数をNとし、
Bを記録アンプに与える電源電圧VEの半分、すなわち
B=VE/2とすると、(5)式よりHc=2.5kO
eに対して (VE・N/2RH)/[1.6/[exp(ta・RH/LH)−1]+0.
8]>0.53 Hc=3kOeに対して (VE・N/2RH)/[1.6/[exp(ta・RH/LH)−1]+0.
8]>0.62 Hc=3.5kOeに対して (VE・N/2RH)/[1.6/[exp(ta・RH/LH)−1]+0.
8]>0.73 とする必要があることが分かる。例えば、Hc=2.9
kOeの媒体に対してVE=8.2V、N=17ターン、
H=18.6Ω、LH=0.22μH、(tr+tf)/2
=5.1nsecとすると、 (VE・N/2RH)/[1.6/[exp(ta・RH/LH)−1]+0.
8]=4.4 となり、Iw=40mAopとして良好なOW特性が得
られる。
In the magnetic storage device of 2 gigabits or more per square inch, high coercive force of the medium is required. A recording / reproducing experiment was conducted using a recording head using a high saturation magnetic flux density material Co-Ni-Fe (Bs = 1.7T) for a medium having a coercive force Hc = 2.3 to 3.8 kOe. FIG. 12 shows the results of plotting the magnetomotive force against Hc such that the reproduction output saturates as the magnetomotive force increases. From this result, the magnetomotive force required for recording is 0.53 Aturn for the medium with Hc = 2.5 kOe and 0.62 Atu for Hc = 3 kOe.
rn, Hc = 3.5 kOe, 0.73 Aturn was found. That is, the number of recording head turns is N,
Half of the supply voltage V E to give V B to the recording amplifier, i.e. the V B = V E / 2, Hc from (5) = 2.5KO
(V E · N / 2R H ) / [1.6 / [exp (t a R H / L H ) -1] +0 for e.
8]> 0.53 Hc = 3 kOe (V E N / 2R H ) / [1.6 / [exp (t a R H / L H ) -1] +0.
8]> 0.62 Hc = 3.5 kOe, (V E N / 2R H ) / [1.6 / [exp (t a R H / L H ) -1] +0.
It turns out that 8]> 0.73 is required. For example, Hc = 2.9
For medium of kOe, V E = 8.2V, N = 17 turns,
R H = 18.6Ω, L H = 0.22 μH, (t r + t f ) / 2
= 5.1 nsec, (V E · N / 2R H ) / [1.6 / [exp (t a R H / L H ) −1] +0.
8] = 4.4, and the good OW characteristics as I w = 40mAop obtained.

【0023】[0023]

【発明の効果】本発明によれば、磁気記憶装置におい
て、記録ヘッド材料を変更したり、特別に磁気ヘッドと
磁気記録媒体間の距離を縮小することなく、OW特性を
劣化させずに高密度、高周波記録を達成することができ
る。
According to the present invention, in a magnetic storage device, the recording head material is not changed, the distance between the magnetic head and the magnetic recording medium is not particularly reduced, and the OW characteristic is not deteriorated. , High frequency recording can be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例による高周波記録時の記録電流
波形と磁化遷移部の対応状態模式図。
FIG. 1 is a schematic diagram of corresponding states of a recording current waveform and a magnetization transition portion during high frequency recording according to an embodiment of the present invention.

【図2】従来技術による高周波記録時の記録電流波形と
磁化遷移部の対応状態模式図。
FIG. 2 is a schematic diagram of a corresponding state of a recording current waveform and a magnetization transition portion during high frequency recording according to a conventional technique.

【図3】OW(N'/N)のtr,tf依存性を検討する実
験に使用する記録系の等価回路図。
FIG. 3 is an equivalent circuit diagram of a recording system used in an experiment for examining the dependence of OW (N ′ / N) on t r and t f .

【図4】OW(N'/N)の記録電流反転距離[(tr+t
f)×v/2]依存性を示す図。
FIG. 4 is a recording current reversal distance of OW (N ′ / N) [(t r + t
f ) xv / 2] dependence.

【図5】OW3dB低下長さのπa依存性を示す図。FIG. 5 is a diagram showing πa dependence of OW3 dB reduction length.

