JPH0924743A - Driving device for vehicle - Google Patents

Driving device for vehicle

Info

Publication number
JPH0924743A
JPH0924743A JP17736395A JP17736395A JPH0924743A JP H0924743 A JPH0924743 A JP H0924743A JP 17736395 A JP17736395 A JP 17736395A JP 17736395 A JP17736395 A JP 17736395A JP H0924743 A JPH0924743 A JP H0924743A
Authority
JP
Japan
Prior art keywords
transmission mechanism
continuously variable
variable transmission
electric motor
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17736395A
Other languages
Japanese (ja)
Other versions
JP3097505B2 (en
Inventor
Takatsugu Ibaraki
隆次 茨木
Masanori Kubo
政徳 久保
Yutaka Taga
豊 多賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP17736395A priority Critical patent/JP3097505B2/en
Publication of JPH0924743A publication Critical patent/JPH0924743A/en
Application granted granted Critical
Publication of JP3097505B2 publication Critical patent/JP3097505B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/543Transmission for changing ratio the transmission being a continuously variable transmission

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Arrangement Of Transmissions (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

PROBLEM TO BE SOLVED: To make the size in the axial direction of the device small, in a driving device for vehicle in which an electric motor and an internal combustion engine are used as driving sources, and the outputs of those driving sources are transmitted to the driving wheel side through a continuously variable transmission mechanism. SOLUTION: While an electric motor 16 and an internal combustion engine 14 are provided in series on the first axial line, a toroidal type continuously variable transmission mechanism 24 as a continuously variable transmission mechanism, a speed reduction reverse mechanism 26, and a differential device 28 are provided in series, on the second axial line almost parallel to the first axial line. Furthermore, the outputs of the electric motor 16 and the internal combustion engine 14 are transmitted to the toroidal type continuously variable transmission mechanism 24 through a chain 22 generating no thrust force.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は車両用駆動装置に係
り、特に、駆動源として電動モータおよび内燃機関を用
いた所謂ハイブリッド車両用の駆動装置に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vehicle drive device, and more particularly to a so-called hybrid vehicle drive device using an electric motor and an internal combustion engine as a drive source.

【0002】[0002]

【従来の技術】電動モータおよび内燃機関を駆動源と
し、それ等の出力を無段変速機構を介して駆動輪側へ伝
達する車両用駆動装置が知られている。特開平5−86
39号公報の図11に示されている装置はその一例で、
無端ベルトが巻き掛けられるプーリの溝幅を変化させる
ことによって変速比を連続的に変化させるベルト式無段
変速機構が用いられており、電動モータおよび内燃機関
が配設される第1軸線上に一次側プーリが配設され、そ
の第1軸線と平行な第2軸線上に配設された二次側プー
リとの間で動力伝達を行うようになっている。
2. Description of the Related Art A vehicle drive device is known in which an electric motor and an internal combustion engine are used as drive sources, and outputs of these components are transmitted to a drive wheel side through a continuously variable transmission mechanism. JP-A-5-86
The device shown in FIG. 11 of Japanese Patent Publication No. 39 is an example thereof.
A belt type continuously variable transmission mechanism that continuously changes a gear ratio by changing a groove width of a pulley around which an endless belt is wound is used, and a belt type continuously variable transmission mechanism is provided on a first axis line on which an electric motor and an internal combustion engine are arranged. A primary-side pulley is provided, and power is transmitted between the primary-side pulley and a secondary-side pulley that is provided on a second axis parallel to the first axis.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、このよ
うに電動モータ,内燃機関,およびベルト式無段変速機
構の一次側プーリを共通の第1軸線上に直列に並べて配
設すると、軸方向寸法が大きくなるため車両への搭載性
が悪くなり、特にその第1軸線が車幅方向と略平行とな
る姿勢で配設される前輪駆動車(FF車)等に対する適
用が難しい。ベルト式無段変速機構のプーリは、一般に
同軸上に配設された油圧シリンダによってプーリの溝幅
を変更するようになっているため、軸線方向に比較的大
きなスペースが必要で、それだけ軸方向寸法が大きくな
ってしまうのである。なお、小型(小容量)の電動モー
タを採用すると、駆動トルクや回生制動トルクが小さく
なるため、内燃機関に加えて電動モータを用いることに
よる燃費低減等の効果が十分に得られなくなる。
However, when the electric motor, the internal combustion engine, and the primary pulley of the belt type continuously variable transmission mechanism are arranged side by side in series on the common first axis line, the axial dimension is reduced. Since it becomes large, it becomes difficult to mount it on a vehicle, and it is difficult to apply it particularly to a front-wheel drive vehicle (FF vehicle) or the like in which the first axis is arranged in a posture substantially parallel to the vehicle width direction. Since the pulley of a belt-type continuously variable transmission is designed so that the groove width of the pulley is generally changed by a hydraulic cylinder arranged coaxially, a relatively large space is required in the axial direction. Is getting bigger. If a small (small capacity) electric motor is adopted, the driving torque and the regenerative braking torque will be small, so that the effect of reducing fuel consumption and the like by using the electric motor in addition to the internal combustion engine cannot be sufficiently obtained.

【0004】本発明は以上の事情を背景として為された
もので、その目的とするところは、電動モータおよび内
燃機関を駆動源とし、それ等の出力を無段変速機構を介
して駆動輪側へ伝達する車両用駆動装置において、その
軸方向寸法を小さくすることにある。
The present invention has been made in view of the above circumstances. An object of the present invention is to use an electric motor and an internal combustion engine as drive sources, and to output their outputs through a continuously variable transmission mechanism on the drive wheel side. To reduce the axial dimension of the vehicle drive device that transmits the power to the vehicle.

【0005】[0005]

【課題を解決するための手段】かかる目的を達成するた
めに、第1発明は、電動モータおよび内燃機関を駆動源
とし、それ等の出力を無段変速機構を介して駆動輪側へ
伝達する車両用駆動装置において、(a)前記電動モー
タおよび内燃機関を共通の第1軸線上に直列に配設する
とともに、(b)その第1軸線と略平行な第2軸線上に
前記無段変速機構としてトロイダル型無段変速機構を配
設したことを特徴とする。
In order to achieve the above object, the first invention uses an electric motor and an internal combustion engine as drive sources, and transmits their outputs to the drive wheel side through a continuously variable transmission mechanism. In a vehicle drive device, (a) the electric motor and the internal combustion engine are arranged in series on a common first axis, and (b) the continuously variable transmission is arranged on a second axis substantially parallel to the first axis. The feature is that a toroidal type continuously variable transmission mechanism is provided as a mechanism.

【0006】第2発明は、電動モータおよび内燃機関を
駆動源とし、それ等の出力を無段変速機構を介して駆動
輪側へ伝達する車両用駆動装置において、(a)前記電
動モータおよび内燃機関を共通の第1軸線上に直列に配
設するとともに、(b)その第1軸線と略平行な第2軸
線上に、前記無段変速機構としてのトロイダル型無段変
速機構、およびそのトロイダル型無段変速機構に作動的
に連結される歯車式動力伝達機構を直列に配設したこと
を特徴とする。
A second aspect of the present invention is a vehicle drive device that uses an electric motor and an internal combustion engine as drive sources, and transmits their outputs to a drive wheel side through a continuously variable transmission mechanism. (A) The electric motor and internal combustion engine The engines are arranged in series on a common first axis, and (b) a toroidal type continuously variable transmission mechanism as the continuously variable transmission mechanism and a toroidal thereof on a second axis substantially parallel to the first axis. The gear type power transmission mechanism operatively connected to the type continuously variable transmission mechanism is arranged in series.

【0007】なお、上記歯車式動力伝達機構は、変速比
を変化させる有段変速機構、一定の変速比で増速または
減速する変速機構、回転方向を変化させる逆転機構、デ
ィファレンシャル装置などで、ディファレンシャル装置
は動力伝達経路においてトロイダル型無段変速機構より
も下流側すなわち駆動輪側に配設されるが、変速機構や
逆転機構は上流側,下流側の何れに配設することも可能
である。
The gear type power transmission mechanism is a stepped transmission mechanism that changes a gear ratio, a transmission mechanism that speeds up or slows down at a constant gear ratio, a reverse mechanism that changes a rotation direction, a differential device, and the like. The device is arranged on the downstream side of the toroidal type continuously variable transmission mechanism, that is, on the drive wheel side in the power transmission path, but the transmission mechanism and the reverse rotation mechanism may be arranged on either the upstream side or the downstream side.

【0008】第3発明は、上記第1発明または第2発明
の車両用駆動装置において、前記電動モータおよび内燃
機関の出力はチェーンを介して前記第2軸線側へ伝達さ
れることを特徴とする。
A third invention is characterized in that, in the vehicle drive system according to the first invention or the second invention, the outputs of the electric motor and the internal combustion engine are transmitted to the second axis side through a chain. .