【図6】OW3dB低下長さのBrt/Hc依存性を示
す図。
FIG. 6 is a graph showing Brt / Hc dependency of OW3 dB reduction length.

【図7】OW特性悪化開始周波数FWの定義図。FIG. 7 is a definition diagram of an OW characteristic deterioration start frequency FW.

【図8】OW特性悪化開始周波数FWの1/(tr
f)依存性を示す図。
FIG. 8: 1 / (t r + of OW characteristic deterioration start frequency FW)
t f ) diagram showing dependency.

【図9】記録ヘッドを含む記録アンプの等価回路図。FIG. 9 is an equivalent circuit diagram of a recording amplifier including a recording head.

【図10】記録アンプの動作状態図。FIG. 10 is an operation state diagram of the recording amplifier.

【図11】記録電流反転時間の実験測定値と計算値との
対応を示す図。
FIG. 11 is a diagram showing the correspondence between the experimentally measured value and the calculated value of the recording current reversal time.

【図12】磁気記録媒体の保磁力と記録必要起磁力の関
係を示す図。
FIG. 12 is a diagram showing a relationship between a coercive force of a magnetic recording medium and a magnetomotive force required for recording.

【図13】磁気記憶装置の概念図。FIG. 13 is a conceptual diagram of a magnetic storage device.

【符号の説明】[Explanation of symbols]

1:記録電流波形、2:磁気記録媒体、3:記録磁化の
向き、4:磁化遷移部、5:記録ヘッド、6:記録アン
プ、7:付加インダクタンス、14:コントローラ、1
5:CPU、16:記録回路、19:再生回路
1: Recording current waveform, 2: Magnetic recording medium, 3: Recording magnetization direction, 4: Magnetization transition part, 5: Recording head, 6: Recording amplifier, 7: Additional inductance, 14: Controller, 1
5: CPU, 16: recording circuit, 19: reproducing circuit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 城石 芳博 東京都国分寺市東恋ヶ窪一丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 土屋 鈴二朗 東京都国分寺市東恋ヶ窪一丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 松岡 伸也 神奈川県小田原市国府津2880番地 株式会 社日立製作所ストレージシステム事業部内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Yoshihiro Shiroishi 1-280 Higashi Koigakubo, Kokubunji City, Tokyo Inside Central Research Laboratory, Hitachi, Ltd. Hitachi Central Research Laboratory (72) Inventor Shinya Matsuoka 2880 Kozu, Odawara City, Kanagawa Stock Company, Hitachi Storage Systems Division