【0009】第4発明は、上記第1発明〜第3発明の何
れかの車両用駆動装置において、(c)車両の後進走行
時には前記電動モータを前進走行時の逆方向へ回転駆動
する逆回転制御手段と、(d)前記トロイダル型無段変
速機構の変速比を変化させるバリエータに加えられる反
力を、そのトロイダル型無段変速機構の回転方向に拘ら
ず受け止める変速制御手段とを有することを特徴とす
る。
A fourth aspect of the present invention is the vehicle drive device according to any one of the first to third aspects of the invention, in which (c) the reverse rotation of the electric motor is rotationally driven in a reverse direction during forward traveling when the vehicle is traveling backward. A control means and (d) a shift control means for receiving a reaction force applied to the variator that changes the gear ratio of the toroidal type continuously variable transmission mechanism regardless of the rotation direction of the toroidal type continuously variable transmission mechanism. Characterize.

【0010】なお、上記変速制御手段は、例えばバリエ
ータを変位させる油圧シリンダと、その油圧シリンダの
ピストンを挟んで形成される一対の油室内の油圧をそれ
ぞれ調圧する調圧手段とを有して構成される。
The gear shift control means includes, for example, a hydraulic cylinder for displacing the variator and pressure adjusting means for adjusting the hydraulic pressure in a pair of oil chambers formed by sandwiching the piston of the hydraulic cylinder. To be done.

【0011】[0011]

【発明の効果】第1発明,第2発明の車両用駆動装置に
おいては、無段変速機構としてトロイダル型無段変速機
構を採用し、電動モータおよび内燃機関が配設される第
1軸線と略平行な第2軸線上にそのトロイダル型無段変
速機構を配設したため、従来のように第1軸線および第
2軸線に跨がってベルト式無段変速機構を配設する場合
に比較して、第1軸線上における軸方向寸法が短くな
る。これにより車両搭載性が向上し、前輪駆動車のよう
に第1軸線が車幅方向と略平行となる姿勢で搭載する場
合でも、比較的容易に配置できるようになる。
In the vehicle drive device according to the first and second aspects of the invention, the toroidal type continuously variable transmission mechanism is adopted as the continuously variable transmission mechanism, and the toroidal type continuously variable transmission mechanism and the first axis line on which the electric motor and the internal combustion engine are arranged are substantially the same. Since the toroidal type continuously variable transmission mechanism is arranged on the parallel second axis, compared to the conventional case where the belt type continuously variable transmission mechanism is arranged across the first axis and the second axis. , The axial dimension on the first axis becomes shorter. As a result, the vehicle mountability is improved, and even when the vehicle is mounted in a posture in which the first axis is substantially parallel to the vehicle width direction as in a front-wheel drive vehicle, the vehicle can be relatively easily arranged.

【0012】特に、第2発明の車両用駆動装置は、上記
第2軸線上にトロイダル型無段変速機構と直列に歯車式
動力伝達機構が配設されているため、第1軸線上におけ
る軸方向寸法と第2軸線上における軸方向寸法とを略均
等にすることが可能で、駆動装置を全体としてコンパク
トに構成できる。
Particularly, in the vehicle drive device of the second invention, since the gear type power transmission mechanism is arranged in series with the toroidal type continuously variable transmission mechanism on the second axis, the axial direction on the first axis is set. The size and the axial size on the second axis can be made substantially equal, and the drive device can be made compact as a whole.

【0013】第3発明の車両用駆動装置は、電動モータ
および内燃機関の出力をチェーンを介して第2軸線側へ
伝達するようになっているため、例えば噛合い歯が傾斜
したはすば歯車を用いて動力伝達する場合のようにスラ
スト力を発生することがなく、スラスト力を受ける軸受
等が不要で軸方向寸法を一層短くできる。
In the vehicle drive device according to the third aspect of the invention, the outputs of the electric motor and the internal combustion engine are transmitted to the second axis side through the chain. Therefore, for example, a helical gear having meshed teeth is inclined. The thrust force is not generated unlike the case where power is transmitted by using, and a bearing or the like that receives the thrust force is unnecessary, and the axial dimension can be further shortened.

【0014】第4発明の車両用駆動装置は、トロイダル
型無段変速機構の変速比を制御する変速制御手段が、回
転方向に拘らずバリエータに加えられる反力を受け止め
るように構成され、逆回転制御手段によって電動モータ
が逆方向へ回転駆動されることにより車両が後進走行さ
せられるようになっているため、歯車式の逆転機構等が
不要で装置が簡単且つ安価に構成されるとともに、前進
走行と後進走行との切換えをスムーズに行うことができ
る。また、後進走行は一般に低負荷であるため、内燃機
関によって直接駆動するよりも、内燃機関により電動モ
ータを発電機として電気エネルギーを発生させて蓄電装
置に蓄え、その電気エネルギーで電動モータを作動させ
て走行する場合の方が燃料消費の点で有利であり、燃費
や排ガスを一層低減できる。
In the vehicle drive device according to the fourth aspect of the present invention, the gear shift control means for controlling the gear ratio of the toroidal type continuously variable transmission mechanism is constructed so as to receive the reaction force applied to the variator regardless of the rotation direction, and reverse rotation is performed. Since the electric motor is driven to rotate in the reverse direction by the control means, the vehicle is made to travel in the reverse direction. Therefore, a gear type reverse mechanism is not required and the device is simple and inexpensive, and the vehicle travels in the forward direction. It is possible to smoothly switch between reverse running and. In addition, since reverse traveling is generally low load, rather than directly driving by the internal combustion engine, electric energy is generated by the internal combustion engine as a generator and stored in the power storage device, and the electric motor is operated by the electric energy. Driving in this way is more advantageous in terms of fuel consumption, and fuel consumption and exhaust gas can be further reduced.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施例を図面に基
づいて詳細に説明する。図1は、本発明の一実施例であ
る車両用駆動装置10の構成図で、ガソリンエンジン等
の内燃機関14と電動機および発電機として機能する電
動モータ16とを駆動源として用いる所謂ハイブリッド
車両用のものである。内燃機関14および電動モータ1
6は共通の第1軸線上に直列に対向して配設され、それ
等の出力軸14aおよび16aはクラッチCを介して相
対回転不能に連結されるようになっているとともに、電
動モータ16の出力軸16aにはチェーンドライブ(ス
プロケット)20が取り付けられ、それ等のトルクをチ
ェーン22を介して動力伝達装置12に伝達する。動力
伝達装置12は、上記第1軸線と平行な第2軸線上に直
列に配設されたトロイダル型無段変速機構24,遊星歯
車式の減速・逆転機構26,および傘歯車式のディファ
レンシャル装置28を備えており、上記トルクはチェー
ンドリブン(スプロケット)30を介してトロイダル型
無段変速機構24に伝達され、減速・逆転機構26およ
びディファレンシャル装置28を介して、それ等の中心
すなわち第2軸線O上に配設された一対の伝達軸32,
34から図示しない駆動輪へ出力される。この車両用駆
動装置10は、上記第1軸線が車幅方向と略平行となる
姿勢で搭載される前輪駆動車用のものである。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a configuration diagram of a vehicle drive device 10 according to an embodiment of the present invention, which is a so-called hybrid vehicle that uses an internal combustion engine 14 such as a gasoline engine and an electric motor 16 functioning as an electric motor and a generator as drive sources. belongs to. Internal combustion engine 14 and electric motor 1
6 are arranged so as to face each other in series on a common first axis, and their output shafts 14a and 16a are coupled via a clutch C so that they cannot rotate relative to each other. A chain drive (sprocket) 20 is attached to the output shaft 16a, and torques thereof are transmitted to the power transmission device 12 via the chain 22. The power transmission device 12 includes a toroidal type continuously variable transmission mechanism 24, a planetary gear type speed reduction / reverse mechanism 26, and a bevel gear type differential device 28 which are arranged in series on a second axis parallel to the first axis. The torque is transmitted to the toroidal type continuously variable transmission mechanism 24 via a chain driven (sprocket) 30 and is transmitted to the center of the toroidal type continuously variable transmission mechanism 26 and the differential device 28, that is, the second axis O. A pair of transmission shafts 32 arranged above,
The signal is output from 34 to drive wheels (not shown). The vehicle drive device 10 is for a front-wheel drive vehicle that is mounted in a posture in which the first axis is substantially parallel to the vehicle width direction.