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 磁気ヘッドに矩形波記録電流を流すこと
によって磁気記録媒体に1平方インチ当たり2ギガビッ
ト以上の記録密度で飽和磁気記録を行う磁気記憶方法に
おいて、記録電流が増加しながらスイッチングする時に
記録電流反転量の10%及び90%を横切る間の時間を
立上り時間tr、記録電流が減少しながらスイッチング
する時に記録電流反転量の10%及び90%を横切る間
の時間を立下り時間tf、ヘッド媒体間相対速度をv、
媒体上の磁化反転幅をLとして、下式を満たすことを特
徴とする磁気記憶方法。 v×(tr+tf)/2≦L
1. A magnetic storage method for performing saturated magnetic recording on a magnetic recording medium at a recording density of 2 gigabits per square inch or more by passing a rectangular wave recording current through a magnetic head, when switching is performed while the recording current increases. The time between 10% and 90% of the recording current reversal amount is the rise time t r , and the time between 10% and 90% of the recording current reversal amount when switching while the recording current is decreasing is the fall time t r . f , relative velocity between head media v,
A magnetic storage method characterized in that the following expression is satisfied, where L is the width of magnetization reversal on the medium. v × (t r + t f ) / 2 ≦ L
【請求項2】 1平方インチ当たり2ギガビット以上の
記録密度で磁気データを記憶する磁気記録媒体及び信号
の記録再生を行う磁気ヘッドを備え、前記磁気ヘッドに
矩形波記録電流を流すことによって前記磁気記録媒体に
飽和磁気記録を行う磁気記憶装置において、前記飽和磁
気記録時に、記録電流が増加しながらスイッチングする
時に記録電流反転量の10%及び90%を横切る間の時
間を立上り時間tr、記録電流が減少しながらスイッチ
ングする時に記録電流反転量の10%及び90%を横切
る間の時間を立下り時間tf、ヘッド媒体間相対速度を
v、媒体上の磁化反転幅をLとして、下式を満たすこと
を特徴とする磁気記憶装置。 v×(tr+tf)/
2≦L
2. A magnetic recording medium for storing magnetic data at a recording density of 2 gigabits per square inch or more and a magnetic head for recording / reproducing a signal, wherein the magnetic recording medium is supplied with a rectangular wave recording current. In a magnetic storage device for performing saturated magnetic recording on a recording medium, during the saturated magnetic recording, a rise time t r is a time between crossing 10% and 90% of a recording current reversal amount when switching while increasing a recording current. Assuming that the fall time t f is the time between 10% and 90% of the recording current reversal amount when the switching is performed while the current is decreasing, the head medium relative velocity is v, and the magnetization reversal width on the medium is L A magnetic storage device characterized by satisfying: v × (t r + t f ) /
2 ≦ L
【請求項3】 磁気ヘッドに矩形波記録電流を流すこと
によって磁気記録媒体に1平方インチ当たり2ギガビッ
ト以上の記録密度で飽和磁気記録を行う磁気記憶方法に
おいて、記録電流が増加しながらスイッチングする時に
記録電流反転量の10%及び90%を横切る間の時間を
立上り時間tr、記録電流が減少しながらスイッチング
する時に記録電流反転量の10%及び90%を横切る間
の時間を立下り時間tf、ヘッド媒体間相対速度をv、
媒体保磁力をHc、媒体飽和磁束密度をBr、媒体磁性
膜厚をtmagとする時、下式を満たすことを特徴とする
磁気記憶方法。 v×(tr+tf)/2≦5×Br×tmag/Hc
3. A magnetic storage method for performing saturated magnetic recording on a magnetic recording medium at a recording density of 2 gigabits per square inch or more by passing a rectangular wave recording current through a magnetic head, when switching is performed while the recording current increases. The time between 10% and 90% of the recording current reversal amount is the rise time t r , and the time between 10% and 90% of the recording current reversal amount when switching while the recording current is decreasing is the fall time t r . f , relative velocity between head media v,
A magnetic storage method characterized by satisfying the following formula when the medium coercive force is Hc, the medium saturation magnetic flux density is Br, and the medium magnetic film thickness is t mag . v × (t r + t f ) / 2 ≦ 5 × Br × t mag / Hc
【請求項4】 1平方インチ当たり2ギガビット以上の
記録密度で磁気データを記憶する磁気記録媒体及び信号
の記録再生を行う磁気ヘッドを備え、前記磁気ヘッドに
矩形波記録電流を流すことによって前記磁気記録媒体に
飽和磁気記録を行う磁気記憶装置において、前記飽和磁
気記録時に、記録電流が増加しながらスイッチングする
時に記録電流反転量の10%及び90%を横切る間の時
間を立上り時間tr、記録電流が減少しながらスイッチ
ングする時に記録電流反転量の10%及び90%を横切
る間の時間を立下り時間tf、ヘッド媒体間相対速度を
v、媒体保磁力をHc、媒体飽和磁束密度をBr、媒体
磁性膜厚をtmagとする時、下式を満たすことを特徴と
する磁気記憶装置。 v×(tr+tf)/2≦5×Br×tmag/Hc