【0016】上記トロイダル型無段変速機構24は、粘
弾性の高いトラクションオイルを介してトルク伝達を行
うもので、本実施例ではダブルキャビティ型でフルトロ
イダル型のものが用いられている。図2は、かかるトロ
イダル型無段変速機構24の概略断面図で、第2軸線O
と同心の出力シャフト36にはベアリング38を介して
前記チェーンドリブン30が相対回転可能且つ軸方向の
移動可能に配設されているとともに、そのチェーンドリ
ブン30に対して相対回転不能に一対の入力ディスク4
0a,40bが配設されている。入力ディスク40a,
40bは互いに反対向き(背中合わせ)の姿勢で配設さ
れており、それぞれ複数のバリエータ(ローラ)42
a,42bを挟んで出力ディスク44a,44bと対向
させられている。出力ディスク44a,44bは、出力
シャフト36に対して相対回転不能且つ軸方向の移動可
能にそれぞれスプライン嵌合されており、一方の出力デ
ィスク44aが押圧用油圧シリンダ46によって図の左
方向へ押圧されることにより、バリエータ42a,42
bがそれぞれ出力ディスク44a,44bと入力ディス
ク40a,40bとの間で所定の押圧力で挟圧される。
他方の出力ディスク44bは、スナップリング48によ
って左方向への移動が阻止されている。
The toroidal type continuously variable transmission mechanism 24 transmits torque via traction oil having high viscoelasticity. In this embodiment, a double cavity type full toroidal type is used. FIG. 2 is a schematic sectional view of the toroidal type continuously variable transmission mechanism 24.
The chain driven 30 is disposed on an output shaft 36 concentric with the shaft 38 via a bearing 38 so as to be rotatable relative to and axially movable with respect to the chain driven 30. Four
0a and 40b are provided. Input disk 40a,
40b are arranged in opposite postures (back to back), and each has a plurality of variators (rollers) 42.
It is opposed to the output disks 44a and 44b with the a and 42b interposed therebetween. The output discs 44a and 44b are spline-fitted to the output shaft 36 such that they cannot rotate relative to each other and are movable in the axial direction. One of the output discs 44a is pushed to the left in the drawing by the pushing hydraulic cylinder 46. The variators 42a, 42
b is clamped between the output disks 44a and 44b and the input disks 40a and 40b with a predetermined pressing force.
The other output disc 44b is prevented from moving to the left by a snap ring 48.

【0017】上記バリエータ42a,42bは、それぞ
れ中心線Sa,Sbまわりの回転可能に配設されてお
り、入力ディスク40a,40bが第2軸線Oまわりに
回転させられると、トラクションオイルの粘弾性による
せん断力で連れ回りさせられ、出力ディスク44a,4
4bをそれぞれ入力ディスク40a,40bの逆まわり
に回転させる。このバリエータ42a,42bはまた、
油圧シリンダなどの図示しない変速制御手段によって中
心線Sa,Sbの傾斜角度、すなわち図2における左右
方向の傾斜が対称的に変化させられ、入力ディスク40
a,40bおよび出力ディスク44a,44bに対する
接触点から第2軸線Oまでの径寸法の比が連続的に変化
させられることにより、変速比(入力側の回転速度/出
力側の回転速度)を連続的に変化させる。かかるトロイ
ダル型無段変速機構24の変速比制御は、一般にベルト
式無段変速機構に比べて応答性が優れている。
The variators 42a and 42b are rotatably arranged around the center lines Sa and Sb, respectively. When the input disks 40a and 40b are rotated around the second axis O, the variators are viscoelastic. The output disks 44a, 4 are rotated by the shearing force.
4b is rotated in the reverse direction of the input disks 40a, 40b, respectively. The variators 42a and 42b are also
A shift control means (not shown) such as a hydraulic cylinder symmetrically changes the tilt angles of the center lines Sa and Sb, that is, the tilt in the left-right direction in FIG.
a, 40b and the output disks 44a, 44b, the ratio of the diameter dimension from the contact point to the second axis O is continuously changed, so that the gear ratio (input side rotation speed / output side rotation speed) is continuously changed. Change. The speed ratio control of the toroidal type continuously variable transmission mechanism 24 is generally more responsive than the belt type continuously variable transmission mechanism.

【0018】一方、上記トロイダル型無段変速機構24
は、車体に固設される一対のケース52a,52b内に
収容されており、その中に所定量だけ充填されたトラク
ションオイルに少なくとも一部が浸漬されることによ
り、バリエータ42a,42bと入力ディスク40a,
40bおよび出力ディスク44a,44bとの接触点
が、変速比に拘らず常に油浴方式で潤滑されるようにな
っている。ケース52a,52bとチェーンドリブン3
0との間はオイルシール54a,54bによって相対回
転を許容しつつ液密にシールされ、ケース52a,52
bと出力シャフト36との間はオイルシール56a,5
6bによって相対回転を許容しつつ液密にシールされて
いる。なお、出力シャフト36は中空で、その内部を前
記伝達軸32が挿通させられている。また、図2は第2
軸線Oの上半分のみを示す図であるが、トロイダル型無
段変速機構24は第2軸線Oを中心として略対称的に構
成されている。図1の動力伝達装置12も第2軸線Oの
上半分のみを示した骨子図である。
On the other hand, the toroidal type continuously variable transmission mechanism 24
Is housed in a pair of cases 52a, 52b fixedly mounted on the vehicle body, and at least a part thereof is immersed in the traction oil filled with a predetermined amount therein, so that the variators 42a, 42b and the input disk are 40a,
The contact points with the 40b and the output disks 44a, 44b are always lubricated by an oil bath method regardless of the gear ratio. Cases 52a, 52b and chain driven 3
The oil seals 54a and 54b are liquid-tightly sealed with oil seals 54a and 54b while permitting relative rotation.
b and the output shaft 36, oil seals 56a, 5 are provided.
A liquid-tight seal is provided by 6b while allowing relative rotation. The output shaft 36 is hollow, and the transmission shaft 32 is inserted through the output shaft 36. In addition, FIG.
Although only the upper half of the axis O is shown, the toroidal type continuously variable transmission mechanism 24 is configured substantially symmetrically about the second axis O. The power transmission device 12 of FIG. 1 is also a skeleton diagram showing only the upper half of the second axis O.

【0019】図1に戻って、前記減速・逆転機構26お
よびディファレンシャル装置28は歯車式動力伝達機構
に相当するもので、減速・逆転機構26は、3組のシン
プル遊星歯車装置58,60,62と、後進用ブレーキ
B1と、前進用ブレーキB2とを有して構成されてお
り、前記トロイダル型無段変速機構24の出力シャフト
36はシンプル遊星歯車装置58,60のサンギヤに一
体的に連結されている。そして、図示しないシフトレバ
ーのシフト操作に従って、後進用ブレーキB1が係合さ
せられ且つ前進用ブレーキB2が解放されることにより
車両を後進走行させる後進段が成立させられ、前進用ブ
レーキB2が係合させられ且つ後進用ブレーキB1が解
放されることにより車両を前進走行させる前進段が成立
させられ、両ブレーキB1およびB2が共に解放される
ことにより動力伝達を遮断する中立段(ニュートラル)
が成立させられる。また、この減速・逆転機構26は、
前進段および後進段共にそれぞれ所定の変速比で減速
(変速比>1)するようになっており、シンプル遊星歯
車装置62のキャリアからディファレンシャル装置28
に動力を出力する。なお、図1では3組のシンプル遊星
歯車装置58,60,62の各歯車の径寸法(ギヤ比)
が互いに等しいが、その径寸法は所望する変速比等に応
じて適宜設定される。
Returning to FIG. 1, the speed reduction / reverse rotation mechanism 26 and the differential device 28 correspond to a gear type power transmission mechanism. The speed reduction / reverse rotation mechanism 26 includes three sets of simple planetary gear devices 58, 60, 62. And a reverse brake B1 and a forward brake B2, and the output shaft 36 of the toroidal type continuously variable transmission mechanism 24 is integrally connected to the sun gears of the simple planetary gear devices 58 and 60. ing. Then, in accordance with a shift operation of a shift lever (not shown), the reverse brake B1 is engaged and the forward brake B2 is released to establish a reverse stage in which the vehicle travels backward, and the forward brake B2 is engaged. The reverse gear B1 is released and the reverse brake B1 is released to establish a forward gear for traveling the vehicle forward, and both brakes B1 and B2 are released to cut off power transmission (neutral).
Is established. In addition, this deceleration / reverse rotation mechanism 26
Both the forward speed and the reverse speed are decelerated at a predetermined gear ratio (gear ratio> 1), and the simple planetary gear device 62 moves from the carrier to the differential device 28.
Output power to. In FIG. 1, the diameter dimensions (gear ratio) of the respective gears of the three sets of simple planetary gear devices 58, 60, 62.
Are equal to each other, but the diameter dimension is appropriately set according to a desired gear ratio or the like.