4. A magnetic recording medium for storing magnetic data at a recording density of 2 gigabits per square inch or more and a magnetic head for recording / reproducing a signal, wherein a rectangular wave recording current is applied to the magnetic head to cause the magnetic field. In a magnetic storage device for performing saturated magnetic recording on a recording medium, during the saturated magnetic recording, a rise time t r is a time between crossing 10% and 90% of a recording current reversal amount when switching while increasing a recording current. When switching is performed while the current is decreasing, the time during which the recording current reversal amount crosses 10% and 90% is the fall time t f , the head-medium relative velocity is v, the medium coercive force is Hc, and the medium saturation magnetic flux density is Br. A magnetic storage device characterized by satisfying the following formula when the magnetic film thickness of the medium is t mag . v × (t r + t f ) / 2 ≦ 5 × Br × t mag / Hc
【請求項5】 磁気ヘッドに矩形波記録電流を流すこと
によって磁気記録媒体に1平方インチ当たり2ギガビッ
ト以上の記録密度で飽和磁気記録を行う時、記録電流が
増加しながらスイッチングする時に記録電流反転量の1
0%及び90%を横切る間の時間を立上り時間tr、記
録電流が減少しながらスイッチングする時に記録電流反
転量の10%及び90%を横切る間の時間を立下り時間
f、記録周波数をfwとする時、下式を満たすことを特
徴とする磁気記憶方法。 fw≦1/(tr+tf
5. A recording current reversal at the time of switching while increasing the recording current when performing saturated magnetic recording at a recording density of 2 gigabits per square inch or more on a magnetic recording medium by supplying a rectangular wave recording current to the magnetic head. Quantity 1
The time between 0% and 90% crossing is the rise time t r , the time between 10% and 90% of the recording current reversal amount when the recording current is switching while decreasing, and the falling time t f is the recording frequency. A magnetic storage method characterized by satisfying the following expression when f w is set. f w ≤ 1 / (t r + t f )
【請求項6】 1平方インチ当たり2ギガビット以上の
記録密度で磁気データを記憶する磁気記録媒体及び信号
の記録再生を行う磁気ヘッドを備え、前記磁気ヘッドに
矩形波記録電流を流すことによって前記磁気記録媒体に
飽和磁気記録を行う磁気記憶装置において、前記飽和磁
気記録時に、記録電流が増加しながらスイッチングする
時に記録電流反転量の10%及び90%を横切る間の時
間を立上り時間tr、記録電流が減少しながらスイッチ
ングする時に記録電流反転量の10%及び90%を横切
る間の時間を立下り時間tf、記録周波数をfwとする
時、下式を満たすことを特徴とする磁気記憶装置。 fw≦1/(tr+tf
6. A magnetic recording medium for storing magnetic data at a recording density of 2 gigabits or more per square inch and a magnetic head for recording / reproducing a signal, wherein a rectangular wave recording current is passed through the magnetic head to produce the magnetic field. In a magnetic storage device for performing saturated magnetic recording on a recording medium, during the saturated magnetic recording, a rise time t r is a time between crossing 10% and 90% of a recording current reversal amount when switching while increasing a recording current. A magnetic memory characterized by satisfying the following formula when the fall time t f is the time between 10% and 90% of the recording current reversal amount when the current is decreasing and the recording frequency is f w. apparatus. f w ≤ 1 / (t r + t f )
【請求項7】 2.5kOe以上の保磁力を有し1平方
インチ当たり2ギガビット以上の記録密度を有する磁気
記録媒体と、信号の記録再生を行う磁気ヘッドと、前記
磁気ヘッドに記録電流を流すべくVEなる電源電圧を印
加された記録アンプを備え、前記磁気ヘッドに矩形波記
録電流を流すことによって前記磁気記録媒体に飽和磁気
記録を行う磁気記憶装置において、前記飽和磁気記録時
に、記録電流が増加しながらスイッチングする時に記録
電流反転量の10%及び90%を横切る間の時間を立上
り時間tr、記録電流が減少しながらスイッチングする
時に記録電流反転量の10%及び90%を横切る間の時
間を立下り時間tf、ta=(tr+tf)/2、前記記録
ヘッドのインダクタンスをLH、抵抗をRH、コイルのタ
ーン数をNとする時、次式の関係を満たすことを特徴と
する磁気記憶装置。 (VE・N/2RH)/[1.6/[exp(ta・RH/LH)−1]+0.
8]>0.53
7. A magnetic recording medium having a coercive force of 2.5 kOe or more and a recording density of 2 gigabits or more per square inch, a magnetic head for recording and reproducing signals, and a recording current flowing through the magnetic head. In a magnetic storage device which includes a recording amplifier to which a power supply voltage of V E is applied and which performs a saturated magnetic recording on the magnetic recording medium by supplying a rectangular wave recording current to the magnetic head, the recording current at the time of the saturated magnetic recording. Of the recording current reversal amount when switching while increasing while rising time t r , and 10% and 90% of the recording current reversal amount when switching while decreasing the recording current. Is the fall time t f , t a = (t r + t f ) / 2, L H is the inductance of the recording head, R H is the resistance, and N is the number of turns of the coil. A magnetic storage device characterized by satisfying the relationship of (V E N / 2R H ) / [1.6 / [exp (t a R H / L H ) -1] +0.