【0020】一方、かかる車両用駆動装置10は、図3
に示す制御回路を備えている。かかる図3において、前
記電動モータ16はM(モータ)/G(ジェネレータ)
制御装置64を介してバッテリ等の蓄電装置66に接続
されており、蓄電装置66から電気エネルギーが供給さ
れて所定のトルクで回転駆動される回転駆動状態と、出
力軸16aが車両の走行に伴って回転駆動されるか内燃
機関14によって回転駆動される際に回生制御(回生制
動)で発電機として機能することにより蓄電装置66に
電気エネルギーを蓄積する蓄電状態と、出力軸16aが
自由回転することを許容する無負荷状態とに切り換えら
れる。また、前記内燃機関14は、燃料噴射量制御用ア
クチュエータ、スロットル制御用アクチュエータ、点火
時期制御用アクチュエータ、吸排気バルブ制御用アクチ
ュエータなどの内燃機関制御装置68によってその作動
状態が制御されるようになっており、内燃機関制御装置
68は上記M/G制御装置64と共にコントローラ70
によって制御される。
On the other hand, such a vehicle drive device 10 is shown in FIG.
The control circuit shown in FIG. In FIG. 3, the electric motor 16 is M (motor) / G (generator).
It is connected to a power storage device 66 such as a battery via the control device 64, and a rotary drive state in which electric energy is supplied from the power storage device 66 and is rotationally driven with a predetermined torque, and the output shaft 16a is accompanied by traveling of the vehicle. When it is rotationally driven by the internal combustion engine 14 or is rotationally driven by the internal combustion engine 14, it functions as a generator by regenerative control (regenerative braking) to accumulate electrical energy in the electrical storage device 66, and the output shaft 16a freely rotates. It is switched to a no-load state that allows the above. Further, the operating state of the internal combustion engine 14 is controlled by an internal combustion engine control device 68 such as a fuel injection amount control actuator, a throttle control actuator, an ignition timing control actuator, an intake / exhaust valve control actuator. The internal combustion engine control device 68, together with the M / G control device 64, has a controller 70.
Is controlled by

【0021】コントローラ70はCPU,RAM,RO
M等を有するマイクロコンピュータを含んで構成され、
予め設定されたプログラムに従って信号処理を実行する
ようになっており、例えば内燃機関14のみによって走
行するモード、電動モータ16のみによって走行するモ
ード、内燃機関14により電動モータ16を回転駆動し
て発電させながら走行するモードの3つの走行モードで
走行させる。コントローラ70はまた、図示しない油圧
制御回路を切り換えたり調圧制御を行ったりすることに
より、前記クラッチCや減速・逆転機構26の後進用ブ
レーキB1,前進用ブレーキB2を係合,解放制御する
とともに、トロイダル型無段変速機構24の押圧用油圧
シリンダ46の油圧や変速制御手段を制御する。このコ
ントローラ70には、上記各制御に必要な情報、例えば
シフトレバーの操作レンジや車速,アクセル操作量,ブ
レーキ操作の有無,蓄電状態などを表す信号がシフト位
置センサ72,車速センサ74,アクセル操作量センサ
76,ブレーキセンサ78,蓄電装置66などから供給
されるようになっている。なお、車両駆動出力装置80
は前記ディファレンシャル装置28や伝達軸32,34
等である。
The controller 70 is a CPU, RAM, RO
M including a microcomputer having
Signal processing is executed in accordance with a preset program. For example, a mode in which only the internal combustion engine 14 travels, a mode in which only the electric motor 16 travels, and the internal combustion engine 14 rotationally drives the electric motor 16 to generate electricity. While traveling, the vehicle is driven in three traveling modes. The controller 70 also controls engagement and disengagement of the clutch C and the reverse brake B1 and the forward brake B2 of the clutch C and the deceleration / reverse rotation mechanism 26 by switching a hydraulic control circuit (not shown) or performing pressure adjustment control. , To control the hydraulic pressure of the pressing hydraulic cylinder 46 of the toroidal type continuously variable transmission mechanism 24 and the shift control means. The controller 70 receives information necessary for each of the above-mentioned controls, such as signals indicating the shift lever operation range, vehicle speed, accelerator operation amount, brake operation presence / absence, power storage state, and the like, the shift position sensor 72, the vehicle speed sensor 74, and the accelerator operation. It is supplied from the quantity sensor 76, the brake sensor 78, the power storage device 66, and the like. The vehicle drive output device 80
Is the differential device 28 and the transmission shafts 32, 34.
And so on.

【0022】このような車両用駆動装置10において
は、無段変速機構として入力部材(入力ディスク40
a,40b)および出力部材(出力ディスク44a,4
4b)を同一軸線上に有するトロイダル型無段変速機構
24が用いられ、電動モータ16および内燃機関14が
配設される第1軸線と略平行な第2軸線O上にそのトロ
イダル型無段変速機構24を配設したため、第1軸線お
よび第2軸線に跨がってベルト式無段変速機構を配設す
る場合に比較して、第1軸線上における軸方向寸法が短
くなる。これにより車両搭載性が向上し、第1軸線が車
幅方向と略平行となる姿勢で配設される前輪駆動車に対
しても良好に搭載できる。
In such a vehicle drive device 10, an input member (input disk 40) is used as a continuously variable transmission mechanism.
a, 40b) and the output member (output discs 44a, 4a)
4b) on the same axis, a toroidal type continuously variable transmission mechanism 24 is used, and the toroidal type continuously variable transmission is arranged on a second axis O substantially parallel to the first axis on which the electric motor 16 and the internal combustion engine 14 are arranged. Since the mechanism 24 is provided, the axial dimension on the first axis is shorter than that in the case where the belt type continuously variable transmission mechanism is provided across the first axis and the second axis. As a result, the vehicle mountability is improved, and the vehicle can be satisfactorily mounted on a front-wheel drive vehicle in which the first axis is arranged so as to be substantially parallel to the vehicle width direction.

【0023】特に、本実施例では上記第2軸線O上にト
ロイダル型無段変速機構24と直列に減速・逆転機構2
6およびディファレンシャル装置28が配設されている
ため、第1軸線上における軸方向寸法と第2軸線O上に
おける軸方向寸法とが略均等になり、車両用駆動装置1
0が全体としてコンパクトに構成される。減速・逆転機
構26の変速比(減速比)に応じてトルクが増幅される
ため、内燃機関14や電動モータ16として小型(低出
力)のものを用いることが可能であるとともに、駆動輪
に動力を伝達する伝達軸32,34は第2軸線O上に配
設され、特に伝達軸32はトロイダル型無段変速機構2
4や減速・逆転機構26の中心を挿通させられているた
め、これ等の点でも車両用駆動装置10がコンパクトに
なる。
In particular, in this embodiment, the reduction / reverse rotation mechanism 2 is connected in series with the toroidal type continuously variable transmission mechanism 24 on the second axis O.
6 and the differential device 28 are arranged, the axial dimension on the first axis and the axial dimension on the second axis O become substantially equal, and the vehicle drive device 1 is provided.
0 is compactly constructed as a whole. Since the torque is amplified according to the gear ratio (reduction ratio) of the speed reduction / reverse rotation mechanism 26, it is possible to use a small size (low output) as the internal combustion engine 14 or the electric motor 16, and to drive the drive wheels. The transmission shafts 32 and 34 for transmitting the electric power are arranged on the second axis O, and particularly the transmission shaft 32 is the toroidal type continuously variable transmission mechanism 2
4 and the center of the deceleration / reverse rotation mechanism 26 are inserted, the vehicle drive device 10 is also compact in these respects.

【0024】また、本実施例ではチェーン22を用いて
第1軸線上の電動モータ16および内燃機関14の出力
を第2軸線O上のトロイダル型無段変速機構24に伝達
するようになっているため、例えば噛合い歯が傾斜した
はすば歯車を用いて動力伝達する場合のようにスラスト
力を発生することがなく、スラスト力を受ける軸受等が
不要で軸方向寸法を一層短くできる。
Further, in the present embodiment, the output of the electric motor 16 and the internal combustion engine 14 on the first axis is transmitted to the toroidal type continuously variable transmission mechanism 24 on the second axis O by using the chain 22. Therefore, for example, a thrust force is not generated unlike in the case of transmitting power using a helical gear with meshed teeth, and a bearing or the like for receiving the thrust force is unnecessary, and the axial dimension can be further shortened.

【0025】次に、本発明の他の実施例を説明する。な
お、以下の実施例において上記実施例と実質的に共通す
る部分には同一の符号を付して詳しい説明を省略する。
Next, another embodiment of the present invention will be described. Note that, in the following embodiments, portions substantially common to the above-mentioned embodiments are designated by the same reference numerals, and detailed description thereof will be omitted.