8]> 0.53
【請求項8】 3kOe以上の保磁力を有し1平方イン
チ当たり2ギガビット以上の記録密度を有する磁気記録
媒体と、信号の記録再生を行う磁気ヘッドと、前記磁気
ヘッドに記録電流を流すべくVEなる電源電圧を印加さ
れた記録アンプを備え、前記磁気ヘッドに矩形波記録電
流を流すことによって前記磁気記録媒体に飽和磁気記録
を行う磁気記憶装置において、前記飽和磁気記録に時、
記録電流が増加しながらスイッチングする時に記録電流
反転量の10%及び90%を横切る間の時間を立上り時
間tr、記録電流が減少しながらスイッチングする時に
記録電流反転量の10%及び90%を横切る間の時間を
立下り時間tf、ta=(tr+tf)/2、前記記録ヘッ
ドのインダクタンスをLH、抵抗をRH、コイルのターン
数をNとする時、次式の関係を満たすことを特徴とする
磁気記憶装置。 (VE・N/2RH)/[1.6/[exp(ta・RH/LH)−1]+0.
8]>0.62
8. A magnetic recording medium having a coercive force of 3 kOe or more and a recording density of 2 gigabits or more per square inch, a magnetic head for recording and reproducing signals, and a V for supplying a recording current to the magnetic head. In a magnetic storage device that includes a recording amplifier to which a power supply voltage of E is applied, and performs a saturated magnetic recording on the magnetic recording medium by supplying a rectangular wave recording current to the magnetic head, when performing the saturated magnetic recording,
The rising time t r is the time between 10% and 90% of the recording current reversal amount when switching while the recording current increases, and 10% and 90% of the recording current reversal amount when switching while the recording current decreases. When the crossing time is the fall time t f , t a = (t r + t f ) / 2, the inductance of the recording head is L H , the resistance is R H , and the number of turns of the coil is N, the following equation is obtained. A magnetic storage device characterized by satisfying a relationship. (V E N / 2R H ) / [1.6 / [exp (t a R H / L H ) -1] +0.
8]> 0.62
【請求項9】 3.5kOe以上の保磁力を有し1平方
インチ当たり2ギガビット以上の記録密度を有する磁気
記録媒体と、信号の記録再生を行う磁気ヘッドと、前記
磁気ヘッドに記録電流を流すべくVEなる電源電圧を印
加された記録アンプを備え、前記磁気ヘッドに矩形波記
録電流を流すことによって前記磁気記録媒体に飽和磁気
記録を行う磁気記憶装置において、前記飽和磁気記録時
に、記録電流が増加しながらスイッチングする時に記録
電流反転量の10%及び90%を横切る間の時間を立上
り時間tr、記録電流が減少しながらスイッチングする
時に記録電流反転量の10%及び90%を横切る間の時
間を立下り時間tf、ta=(tr+tf)/2、前記記録
ヘッドのインダクタンスをLH、抵抗をRH、コイルのタ
ーン数をNとする時、次式の関係を満たすことを特徴と
する磁気記憶装置。 (VE・N/2RH)/[1.6/[exp(ta・RH/LH)−1]+0.
8]>0.73
9. A magnetic recording medium having a coercive force of 3.5 kOe or more and a recording density of 2 gigabits per square inch, a magnetic head for recording / reproducing signals, and a recording current flowing through the magnetic head. In a magnetic storage device which includes a recording amplifier to which a power supply voltage of V E is applied and which performs a saturated magnetic recording on the magnetic recording medium by supplying a rectangular wave recording current to the magnetic head, the recording current at the time of the saturated magnetic recording. Of the recording current reversal amount when switching while increasing while rising time t r , and 10% and 90% of the recording current reversal amount when switching while decreasing the recording current. Is the fall time t f , t a = (t r + t f ) / 2, L H is the inductance of the recording head, R H is the resistance, and N is the number of turns of the coil. A magnetic storage device characterized by satisfying the relationship of (V E N / 2R H ) / [1.6 / [exp (t a R H / L H ) -1] +0.
8]> 0.73
JP17235995A 1995-07-07 1995-07-07 Magnetic memory method and magnetic memory device Pending JPH0927101A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17235995A JPH0927101A (en) 1995-07-07 1995-07-07 Magnetic memory method and magnetic memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17235995A JPH0927101A (en) 1995-07-07 1995-07-07 Magnetic memory method and magnetic memory device