【0026】図4および図5の車両用駆動装置90は、
前記実施例の減速・逆転機構26の代わりに減速機構9
2を用いた点が異なる。この減速機構92は、前記シン
プル遊星歯車装置60,62および走行用ブレーキB3
のみにて構成され、走行用ブレーキB3が係合させられ
ることにより所定の変速比で減速して動力伝達する走行
段が成立させられるとともに、走行用ブレーキB3が解
放されることにより動力伝達を遮断する中立段(ニュー
トラル)が成立させられる。この走行用ブレーキB3は
前記前進用ブレーキB2と同じものであるが、本実施例
では前進および後進時に係合させられるため走行用ブレ
ーキB3という。また、トロイダル型無段変速機構24
の変速比は、図6に示す変速制御手段94によって制御
されるようになっているとともに、コントローラ70は
図7に示すフローチャートに従って後進制御を行い、電
動モータ16を前進走行時の逆方向へ回転駆動すること
により後進走行させるようになっている。
The vehicle drive unit 90 shown in FIGS. 4 and 5 is
A deceleration mechanism 9 instead of the deceleration / reverse rotation mechanism 26 of the above embodiment.
The difference is that 2 is used. The speed reduction mechanism 92 includes the simple planetary gear units 60 and 62 and the traveling brake B3.
The driving brake B3 is engaged to establish a traveling stage in which power is transmitted by decelerating at a predetermined gear ratio, and when the traveling brake B3 is released, power transmission is cut off. A neutral stage is established. The travel brake B3 is the same as the forward brake B2, but in the present embodiment, it is referred to as the travel brake B3 because it is engaged during forward and reverse travel. Further, the toroidal type continuously variable transmission 24
6 is controlled by the shift control means 94 shown in FIG. 6, and the controller 70 performs reverse control according to the flowchart shown in FIG. 7 to rotate the electric motor 16 in the reverse direction during forward traveling. It is designed to drive backwards when driven.

【0027】変速制御手段94は、前記バリエータ42
a(42b)の位置を図6の上下方向へ変位させること
により中心線Sa(Sb)の傾斜角度を変化させる油圧
シリンダ96、前進走行時にトロイダル型無段変速機構
24の変速比が所定の値となるように、油圧源98から
油圧シリンダ96の前進側油室100に供給される作動
油の油圧を調圧する前進時調圧弁102、および後進走
行時にトロイダル型無段変速機構24の変速比が所定の
値となるように、油圧源98から油圧シリンダ96の後
進側油室104に供給される作動油の油圧を調圧する後
進時調圧弁106を備えている。ディスク40a(40
b),44a(44b)およびバリエータ42a(42
b)に示す矢印は前進走行時の回転方向を表している
が、この時バリエータ42a(42b)には図の下方へ
向かう反力が加えられるため、前進側油室100内の油
圧を制御することにより、その反力を受け止めるととも
にバリエータ42a(42b)を上下方向へ移動させて
所定の変速比とすることができる。また、各部材の回転
方向が逆向きとなる後進走行時には、バリエータ42a
(42b)には図の上方へ向かう反力が加えられるた
め、後進側油室104内の油圧を制御することにより、
その反力を受け止めるとともにバリエータ42a(42
b)を上下方向へ移動させて所定の変速比とすることが
できる。調圧弁102,106は一対の油室100,1
04内の油圧をそれぞれ調圧する調圧手段で、この油圧
制御は、例えば入出力側の部材の回転速度をそれぞれ検
出して所定の変速比となるようにフィードバック制御す
れば良い。なお、前進走行および後進走行に拘らずトロ
イダル型無段変速機構24の回転方向が一定の前記第1
実施例では、上記後進時調圧弁106は不要である。
The shift control means 94 includes the variator 42.
The hydraulic cylinder 96 that changes the inclination angle of the center line Sa (Sb) by displacing the position of a (42b) in the vertical direction of FIG. 6, the gear ratio of the toroidal type continuously variable transmission mechanism 24 when traveling forward has a predetermined value. As described above, the forward pressure regulating valve 102 that regulates the hydraulic pressure of the hydraulic oil supplied from the hydraulic power source 98 to the forward side oil chamber 100 of the hydraulic cylinder 96, and the gear ratio of the toroidal continuously variable transmission mechanism 24 during reverse traveling are A reverse travel pressure adjusting valve 106 is provided to adjust the hydraulic pressure of the hydraulic oil supplied from the hydraulic power source 98 to the reverse oil chamber 104 of the hydraulic cylinder 96 so as to have a predetermined value. Disc 40a (40
b), 44a (44b) and variator 42a (42
The arrow shown in b) represents the rotation direction during forward traveling, but at this time, since the reaction force directed downward in the figure is applied to the variator 42a (42b), the hydraulic pressure in the forward oil chamber 100 is controlled. As a result, the reaction force can be received and the variator 42a (42b) can be moved in the vertical direction to achieve a predetermined gear ratio. Further, when the vehicle is traveling in the reverse direction in which the rotational directions of the respective members are opposite,
Since a reaction force directed upward in the figure is applied to (42b), by controlling the hydraulic pressure in the reverse side oil chamber 104,
The reaction force is received and the variator 42a (42
b) can be moved in the vertical direction to achieve a predetermined gear ratio. The pressure regulating valves 102, 106 are a pair of oil chambers 100, 1
This hydraulic pressure control may be performed by feedback control such that the rotational speeds of the members on the input and output sides are detected and a predetermined gear ratio is achieved, by means of a pressure adjusting means for adjusting the hydraulic pressure in 04. It should be noted that the first rotating direction of the toroidal type continuously variable transmission mechanism 24 is constant regardless of whether the vehicle travels forward or backward.
In the embodiment, the reverse travel pressure adjusting valve 106 is unnecessary.

【0028】図7の後進制御では、先ずステップS1に
おいて、シフト位置センサ72から供給される信号に基
づいてシフトレバーの操作レンジが「R(リバース)」
か否かを判断し、Rレンジの場合にはステップS2でク
ラッチCを解放するとともに内燃機関14の作動を停止
させる。ステップS3では、変速制御手段94によるバ
リエータ反力の受け方向を反対すなわち後進側とし、後
進時調圧弁106によって後進側油室104の油圧を調
圧して変速比を制御するとともに、走行用ブレーキB3
を係合させる。その後、ステップS4で、アクセル操作
量などに応じて電動モータ16を前進走行時と逆方向へ
回転駆動することにより、車両を後進走行させる。コン
トローラ70による一連の信号処理のうち、このステッ
プS4を実行する部分は請求項4の逆回転制御手段に相
当する。なお、登坂路で停止してRレンジへ操作された
場合でも、アクセル操作量が零の状態では電動モータ1
6を回転不能にロックしておくようにすればヒルホール
ドが可能である。
In the reverse control of FIG. 7, first, in step S1, the operation range of the shift lever is "R (reverse)" based on the signal supplied from the shift position sensor 72.
If it is in the R range, the clutch C is released and the operation of the internal combustion engine 14 is stopped in step S2. In step S3, the direction in which the variator reaction force is received by the shift control means 94 is set to the opposite direction, that is, the reverse side, and the reverse pressure regulator 106 regulates the hydraulic pressure in the reverse side oil chamber 104 to control the gear ratio, and the traveling brake B3
Is engaged. After that, in step S4, the vehicle is made to travel in reverse by rotationally driving the electric motor 16 in the direction opposite to that in the case of traveling in forward, depending on the accelerator operation amount and the like. Of the series of signal processing by the controller 70, the part that executes this step S4 corresponds to the reverse rotation control means of claim 4. Even when the vehicle is stopped on an uphill road and operated to the R range, the electric motor 1 is operated when the accelerator operation amount is zero.
Hill hold is possible if 6 is locked so that it cannot rotate.

【0029】本実施例では、前記第1実施例と同様の効
果が得られる他、変速制御手段94が回転方向に拘らず
バリエータ反力を受け止めるように構成され、電動モー
タ16が逆方向へ回転駆動されることにより車両が後進
走行させられるようになっているため、歯車式の逆転機
構すなわち前記シンプル遊星歯車装置58および後進用
ブレーキB1が不要となり、車両用駆動装置90が簡単
且つ安価に構成される。また、前進走行と後進走行とを
切り換える場合、前記実施例では前進用ブレーキB2お
よび後進用ブレーキB1をそれぞれ係合または解放する
必要があるが、本実施例では走行用ブレーキB3を係合
させたまま切り換えることが可能であるため、前後進の
切換えをスムーズに行うことができる。更に、後進走行
は一般に低負荷であるため、内燃機関14によって直接
駆動するよりも、内燃機関14により電動モータ16を
発電機として電気エネルギーを発生させて蓄電装置66
に蓄え、その電気エネルギーで電動モータ16を作動さ
せて走行する場合の方が燃料消費の点で有利であり、燃
費や排ガスを一層低減できる。
In this embodiment, the same effect as in the first embodiment can be obtained, and in addition, the shift control means 94 is configured to receive the variator reaction force regardless of the rotation direction, and the electric motor 16 rotates in the opposite direction. Since the vehicle is made to travel in reverse by being driven, the gear type reverse mechanism, that is, the simple planetary gear device 58 and the reverse brake B1 are not required, and the vehicle drive device 90 is configured easily and inexpensively. To be done. When switching between forward traveling and backward traveling, it is necessary to engage or release the forward brake B2 and the backward brake B1 in the above-described embodiment, but in the present embodiment, the traveling brake B3 is engaged. Since it is possible to switch as it is, it is possible to smoothly switch between forward and reverse. Further, since the reverse traveling is generally low in load, the electric power is generated by the internal combustion engine 14 using the electric motor 16 as a generator to generate electric energy, rather than being directly driven by the internal combustion engine 14.
Is more advantageous in terms of fuel consumption when traveling by operating the electric motor 16 with the electric energy, and fuel consumption and exhaust gas can be further reduced.

【0030】以上、本発明の実施例を図面に基づいて詳
細に説明したが、本発明は他の態様で実施することもで
きる。
Although the embodiment of the present invention has been described in detail with reference to the drawings, the present invention can be embodied in other forms.

【0031】例えば、前記実施例のトロイダル型無段変
速機構24はダブルキャビティ型で且つフルトロイダル
型であったが、シングルキャビティ型であっても良いし
ハーフトロイダル型であっても良い。また、押圧用油圧
シリンダ46によって所定の押圧力を発生させるように
なっていたが、ローディングカム装置などで押圧力を発
生させるようにすることもできるし、油浴方式の代わり
にポンプ等でトラクションオイルを汲み上げて強制潤滑
するようにしても良いなど、種々の形態のトロイダル型
無段変速機構を採用できる。
For example, the toroidal type continuously variable transmission 24 of the above embodiment is a double cavity type and a full toroidal type, but it may be a single cavity type or a half toroidal type. Further, although a predetermined pressing force is generated by the pressing hydraulic cylinder 46, the pressing force may be generated by a loading cam device or the like, or a traction may be performed by a pump or the like instead of the oil bath system. Various types of toroidal-type continuously variable transmission mechanisms can be adopted, such as pumping oil for forced lubrication.

【0032】また、前記実施例では歯車式動力伝達機構
として遊星歯車式の減速・逆転機構26または減速機構
92とディファレンシャル装置28とを備えていたが、
この歯車式動力伝達機構の内容は必要に応じて適宜変更
され得、例えば遊星歯車式のディファレンシャル装置を
採用することもできる。シングルキャビティ型のトロイ
ダル型無段変速機構を用いる場合には、減速・逆転機構
26や減速機構92とディファレンシャル装置28との
間にトロイダル型無段変速機構を配置し、チェーン22
から減速・逆転機構26や減速機構92に動力が伝達さ
れるようにすることもできるなど、トロイダル型無段変
速機構と歯車式動力伝達機構との配設形態,連結形態は
適宜変更できる。
In the above embodiment, the planetary gear type reduction / reverse rotation mechanism 26 or reduction mechanism 92 and the differential device 28 are provided as the gear type power transmission mechanism.
The contents of the gear type power transmission mechanism can be appropriately changed as necessary, and for example, a planetary gear type differential device can be adopted. When the single cavity type toroidal type continuously variable transmission mechanism is used, the toroidal type continuously variable transmission mechanism is arranged between the reduction / reverse rotation mechanism 26 or the reduction mechanism 92 and the differential device 28, and the chain 22
It is also possible to transmit power from the deceleration / reverse rotation mechanism 26 to the speed reduction mechanism 92. The arrangement and connection of the toroidal type continuously variable transmission mechanism and the gear type power transmission mechanism can be appropriately changed.

【0033】また、前記実施例では内燃機関14および
電動モータ16の何れか一方のみで走行するようになっ
ていたが、高負荷走行時などに両方の出力で走行するモ
ードを設けることもできるなど、走行モードの種類は適
宜設定できる。
Further, in the above embodiment, only one of the internal combustion engine 14 and the electric motor 16 is used for traveling, but it is also possible to provide a mode in which both outputs are used during high load traveling. The type of traveling mode can be set appropriately.

【0034】また、前記実施例では内燃機関14の出力
軸14aと電動モータ16の出力軸16aとがクラッチ
Cを介して連結されていたが、それ等を直接連結して常
時一体回転するようにしても良いし、遊星歯車装置など
の出力合成手段によって両者の出力を合成するようにし
ても良い。
Further, in the above embodiment, the output shaft 14a of the internal combustion engine 14 and the output shaft 16a of the electric motor 16 are connected via the clutch C, but they are directly connected so that they always rotate integrally. Alternatively, the outputs of the two may be combined by an output combining unit such as a planetary gear device.

【0035】また、前記実施例ではチェーン22によっ
て第1軸線から第2軸線Oへ動力伝達するようになって
いたが、歯車など他の動力伝達手段を用いることも可能
である。
Further, in the above-mentioned embodiment, the power is transmitted from the first axis to the second axis O by the chain 22, but other power transmission means such as gears can be used.

【0036】また、前記図6の変速制御手段94は油圧
シリンダ96によってバリエータ42a,42bを変位
させて変速比を制御するようになっていたが、電動モー
タおよび送りねじを用いて変位させるなど、回転方向に
拘らずバリエータ反力を受け止め且つ変位させることが
できる他の種々の変速制御手段を採用することができ
る。
Further, the shift control means 94 of FIG. 6 is arranged to control the gear ratio by displacing the variators 42a and 42b by means of the hydraulic cylinder 96. Various other shift control means capable of receiving and displacing the variator reaction force regardless of the rotation direction can be adopted.

【0037】また、前記図7のフローチャートでは、ス
テップS2でクラッチCを解放するとともに内燃機関1
4を停止するようになっていたが、クラッチCを解放す
るだけでも良い。
In the flow chart of FIG. 7, the clutch C is released and the internal combustion engine 1 is released in step S2.
However, the clutch C may be released only.

【0038】その他一々例示はしないが、本発明は当業
者の知識に基づいて種々の変更,改良を加えた態様で実
施することができる。
Although not specifically exemplified, the present invention can be embodied with various modifications and improvements based on the knowledge of those skilled in the art.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例である車両用駆動装置の構成
を説明する図である。
FIG. 1 is a diagram illustrating a configuration of a vehicle drive device that is an embodiment of the present invention.

【図2】図1の車両用駆動装置におけるトロイダル型無
段変速機構の概略断面図である。
FIG. 2 is a schematic cross-sectional view of a toroidal type continuously variable transmission mechanism in the vehicle drive device of FIG.

【図3】図1の車両用駆動装置の制御系統を説明するブ
ロック線図である。
FIG. 3 is a block diagram illustrating a control system of the vehicle drive device of FIG.

【図4】本発明の別の実施例を説明する図で、図1に対
応する図である。
FIG. 4 is a diagram for explaining another embodiment of the present invention and is a diagram corresponding to FIG. 1.

【図5】図4の実施例の制御系統を説明するブロック線
図である。
5 is a block diagram illustrating a control system of the embodiment of FIG.

【図6】図4の実施例においてトロイダル型無段変速機
構の変速比を制御する変速制御手段の構成を説明する図
である。
6 is a diagram illustrating a configuration of a shift control means for controlling a gear ratio of the toroidal type continuously variable transmission mechanism in the embodiment of FIG.

【図7】図4の実施例において後進走行する場合の作動
を説明するフローチャートである。
FIG. 7 is a flow chart for explaining an operation when the vehicle travels backward in the embodiment of FIG.

【符号の説明】[Explanation of symbols]

10,90:車両用駆動装置 22:チェーン 24:トロイダル型無段変速機構 26:減速・逆転機構(歯車式動力伝達機構) 28:ディファレンシャル装置(歯車式動力伝達機構) 42a,42b:バリエータ 92:減速機構(歯車式動力伝達機構) 94:変速制御手段 O:第2軸線 ステップS4:逆回転制御手段 10, 90: Drive device for vehicle 22: Chain 24: Toroidal type continuously variable transmission mechanism 26: Reduction / reverse rotation mechanism (gear type power transmission mechanism) 28: Differential device (gear type power transmission mechanism) 42a, 42b: Variator 92: Reduction mechanism (gear type power transmission mechanism) 94: shift control means O: second axis step S4: reverse rotation control means