Publications (1)

Publication Number Publication Date
JPH0927101A true JPH0927101A (en) 1997-01-28

Family

ID=15940449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17235995A Pending JPH0927101A (en) 1995-07-07 1995-07-07 Magnetic memory method and magnetic memory device

Country Status (1)

Country Link
JP (1) JPH0927101A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008126194A1 (en) * 2007-03-19 2008-10-23 Fujitsu Limited Magnetic recording circuit, magnetic recorder, and information recording method
US8219677B2 (en) 1998-09-01 2012-07-10 International Business Machines Corporation Method and apparatus for inspecting the properties of a computer
US8914507B2 (en) 1998-09-01 2014-12-16 International Business Machines Corporation Advice provided for offering highly targeted advice without compromising individual privacy

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8219677B2 (en) 1998-09-01 2012-07-10 International Business Machines Corporation Method and apparatus for inspecting the properties of a computer
US8914507B2 (en) 1998-09-01 2014-12-16 International Business Machines Corporation Advice provided for offering highly targeted advice without compromising individual privacy
WO2008126194A1 (en) * 2007-03-19 2008-10-23 Fujitsu Limited Magnetic recording circuit, magnetic recorder, and information recording method
JPWO2008126194A1 (en) * 2007-03-19 2010-07-22 東芝ストレージデバイス株式会社 Magnetic recording circuit, magnetic recording apparatus, and information recording method

Similar Documents

Publication Publication Date Title
US5590008A (en) Magnetic disc unit having a plurality of magnetic heads which include multilayer magnetic films
US4251842A (en) Magnetic recording and reproducing device
US5963385A (en) Magnetic recording/reproducing apparatus and method for supplying a current to a magnetic head to stabilize a magnetized state of a magnet pole
JP5539817B2 (en) Magnetic recording apparatus and magnetic recording method
US10891977B1 (en) MAMR recording head with high damping trailing shield seed layer
US6137652A (en) Thin film magnetic head with separated yoke and pole tips
US6671117B2 (en) Magnetic writer for noise suppression in perpendicular recording media
US5499150A (en) Magnetic head
US6650493B2 (en) Pulsed write current adapted for use with a field maintenance current in a data storage device
Takano Micromagnetic-FEM models of a perpendicular writer and reader
US20030021070A1 (en) Magnetic recording apparatus and magnetic head
JPH0927101A (en) Magnetic memory method and magnetic memory device
CN100416657C (en) Magnetic head
US6930846B2 (en) Magnetic recording apparatus and system for driving a magnetic recording medium
EP0517137B1 (en) Magnetic recording head capable of defining narrow track width and magnetic recording apparatus using the same
Loven et al. Modeling study of isolated read-back pulses from keepered longitudinal thin film media using the boundary element method
Takano et al. Effect of orientation ratio on the recording characteristics of longitudinal thin film media
Hoinville Micromagnetic modeling of the thermomagnetic recording process
Takano Magnetization dynamics of perpendicular writers
JPH05120630A (en) Magnetic disk device
Williams et al. Film-head pulse distortion due to microvariation of domain wall energy
Akiyama et al. Trilayer media for high track density longitudinal recording
JP3249068B2 (en) Magnetic recording method and apparatus
JP3325403B2 (en) Magnetic disk drive
Wang et al. Thin film head with staggered pole tips