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 電動モータおよび内燃機関を駆動源と
し、それ等の出力を無段変速機構を介して駆動輪側へ伝
達する車両用駆動装置において、 前記電動モータおよび内燃機関を共通の第1軸線上に直
列に配設するとともに、該第1軸線と略平行な第2軸線
上に前記無段変速機構としてトロイダル型無段変速機構
を配設したことを特徴とする車両用駆動装置。
1. A vehicle drive device in which an electric motor and an internal combustion engine are used as drive sources, and outputs thereof are transmitted to a drive wheel side through a continuously variable transmission mechanism. A toroidal continuously variable transmission mechanism is disposed as a continuously variable transmission mechanism on a second axis line that is substantially parallel to the first axis line and is arranged in series on the axis line.
【請求項2】 電動モータおよび内燃機関を駆動源と
し、それ等の出力を無段変速機構を介して駆動輪側へ伝
達する車両用駆動装置において、 前記電動モータおよび内燃機関を共通の第1軸線上に直
列に配設するとともに、該第1軸線と略平行な第2軸線
上に、前記無段変速機構としてのトロイダル型無段変速
機構、および該トロイダル型無段変速機構に作動的に連
結される歯車式動力伝達機構を直列に配設したことを特
徴とする車両用駆動装置。
2. A vehicle drive device in which an electric motor and an internal combustion engine are used as drive sources and outputs thereof are transmitted to a drive wheel side through a continuously variable transmission mechanism, wherein the electric motor and the internal combustion engine are common to each other. The toroidal type continuously variable transmission mechanism as the continuously variable transmission mechanism and the toroidal type continuously variable transmission mechanism are operatively arranged on the second axis line substantially parallel to the first axis line while being arranged in series on the axis line. A vehicle drive device in which gear-type power transmission mechanisms to be connected are arranged in series.
【請求項3】 前記電動モータおよび内燃機関の出力は
チェーンを介して前記第2軸線側へ伝達される請求項1
または2に記載の車両用駆動装置。
3. Outputs of the electric motor and the internal combustion engine are transmitted to the second axis side via a chain.
Alternatively, the vehicle drive device according to item 2.
【請求項4】 車両の後進走行時には前記電動モータを
前進走行時の逆方向へ回転駆動する逆回転制御手段と、 前記トロイダル型無段変速機構の変速比を変化させるバ
リエータに加えられる反力を、該トロイダル型無段変速
機構の回転方向に拘らず受け止める変速制御手段とを有
する請求項1乃至3の何れか1項に記載の車両用駆動装
置。
4. A reverse rotation control means for rotationally driving the electric motor in a reverse direction during forward running of the vehicle and a reaction force applied to a variator for changing a gear ratio of the toroidal type continuously variable transmission mechanism. The vehicle drive device according to any one of claims 1 to 3, further comprising: a shift control unit that receives the toroidal-type continuously variable transmission mechanism regardless of a rotation direction thereof.
JP17736395A 1995-07-13 1995-07-13 Vehicle drive system Expired - Fee Related JP3097505B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17736395A JP3097505B2 (en) 1995-07-13 1995-07-13 Vehicle drive system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17736395A JP3097505B2 (en) 1995-07-13 1995-07-13 Vehicle drive system

Publications (2)

Publication Number Publication Date
JPH0924743A true JPH0924743A (en) 1997-01-28
JP3097505B2 JP3097505B2 (en) 2000-10-10

Family

ID=16029658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17736395A Expired - Fee Related JP3097505B2 (en) 1995-07-13 1995-07-13 Vehicle drive system

Country Status (1)

Country Link
JP (1) JP3097505B2 (en)

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100300716B1 (en) * 1997-12-31 2001-11-22 이계안 Hybrid-continuously variable transmission for vehicle
KR100302770B1 (en) * 1997-12-31 2001-11-30 이계안 Continuously variable transmission
KR100302772B1 (en) * 1997-12-31 2001-11-30 이계안 Continuously variable transmission
US7363996B2 (en) 2004-11-12 2008-04-29 Toyota Jidosha Kabushiki Kaisha Vehicular drive system
US7455611B2 (en) * 2003-08-11 2008-11-25 Fallbrook Technologies Inc. Continuously variable planetary gear set
USRE41892E1 (en) 1997-09-02 2010-10-26 Fallbrook Technologies Inc. Continuously variable transmission
US8845485B2 (en) 2011-04-04 2014-09-30 Fallbrook Intellectual Property Company Llc Auxiliary power unit having a continuously variable transmission
US8852050B2 (en) 2008-08-26 2014-10-07 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US8870711B2 (en) 2008-10-14 2014-10-28 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US8888643B2 (en) 2010-11-10 2014-11-18 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US8900085B2 (en) 2007-07-05 2014-12-02 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US8920285B2 (en) 2004-10-05 2014-12-30 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US8996263B2 (en) 2007-11-16 2015-03-31 Fallbrook Intellectual Property Company Llc Controller for variable transmission
US9017207B2 (en) 2006-06-26 2015-04-28 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9022889B2 (en) 2005-10-28 2015-05-05 Fallbrook Intellectual Property Company Llc Electromotive drives
US9046158B2 (en) 2003-02-28 2015-06-02 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9074674B2 (en) 2008-06-23 2015-07-07 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9086145B2 (en) 2006-11-08 2015-07-21 Fallbrook Intellectual Property Company Llc Clamping force generator
US9121464B2 (en) 2005-12-09 2015-09-01 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9182018B2 (en) 2008-02-29 2015-11-10 Fallbrook Intellectual Property Company Llc Continuously and/or infinitely variable transmissions and methods therefor
US9239099B2 (en) 2007-02-16 2016-01-19 Fallbrook Intellectual Property Company Llc Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor
US9249880B2 (en) 2007-12-21 2016-02-02 Fallbrook Intellectual Property Company Llc Automatic transmissions and methods therefor
US9273760B2 (en) 2007-04-24 2016-03-01 Fallbrook Intellectual Property Company Llc Electric traction drives
US9279482B2 (en) 2009-04-16 2016-03-08 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9328807B2 (en) 2007-02-01 2016-05-03 Fallbrook Intellectual Property Company Llc Systems and methods for control of transmission and/or prime mover
US9341246B2 (en) 2005-11-22 2016-05-17 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9360089B2 (en) 2010-03-03 2016-06-07 Fallbrook Intellectual Property Company Llc Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor
US9365203B2 (en) 2008-08-05 2016-06-14 Fallbrook Intellectual Property Company Llc Systems and methods for control of transmission and/or prime mover
US9371894B2 (en) 2007-02-12 2016-06-21 Fallbrook Intellectual Property Company Llc Continuously variable transmissions and methods therefor
US9611921B2 (en) 2012-01-23 2017-04-04 Fallbrook Intellectual Property Company Llc Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor
US9618100B2 (en) 2008-05-07 2017-04-11 Fallbrook Intellectual Property Company Llc Assemblies and methods for clamping force generation
US9677650B2 (en) 2013-04-19 2017-06-13 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9683640B2 (en) 2008-06-06 2017-06-20 Fallbrook Intellectual Property Company Llc Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor
US9683638B2 (en) 2005-12-30 2017-06-20 Fallbrook Intellectual Property Company Llc Continuously variable gear transmission
US9945456B2 (en) 2007-06-11 2018-04-17 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US10047861B2 (en) 2016-01-15 2018-08-14 Fallbrook Intellectual Property Company Llc Systems and methods for controlling rollback in continuously variable transmissions
US10458526B2 (en) 2016-03-18 2019-10-29 Fallbrook Intellectual Property Company Llc Continuously variable transmissions, systems and methods
US11174922B2 (en) 2019-02-26 2021-11-16 Fallbrook Intellectual Property Company Llc Reversible variable drives and systems and methods for control in forward and reverse directions
US11215268B2 (en) 2018-11-06 2022-01-04 Fallbrook Intellectual Property Company Llc Continuously variable transmissions, synchronous shifting, twin countershafts and methods for control of same
US11667351B2 (en) 2016-05-11 2023-06-06 Fallbrook Intellectual Property Company Llc Systems and methods for automatic configuration and automatic calibration of continuously variable transmissions and bicycles having continuously variable transmission

Cited By (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE41892E1 (en) 1997-09-02 2010-10-26 Fallbrook Technologies Inc. Continuously variable transmission
KR100302770B1 (en) * 1997-12-31 2001-11-30 이계안 Continuously variable transmission
KR100302772B1 (en) * 1997-12-31 2001-11-30 이계안 Continuously variable transmission
KR100300716B1 (en) * 1997-12-31 2001-11-22 이계안 Hybrid-continuously variable transmission for vehicle
US9046158B2 (en) 2003-02-28 2015-06-02 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9732848B2 (en) 2003-02-28 2017-08-15 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US10428939B2 (en) 2003-02-28 2019-10-01 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US7540818B2 (en) * 2003-08-11 2009-06-02 Fallbrook Technologies Inc. Continuously variable planetary gear set
US7654928B2 (en) * 2003-08-11 2010-02-02 Fallbrook Technologies Inc. Continuously variable planetary gear set
US7455611B2 (en) * 2003-08-11 2008-11-25 Fallbrook Technologies Inc. Continuously variable planetary gear set
US7462123B2 (en) * 2003-08-11 2008-12-09 Fallbrook Technologies Inc. Continuously variable planetary gear set
US8920285B2 (en) 2004-10-05 2014-12-30 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US10036453B2 (en) 2004-10-05 2018-07-31 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US7363996B2 (en) 2004-11-12 2008-04-29 Toyota Jidosha Kabushiki Kaisha Vehicular drive system
US9506562B2 (en) 2005-10-28 2016-11-29 Fallbrook Intellectual Property Company Llc Electromotive drives
US9022889B2 (en) 2005-10-28 2015-05-05 Fallbrook Intellectual Property Company Llc Electromotive drives
US9950608B2 (en) 2005-10-28 2018-04-24 Fallbrook Intellectual Property Company Llc Electromotive drives
US9709138B2 (en) 2005-11-22 2017-07-18 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US10711869B2 (en) 2005-11-22 2020-07-14 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9341246B2 (en) 2005-11-22 2016-05-17 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US11454303B2 (en) 2005-12-09 2022-09-27 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9121464B2 (en) 2005-12-09 2015-09-01 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US10208840B2 (en) 2005-12-09 2019-02-19 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US11598397B2 (en) 2005-12-30 2023-03-07 Fallbrook Intellectual Property Company Llc Continuously variable gear transmission
US9683638B2 (en) 2005-12-30 2017-06-20 Fallbrook Intellectual Property Company Llc Continuously variable gear transmission
US9726282B2 (en) 2006-06-26 2017-08-08 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9017207B2 (en) 2006-06-26 2015-04-28 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9086145B2 (en) 2006-11-08 2015-07-21 Fallbrook Intellectual Property Company Llc Clamping force generator
US9676391B2 (en) 2007-02-01 2017-06-13 Fallbrook Intellectual Property Company Llc Systems and methods for control of transmission and/or prime mover
US9878719B2 (en) 2007-02-01 2018-01-30 Fallbrook Intellectual Property Company Llc Systems and methods for control of transmission and/or prime mover
US10703372B2 (en) 2007-02-01 2020-07-07 Fallbrook Intellectual Property Company Llc Systems and methods for control of transmission and/or prime mover
US9328807B2 (en) 2007-02-01 2016-05-03 Fallbrook Intellectual Property Company Llc Systems and methods for control of transmission and/or prime mover
US9371894B2 (en) 2007-02-12 2016-06-21 Fallbrook Intellectual Property Company Llc Continuously variable transmissions and methods therefor
US10260607B2 (en) 2007-02-12 2019-04-16 Fallbrook Intellectual Property Company Llc Continuously variable transmissions and methods therefor
US10094453B2 (en) 2007-02-16 2018-10-09 Fallbrook Intellectual Property Company Llc Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor
US9239099B2 (en) 2007-02-16 2016-01-19 Fallbrook Intellectual Property Company Llc Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor
US9273760B2 (en) 2007-04-24 2016-03-01 Fallbrook Intellectual Property Company Llc Electric traction drives
US9574643B2 (en) 2007-04-24 2017-02-21 Fallbrook Intellectual Property Company Llc Electric traction drives
US10056811B2 (en) 2007-04-24 2018-08-21 Fallbrook Intellectual Property Company Llc Electric traction drives
US9945456B2 (en) 2007-06-11 2018-04-17 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9869388B2 (en) 2007-07-05 2018-01-16 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US10260629B2 (en) 2007-07-05 2019-04-16 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US8900085B2 (en) 2007-07-05 2014-12-02 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US8996263B2 (en) 2007-11-16 2015-03-31 Fallbrook Intellectual Property Company Llc Controller for variable transmission
US10100927B2 (en) 2007-11-16 2018-10-16 Fallbrook Intellectual Property Company Llc Controller for variable transmission
US11125329B2 (en) 2007-11-16 2021-09-21 Fallbrook Intellectual Property Company Llc Controller for variable transmission
US9249880B2 (en) 2007-12-21 2016-02-02 Fallbrook Intellectual Property Company Llc Automatic transmissions and methods therefor
US10704687B2 (en) 2007-12-21 2020-07-07 Fallbrook Intellectual Property Company Llc Automatic transmissions and methods therefor
US9739375B2 (en) 2007-12-21 2017-08-22 Fallbrook Intellectual Property Company Llc Automatic transmissions and methods therefor
US9850993B2 (en) 2008-02-29 2017-12-26 Fallbrook Intellectual Property Company Llc Continuously and/or infinitely variable transmissions and methods therefor
US9182018B2 (en) 2008-02-29 2015-11-10 Fallbrook Intellectual Property Company Llc Continuously and/or infinitely variable transmissions and methods therefor
US9618100B2 (en) 2008-05-07 2017-04-11 Fallbrook Intellectual Property Company Llc Assemblies and methods for clamping force generation
US9683640B2 (en) 2008-06-06 2017-06-20 Fallbrook Intellectual Property Company Llc Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor
US10634224B2 (en) 2008-06-06 2020-04-28 Fallbrook Intellectual Property Company Llc Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor
US9528561B2 (en) 2008-06-23 2016-12-27 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9074674B2 (en) 2008-06-23 2015-07-07 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US10066713B2 (en) 2008-06-23 2018-09-04 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9878717B2 (en) 2008-08-05 2018-01-30 Fallbrook Intellectual Property Company Llc Systems and methods for control of transmission and/or prime mover
US9365203B2 (en) 2008-08-05 2016-06-14 Fallbrook Intellectual Property Company Llc Systems and methods for control of transmission and/or prime mover
US10704657B2 (en) 2008-08-26 2020-07-07 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US8852050B2 (en) 2008-08-26 2014-10-07 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9903450B2 (en) 2008-08-26 2018-02-27 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9574642B2 (en) 2008-10-14 2017-02-21 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US10253880B2 (en) 2008-10-14 2019-04-09 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US8870711B2 (en) 2008-10-14 2014-10-28 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9920823B2 (en) 2009-04-16 2018-03-20 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9279482B2 (en) 2009-04-16 2016-03-08 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US10746270B2 (en) 2009-04-16 2020-08-18 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9360089B2 (en) 2010-03-03 2016-06-07 Fallbrook Intellectual Property Company Llc Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor
US10066712B2 (en) 2010-03-03 2018-09-04 Fallbrook Intellectual Property Company Llc Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor
US8888643B2 (en) 2010-11-10 2014-11-18 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9291251B2 (en) 2010-11-10 2016-03-22 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US10197147B2 (en) 2010-11-10 2019-02-05 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US8845485B2 (en) 2011-04-04 2014-09-30 Fallbrook Intellectual Property Company Llc Auxiliary power unit having a continuously variable transmission
US10428915B2 (en) 2012-01-23 2019-10-01 Fallbrook Intellectual Property Company Llc Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor
US9611921B2 (en) 2012-01-23 2017-04-04 Fallbrook Intellectual Property Company Llc Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor
US10323732B2 (en) 2013-04-19 2019-06-18 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9677650B2 (en) 2013-04-19 2017-06-13 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US10920882B2 (en) 2016-01-15 2021-02-16 Fallbrook Intellectual Property Company Llc Systems and methods for controlling rollback in continuously variable transmissions
US11306818B2 (en) 2016-01-15 2022-04-19 Fallbrook Intellectual Property Company Llc Systems and methods for controlling rollback in continuously variable transmissions
US10047861B2 (en) 2016-01-15 2018-08-14 Fallbrook Intellectual Property Company Llc Systems and methods for controlling rollback in continuously variable transmissions
US10458526B2 (en) 2016-03-18 2019-10-29 Fallbrook Intellectual Property Company Llc Continuously variable transmissions, systems and methods
US11667351B2 (en) 2016-05-11 2023-06-06 Fallbrook Intellectual Property Company Llc Systems and methods for automatic configuration and automatic calibration of continuously variable transmissions and bicycles having continuously variable transmission
US11215268B2 (en) 2018-11-06 2022-01-04 Fallbrook Intellectual Property Company Llc Continuously variable transmissions, synchronous shifting, twin countershafts and methods for control of same
US11624432B2 (en) 2018-11-06 2023-04-11 Fallbrook Intellectual Property Company Llc Continuously variable transmissions, synchronous shifting, twin countershafts and methods for control of same
US11174922B2 (en) 2019-02-26 2021-11-16 Fallbrook Intellectual Property Company Llc Reversible variable drives and systems and methods for control in forward and reverse directions
US11530739B2 (en) 2019-02-26 2022-12-20 Fallbrook Intellectual Property Company Llc Reversible variable drives and systems and methods for control in forward and reverse directions

Also Published As

Publication number Publication date
JP3097505B2 (en) 2000-10-10

Similar Documents

Publication Publication Date Title
JP3097505B2 (en) Vehicle drive system
US6344008B1 (en) Hybrid vehicle
US6269895B1 (en) Hybrid drive system
JP3535490B2 (en) Power transmission device
JP3327263B2 (en) Control device for hybrid drive unit
JP4332518B2 (en) Power transmission control device
JP3612773B2 (en) Continuously variable transmission
US20040077444A1 (en) Vehicular Transmission
WO1998043002A1 (en) Toroidal continuously variable transmission
US20020173895A1 (en) Control system of a continuously variable transmission for vehicle and method
WO2003035422A1 (en) Output power split hybrid electric drive system
JP2000346169A (en) Control device of vehicle continuously variable transmission
US6520884B2 (en) Torque-split type continuously variable transmission
JPH0989072A (en) Toroidal continuously variable transmission
JPH02150554A (en) Creep controller for continuously variable transmission
JP2001108079A (en) Hydraulic control device of automatic transmission
JP2006298363A (en) Start-control device in hybrid drive device
US6702715B2 (en) Power transmission
JP2003139230A (en) Controller for oil pump
US4953647A (en) Transmission systems for high-speed track-laying vehicles or vehicles with non-steerable wheels
JPH04285354A (en) Transmission for vehicle
JP2001108074A (en) Lubrication control device of power transmission device
JP3931425B2 (en) Hybrid drive device
JP4957647B2 (en) Continuously variable transmission
JP2001050368A (en) Wrapping connection type continuously variable transmission

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees