JPH09233053A - Optical signal transmission method - Google Patents

Optical signal transmission method

Info

Publication number
JPH09233053A
JPH09233053A JP8179606A JP17960696A JPH09233053A JP H09233053 A JPH09233053 A JP H09233053A JP 8179606 A JP8179606 A JP 8179606A JP 17960696 A JP17960696 A JP 17960696A JP H09233053 A JPH09233053 A JP H09233053A
Authority
JP
Japan
Prior art keywords
wavelength
optical
optical signal
transmission method
signal transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8179606A
Other languages
Japanese (ja)
Inventor
Shinichi Takashima
伸一 高島
Hideyuki Omura
英之 大村
Atsuo Kiyomura
淳雄 清村
Tomoyuki Kato
智之 加藤
Masao Kubota
昌夫 久保田
Haruo Matsuoka
温雄 松岡
Yukihisa Shinoda
雪久 篠田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Tokyo Electric Power Company Holdings Inc
Original Assignee
Furukawa Electric Co Ltd
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, Tokyo Electric Power Co Inc filed Critical Furukawa Electric Co Ltd
Priority to JP8179606A priority Critical patent/JPH09233053A/en
Publication of JPH09233053A publication Critical patent/JPH09233053A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Communication System (AREA)

Abstract

PROBLEM TO BE SOLVED: To configure multi-transmission stations and multi-channels at a low cost by dividing optical signals subjected to wavelength multiplexing into two wavelength groups or over and allowing one light receiving device to receive each wavelength group and wavelength sets which belong to one wavelength group simultaneously. SOLUTION: Transmission stations 11-1n are grouped into a λ11 group - a λ1m group and a λ21 group - a λ2m group depending on a optical wavelength from a light source 51. A carrier of each wavelength group belongs to a different wavelength band. A video signal outputted from each signal source 31 is frequency-modulated by an FM modulator 41 and a light excited by a light source 51 which a modulated signal to be sent is intensity-modulated and converted into an optical signal and the optical signal is sent to an optical fiber transmission line 7. The light made incident to a reception station 2 is demultiplexed into an optical signal at each wavelength band by a wavelength division type optical demultiplexer 12 and respective optical signals are separated into wavelength groups by optical demultiplexers 91, 92 and received by light receiving devices 81, 82 for each wavelength group.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は光CATVシステ
ム、光ITVシステム、光伝送監視システム、加入者系
光通信システム等の各種光信号伝送システムに利用可能
な光信号伝送方法に関するものであり、多数の被伝送信
号を周波数多重及び波長多重して伝送する多重伝送シス
テムに利用するのに適したものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical signal transmission method applicable to various optical signal transmission systems such as an optical CATV system, an optical ITV system, an optical transmission monitoring system and a subscriber optical communication system. It is suitable for use in a multiplex transmission system in which the transmitted signal is frequency-multiplexed and wavelength-multiplexed and transmitted.

【0002】[0002]

【従来の技術】光CATVシステム、光ITVシステム
等において用いられる光信号伝送方法には従来より各種
のものがあり、その1つに図10に示す様なものがあっ
た。この光信号伝送方法は数百mから数kmの間隔で配
置された複数の送信局11〜1nを1本の光ファイバ伝
送路7で結ぶと共に、各送信局11〜1nにおいて得ら
れる映像信号を光信号に変換して光ファイバ伝送路7に
伝送し、複数の送信局11〜1nから光ファイバ伝送路
7に流合される光信号を受信局2にて一括受信するもの
である。
2. Description of the Related Art Conventionally, there are various optical signal transmission methods used in an optical CATV system, an optical ITV system, etc., and one of them is shown in FIG. According to this optical signal transmission method, a plurality of transmitting stations 11 to 1n arranged at intervals of several hundred meters to several km are connected by one optical fiber transmission line 7, and a video signal obtained at each transmitting station 11 to 1n is connected. The optical signal is converted into an optical signal, transmitted to the optical fiber transmission line 7, and the optical signals merged into the optical fiber transmission line 7 from the plurality of transmitting stations 11 to 1n are collectively received by the receiving station 2.

【0003】この光信号伝送方法では、送信局11〜1
nに映像撮影用カメラ等の信号源31〜3nが1以上あ
り、各信号源31〜3nの映像信号を異なる搬送波周波
数のFM変調器41で変調して多重化し、この周波数多
重信号をもって光源51〜5nの光を変調して光信号を
発生している。この場合、各放送局11〜1nの光源5
1は発光波長を夫々に異ならせてあり、例えば波長帯域
が1.3μm帯域(1.29〜1.33μm)と1.5
5μm帯域(1.53〜1.57μm)の2種類が使用
される。各送信局11〜1nから発生された光信号は送
信局11〜1nの光合波器61により1本の光ファイバ
伝送路7に結合され、波長多重されて伝送されるように
してある。一方、受信局2においては、光ファイバ伝送
路7により伝送される周波数多重及び波長多重の光信号
を受光器8で受光してO/E変換し、O/E変換された
電気信号をFM復調器101〜10nにおいて前記搬送
周波数別に選別した後に復調し、送信局11〜1n別に
映像信号をTVモニタ111〜11nで見られるように
してある。
In this optical signal transmission method, the transmitting stations 11 to 1
n has one or more signal sources 31 to 3n such as a video camera, and the video signals of the signal sources 31 to 3n are modulated by the FM modulator 41 having different carrier frequencies to be multiplexed, and the frequency multiplexed signal is used as the light source 51. Light of 5n is modulated to generate an optical signal. In this case, the light source 5 of each broadcasting station 11 to 1n
1 has different emission wavelengths, for example, the wavelength band is 1.3 μm band (1.29 to 1.33 μm) and 1.5.
Two types of 5 μm band (1.53 to 1.57 μm) are used. The optical signals generated from the respective transmitting stations 11 to 1n are coupled to one optical fiber transmission line 7 by the optical multiplexer 61 of the transmitting stations 11 to 1n, wavelength-multiplexed and transmitted. On the other hand, in the receiving station 2, the frequency-multiplexed and wavelength-multiplexed optical signals transmitted through the optical fiber transmission line 7 are received by the photodetector 8 and O / E converted, and the O / E-converted electric signal is FM demodulated. In the devices 101 to 10n, the carrier frequencies are selected and then demodulated, and the video signals can be viewed on the TV monitors 111 to 11n by the transmission stations 11 to 1n.

【0004】従来は図11に示す様な光信号伝送方式も
あった。これは送信局11〜1nがカメラ31 〜3n、
夫々のカメラ31〜3nからの映像信号を異なる周波数
の副搬送波信号に変調するための変調器41〜4n、及
び各々異なる発振波長λ1〜λnの光信号を発光する電
気/光変換器51〜5nから構成されているものであ
る。各送信局11〜1nでは各々のカメラ31〜3nで
捕えた映像信号が変調器41〜4nにおいて各々異なる
周波数の副搬送波信号に変調され、これらの副搬送波信
号により各々の電気/光変換器51〜5nから発振され
る発振波長の異なる光信号が変調される。図11の変調
器としてはAM変調器、FM変調器やQPSK変調器な
ど各種変調方式の変調器が用いられ、電気/光変換器5
1〜5nとしてはDFB−LD、FP−LDやLED等
の各種のレーザダイオードが用いられている。
Conventionally, there is also an optical signal transmission system as shown in FIG. This is because the transmitting stations 11 to 1n are the cameras 3 1 to 3n,
Modulators 41 to 4n for modulating the video signals from the respective cameras 31 to 3n into subcarrier signals of different frequencies, and electro-optical converters 51 to 5n for emitting optical signals of respectively different oscillation wavelengths λ1 to λn. It is composed of In each of the transmitting stations 11 to 1n, the video signals captured by the cameras 31 to 3n are modulated into subcarrier signals of different frequencies by the modulators 41 to 4n, and the electric / optical converters 51 are respectively modulated by these subcarrier signals. Optical signals having different oscillation wavelengths emitted from 5n are modulated. As the modulator of FIG. 11, modulators of various modulation methods such as an AM modulator, an FM modulator and a QPSK modulator are used.
Various laser diodes such as DFB-LD, FP-LD and LED are used as 1 to 5n.

【0005】図11におけるλ1〜λnの波長の光信号
は、光カプラ等の光合波器61〜6nにより共通の光伝
送路7に導かれ、受信局2の光/電気変換器8で受光さ
れる。この場合、光/電気変換器8としては主にピンフ
ォトダイオード(pin−PD)やアバランシェフォト
ダイオード(APD)などのフォトダイオードが用いら
れる。また、光/電気変換器8で受光された各光信号は
異なる周波数の副搬送波信号となり、分波器9を介して
復調器101〜10nへ導かれる。復調器101〜10
nは各々定められた周波数の副搬送波信号を元の映像信
号に復調し、モニタ111〜11nには各送信局11〜
1nからの映像信号が再現される。ここでは伝送する信
号が映像信号の場合について述べているが、伝送する信
号はその限りではなく、音声、データ信号等、各種の被
伝送信号がこのような方式により伝送されている。
Optical signals of wavelengths λ1 to λn in FIG. 11 are guided to a common optical transmission line 7 by optical multiplexers 61 to 6n such as optical couplers and received by an optical / electrical converter 8 of a receiving station 2. It In this case, as the optical / electrical converter 8, a photodiode such as a pin photodiode (pin-PD) or an avalanche photodiode (APD) is mainly used. Further, each optical signal received by the optical / electrical converter 8 becomes a subcarrier signal of a different frequency and is guided to the demodulators 101 to 10n via the demultiplexer 9. Demodulators 101-10
n demodulates the sub-carrier signal having a predetermined frequency into the original video signal, and the monitors 111 to 11n display the transmitting stations 11 to 11n.
The video signal from 1n is reproduced. Although the case where the signal to be transmitted is a video signal has been described here, the signal to be transmitted is not limited thereto, and various transmitted signals such as voice and data signals are transmitted by such a system.

【0006】[0006]

【発明が解決しようとする課題】図10の光信号伝送方
法では2以上の映像信号を異なる搬送周波数のFM変調
器41で変調して多重化しており、この場合の搬送周波
数の間隔は通常30〜60MHz(BSまたはCSのI
Fを想定)である。従って、光伝送の規模を拡大して多
チャンネル伝送を行なう場合は、送信局11〜1nが送
信する映像の数や送信局11〜1nの数を多くし、それ
に伴って搬送波周波数帯域を拡大しなければならない。
しかしながら搬送波周波数帯域の拡大は、伝送系の各種
装置のコストを押し上げ、また光信号を受光器8で受光
した際に発生する歪みの影響も大きくなり、無視できな
いものとなる。
In the optical signal transmission method of FIG. 10, two or more video signals are modulated by the FM modulator 41 having different carrier frequencies and multiplexed. In this case, the carrier frequency interval is usually 30. ~ 60MHz (BS or CS I
F is assumed). Therefore, when multi-channel transmission is performed by expanding the scale of optical transmission, the number of images transmitted by the transmission stations 11 to 1n and the number of the transmission stations 11 to 1n are increased, and the carrier frequency band is expanded accordingly. There must be.
However, the expansion of the carrier frequency band increases the cost of various devices in the transmission system, and the influence of the distortion generated when the optical signal is received by the photodetector 8 becomes large, which cannot be ignored.

【0007】図11の各送信局11〜1nの電気/光変
換器51〜5nには、通常は同じような特性及び光出力
パワーのものが用いられているが、各送信局11〜1n
と受信局2との距離は通常異なっているため、伝送距離
により決まる光損失量が各送信局11〜1nごとに異な
る。従って受信局における光信号の受光レベルは各送信
局11〜1nごとに異なり、光信号間で受光レベルに差
が生じる。特に送信局数が多い場合には、この受光レベ
ル差があるために、伝送品質を満足して同時に伝送でき
る送信局数(同時送信可能局数)が限られてしまうとい
う難点がある。以下に受光レベル差と同時送信可能局数
の関係について述べる。
Although the electrical / optical converters 51 to 5n of the transmitting stations 11 to 1n shown in FIG. 11 usually have the same characteristics and optical output powers, the transmitting stations 11 to 1n are used.
Since the distance between the receiving station 2 and the receiving station 2 is usually different, the amount of optical loss determined by the transmission distance is different for each transmitting station 11 to 1n. Therefore, the light receiving level of the optical signal at the receiving station differs for each transmitting station 11 to 1n, and the light receiving level differs between the optical signals. In particular, when there are many transmitting stations, there is a problem that the number of transmitting stations that can satisfy the transmission quality and can be transmitted at the same time (the number of simultaneously transmittable stations) is limited due to the difference in the light receiving level. The relationship between the received light level difference and the number of stations that can be simultaneously transmitted will be described below.

【0008】副搬送波信号伝送を行う場合の伝送品質の
指標の一つとして、光/電気変換器から出力される副搬
送波信号電力と雑音電力との比(CNR)がある。特に
波長の異なる多波の光信号を1つの光/電気変換器で受
信する場合には、CNRは光/電気変換器の特性で決ま
るショット雑音及び熱雑音と、光の波長差に応じた周波
数位置に生じるビート雑音ににより支配される。ビート
雑音についてはその影響が副搬送波信号周波数に位置す
る被伝送信号に及ぶことを防止するために、各送信局か
ら送出される光信号の光波長λ1〜λnはある程度の間
隔をあけて互いに異なる値に設定される。一例として、
図11に示す電気/光変換器51〜5n及び光/電気変
換器8として、一般的に使用される電気/光変換器及び
光/電気変換器を用い、その場合の各送信局11〜1n
の光信号の波長配列と受光レベルの関係を図12に、ま
たその場合の送信局数nと最も受光レベルの低い光信号
のCNRの関係を図13に示した。
As one of the indexes of transmission quality when subcarrier signal transmission is performed, there is a ratio (CNR) of subcarrier signal power output from an optical / electrical converter to noise power. In particular, when a multi-wave optical signal having different wavelengths is received by one optical / electrical converter, CNR is a shot noise and thermal noise determined by the characteristics of the optical / electrical converter, and a frequency corresponding to the wavelength difference of light. It is dominated by beat noise generated at the position. In order to prevent the influence of beat noise from affecting the transmitted signal located at the subcarrier signal frequency, the optical wavelengths λ1 to λn of the optical signals transmitted from the respective transmitting stations are different from each other with a certain interval. Set to the value. As an example,
As the electric / optical converters 51 to 5n and the optical / electrical converter 8 shown in FIG. 11, generally used electric / optical converters and optical / electrical converters are used, and the respective transmitting stations 11 to 1n in that case.
12 shows the relationship between the wavelength arrangement of the optical signal and the light receiving level, and FIG. 13 shows the relationship between the number of transmitting stations n and the CNR of the optical signal having the lowest light receiving level in that case.

【0009】この種の光伝送においては送信局数が多く
なると設定光波長の近接が避けられなくなり、ビート雑
音の影響が大きくなる。また各光波長の受光レベルが均
一でない場合には図12に示す最大受光レベル差(n−
1)Δpが大きいほどビート雑音が大きくなり、最も受
光レベルの低い光信号の伝送品質が損なわれることにな
る。図13は電気/光変換器としてDFB−LDが用い
られ、各光信号の波長間隔として0.2nm程度が設定
されている場合を想定している。最も受光レベルの低い
光信号のCNRが満足される(図中CNRspec. を上回
っている)のは、送信局数nが約24局以下の場合であ
り、このシステムにおける同時送信可能局数は約24と
なる。図13には支配的である各雑音成分ごとの理論限
界値(その雑音しか存在しない場合のCNR)も合わせ
て示してある。これを見ると総合的なCNR(CNR
total )がビート雑音成分(CNRbeat)により制限さ
れていることがわかる。
In this type of optical transmission, when the number of transmitting stations increases, it is inevitable that the set optical wavelengths are close to each other, and the influence of beat noise increases. When the light receiving levels of the respective light wavelengths are not uniform, the maximum light receiving level difference (n-
1) The larger Δp is, the larger the beat noise is, and the transmission quality of the optical signal having the lowest received light level is deteriorated. FIG. 13 assumes a case where a DFB-LD is used as the electrical / optical converter and the wavelength interval of each optical signal is set to about 0.2 nm. The CNR of the optical signal with the lowest received light level is satisfied (exceeds CNR spec. In the figure) when the number of transmitting stations n is about 24 or less, and the number of stations that can simultaneously transmit in this system is It will be about 24. FIG. 13 also shows the theoretical limit value (CNR when only that noise exists) for each dominant noise component. Looking at this, comprehensive CNR (CNR
It can be seen that total ) is limited by the beat noise component (CNR beat ).

【0010】前記のような受光レベルの不均一化に伴う
ビート雑音の影響を小さくするため、従来の光通信シス
テムでは、各送信局から光信号を送り出すときに、受信
局側で受光される多数の光信号の受光レベルが均一にな
るようにする工夫(制御)がなされている。受光レベル
を均一化する手段としては各送信局の電気/光変換器の
動作電流値の設定を変えることで光出力レベルを制御す
る方法、電/気光変換器の後段に光減衰器を設けて各送
信局から受信局までの光損失に応じて光出力レベルを制
御する方法等がある。また最近ではシステムの安定性、
柔軟性の要求が高まり、幹線切断時の緊急対策用として
光幹線をループ状にして冗長系を設ける設計も検討され
ている。
In order to reduce the influence of beat noise due to the nonuniformity of the light receiving level as described above, in the conventional optical communication system, when an optical signal is sent from each transmitting station, a large number of light is received by the receiving station side. Has been devised (controlled) so that the light reception level of the optical signal is uniform. As means for equalizing the received light level, a method of controlling the optical output level by changing the setting of the operating current value of the electric / optical converter of each transmitting station, and an optical attenuator provided after the electric / optical converter There is a method of controlling the optical output level according to the optical loss from each transmitting station to the receiving station. Recently, the stability of the system,
The demand for flexibility is increasing, and a design is being considered in which the optical trunk line is looped to provide a redundant system as an emergency measure when the trunk line is cut.

【0011】しかしながら、前記の電気/光変換器の動
作電流値の設定を変える方法では、光出力だけではなく
他の光特性も変化してしまうため、システム設計を行う
面で非常に不便である。また、前記の電気/光変換器の
後段に光減衰器を設ける方法では受信局と各送信局の伝
送損失を踏まえた上で部品を選択する必要があり、また
各送信局ごとの設置作業が不可欠となるため面倒であ
る。前記の冗長系を設ける形態では、各光信号の受光レ
ベルを均一に設定していれば、冗長系を用いた伝送時に
は受光レベルが不均一になるため再設定が必要となり、
受光レベル固定で設定することは好ましくない。
However, in the method of changing the setting of the operating current value of the electric / optical converter, not only the optical output but also other optical characteristics change, which is very inconvenient in designing the system. . Further, in the method of providing the optical attenuator in the latter stage of the electric / optical converter, it is necessary to select the parts after considering the transmission loss of the receiving station and each transmitting station, and the installation work for each transmitting station is also required. It is troublesome because it becomes indispensable. In the form in which the redundant system is provided, if the light receiving level of each optical signal is set to be uniform, the light receiving level becomes non-uniform during transmission using the redundant system, and thus resetting is necessary,
It is not preferable to set the light receiving level fixed.

【0012】[0012]

【課題を解決するための手段】本発明の第1の目的は、
送信局の多局化、多チャネル化を低コストで行うことが
でき、しかも大規模光伝送装置を構築可能な光信号伝送
方法を提供することにある。本発明の第2の目的は、送
信局から伝送する多数の光信号を、受信局での受光レベ
ルが均一化されるように送信局において制御しなくと
も、ビート雑音が大きくならず、受光レベルの低い光信
号の伝送品質も損なわれることがなく、多数局からの光
信号の同時伝送が可能な光信号伝送方法を提供すること
にある。
SUMMARY OF THE INVENTION A first object of the present invention is to:
An object of the present invention is to provide an optical signal transmission method capable of realizing multi-channel transmission and multi-channel transmission at low cost, and capable of constructing a large-scale optical transmission device. A second object of the present invention is to prevent the beat noise from becoming large and to prevent the light receiving level from being increased even if the transmitting station does not control a large number of optical signals transmitted from the transmitting station so that the light receiving level at the receiving station is made uniform. It is an object of the present invention to provide an optical signal transmission method capable of simultaneously transmitting optical signals from a large number of stations without impairing the transmission quality of low optical signals.

【0013】本発明のうち請求項1記載の光信号伝送方
法は図1〜図3に示すように、多数の送信局11〜1n
の夫々において信号源31からの被伝送信号を特定周波
数の搬送波にのせ、この信号により夫々の送信局11〜
1nの光源41から発生される光信号を変調し、これら
光信号を共通の光伝送路7に送り出して波長多重及び周
波数多重して受信局2側に伝送するようにした光信号伝
送方法において、波長多重された光信号が2つ以上の波
長群に分かれており、それらの波長群を波長群毎に、し
かもひとつの波長群に属する波長は同時に1つの受光器
81、82で受光するようにしたものである。
In the optical signal transmission method according to the first aspect of the present invention, as shown in FIGS. 1 to 3, a large number of transmission stations 11 to 1n are provided.
In each of the above, the signal to be transmitted from the signal source 31 is placed on a carrier wave of a specific frequency, and by this signal, each of the transmitting stations 11 to 11
In the optical signal transmission method, which modulates the optical signal generated from the 1n light source 41, sends these optical signals to the common optical transmission line 7, wavelength-multiplexes and frequency-multiplexes them, and transmits them to the receiving station 2 side, The wavelength-multiplexed optical signal is divided into two or more wavelength groups, and these wavelength groups are received by each of the wavelength groups, and the wavelengths belonging to one wavelength group are simultaneously received by one photodetector 81, 82. It was done.

【0014】本発明のうち請求項2記載の光信号伝送方
法は図4〜図6に示すように、多数の送信局11〜1n
の夫々において被伝送信号を特定周波数の搬送波にの
せ、この信号により夫々の送信局11〜1nの光源から
発生される光信号を変調し、これら光信号を共通の光伝
送路7に送り出して波長多重及び周波数多重して受信局
側に伝送するようにした光信号伝送方法において、夫々
の送信局11〜1nにおいて受信局2での各光信号の受
光レベルが均一化されるように制御することなく、夫々
の送信局から信号光を送り出し、それらの波長多重され
た光信号が2つ以上の波長群λ1〜λnに分かれてお
り、それらの波長群λ1〜λnを波長群毎に、しかも1
つの波長群に属する波長は同時に1つの受光器81、8
2で受光するようにしたものである。
In the optical signal transmission method according to the second aspect of the present invention, as shown in FIGS. 4 to 6, a large number of transmission stations 11 to 1n are provided.
In each of the above, the signal to be transmitted is placed on a carrier of a specific frequency, the optical signal generated from the light source of each of the transmitting stations 11 to 1n is modulated by this signal, and these optical signals are sent out to the common optical transmission line 7 In an optical signal transmission method for multiplexing and frequency-multiplexing and transmitting to the receiving station side, controlling so that the light receiving level of each optical signal at the receiving station 2 in each of the transmitting stations 11 to 1n is made uniform. Instead, the signal light is sent from each transmitting station, and the wavelength-multiplexed optical signals are divided into two or more wavelength groups λ1 to λn.
Wavelengths belonging to one wavelength group are simultaneously received by one light receiver 81, 8
The light is received at 2.

【0015】本発明のうち請求項3記載の光信号伝送方
法は、図7に示すように2つ以上の波長群が全て同一波
長帯(例えば1.3μm付近)に属するようにしたもの
である。
In the optical signal transmitting method according to the third aspect of the present invention, as shown in FIG. 7, two or more wavelength groups all belong to the same wavelength band (for example, around 1.3 μm). .

【0016】本発明のうち請求項4記載の光信号伝送方
法は、図8に示すように2つ以上の波長群が異なる波長
帯(例えば1.3μm付近と1.5μm付近)に属する
ようにしたものである。
In the optical signal transmission method according to the fourth aspect of the present invention, as shown in FIG. 8, two or more wavelength groups belong to different wavelength bands (for example, around 1.3 μm and around 1.5 μm). It was done.

【0017】本発明のうち請求項5記載の光信号伝送方
法は、図3に示す様に被伝送信号の周波数配列を近接す
る波長群について互いに重ならないようにずらしたもの
である。
In the optical signal transmitting method according to the fifth aspect of the present invention, as shown in FIG. 3, the frequency arrangement of the transmitted signals is shifted so that adjacent wavelength groups do not overlap each other.

【0018】本発明のうち請求項6記載の光信号伝送方
法は、図3に示す様に被伝送信号の周波数配列をその波
長群内で等間隔としたものである。
In the optical signal transmission method according to the sixth aspect of the present invention, as shown in FIG. 3, the frequency arrangement of the signals to be transmitted is equidistant within the wavelength group.

【0019】本発明のうち請求項7記載の光信号伝送方
法は、図3に示す様に被伝送信号の周波数配列をその波
長群内で等間隔とし、近接する波長群については互いに
重ならないようにずらしたものである。
In the optical signal transmission method according to the seventh aspect of the present invention, as shown in FIG. 3, the frequency arrangement of the transmitted signals is set at equal intervals within the wavelength group so that adjacent wavelength groups do not overlap each other. It has been shifted.

【0020】本発明のうち請求項8記載の光信号伝送方
法は、被伝送信号の周波数配列を1オクターブ以内とし
たものである。
In the optical signal transmitting method according to the eighth aspect of the present invention, the frequency arrangement of the transmitted signal is within one octave.

【0021】本発明のうち請求項9記載の光信号伝送方
法は、2以上の波長群が全て同一波長帯であり、その波
長帯が図7に示す様に1.3μm付近又は1.5μm付
近としたものである。
In the optical signal transmission method according to claim 9 of the present invention, two or more wavelength groups are all in the same wavelength band, and the wavelength band is around 1.3 μm or around 1.5 μm as shown in FIG. It is what

【0022】本発明のうち請求項10記載の光信号伝送
方法は、2以上の波長群が夫々異なった波長帯に属し、
その2以上の波長群のうち一方の波長群の波長帯を図8
に示す様に1.3μm付近、他方の波長群の波長帯を
1.5μm付近としたものである。
In the optical signal transmission method according to claim 10 of the present invention, two or more wavelength groups belong to different wavelength bands,
The wavelength band of one of the two or more wavelength groups is shown in FIG.
As shown in (1), the wavelength band of the other wavelength group is around 1.3 μm and around 1.5 μm.

【0023】本発明のうち請求項11記載の光信号伝送
方法は、図9に示す様に2以上の送信局と受信局とを結
ぶ光伝送路7をル−プ状に構成して、光伝送路切断等の
トラブル時には、同光伝送路7を利用して通常通信時の
逆方向から光伝送を行うようにしたものである。
In the optical signal transmission method according to the eleventh aspect of the present invention, as shown in FIG. 9, the optical transmission line 7 connecting two or more transmitting stations and receiving stations is formed in a loop shape, In case of trouble such as disconnection of the transmission line, the optical transmission line 7 is used to perform optical transmission from the opposite direction to the normal communication.

【0024】[0024]

【発明の実施の形態1】本発明の光信号伝送方法の実施
形態例を図1に基づいて以下に説明する。図1における
符号11〜1nはいずれも送信局、符号2は受信局、符
号7は光ファイバ伝送路であり、各送信局11〜1nと
受信局2とを結ぶものである。複数ある送信局11〜1
nは光源51の発光波長に応じて図2のようにλ11群、
・・・λ1m群、λ21群、・・・λ2n群とグループ化され
ている。また各送信局11〜1nにおいて送信する被伝
送信号の搬送波の周波数配列は図3のように設定してあ
る。λ11群、・・・λ1m群は波長帯1.31μmに属
し、λ21群、・・・λ2n群は波長帯1.55μmに属し
ている。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiment 1 An embodiment of the optical signal transmission method of the present invention will be described below with reference to FIG. In FIG. 1, reference numerals 11 to 1n are all transmitting stations, reference numeral 2 is a receiving station, reference numeral 7 is an optical fiber transmission line, and connects each transmitting station 11 to 1n and the receiving station 2. Multiple transmitting stations 11 to 1
n is a λ 11 group as shown in FIG. 2 according to the emission wavelength of the light source 51,
... λ 1m group, λ 21 group, ... λ 2n group. The frequency array of the carrier waves of the transmitted signal transmitted by each of the transmitting stations 11 to 1n is set as shown in FIG. The λ 11 group, ... λ 1m group belong to the wavelength band 1.31 μm, and the λ 21 group, ... λ 2n group belong to the wavelength band 1.55 μm.

【0025】以下に前記送信局11〜1n及び受信局2
の詳細な説明をその構成と共に行なう。送信局11〜1
nは映像撮影用カメラ等の信号源31と、同信号源31
の映像信号を所定周波数の搬送波で変調するFM変調器
41とをそれぞれペアで複数組備えており、また半導体
レーザ等の光源(ここではDFB(分布帰還型)レーザ
を使用)51と、その光源51の光を光ファイバ伝送路
7に合波するための光合波器61を備えている。これら
の送信局11〜1nでは個々の信号源31から出力され
る映像信号がFM変調器41により周波数変調され、変
調された被伝送信号が図3に示すように等間隔B(30
〜60MHzの間の所望値)に配置され、前記光源51
で発光された光が前記した1以上の被伝送信号で強度変
調されて光信号に変換され、この光信号が光合波器61
により光ファイバ伝送路7に結合されて同光ファイバ伝
送路7に伝送されるようにしてある。
Below, the transmitting stations 11 to 1n and the receiving station 2
A detailed description of the above will be given together with its configuration. Transmitting stations 11 to 1
n is a signal source 31 such as a video camera, and the signal source 31
A plurality of pairs of FM modulators 41 for modulating a video signal of a carrier wave of a predetermined frequency, and a light source such as a semiconductor laser (here, a DFB (distributed feedback type) laser is used) 51 and its light source. An optical multiplexer 61 for multiplexing the light of 51 into the optical fiber transmission line 7 is provided. In these transmitting stations 11 to 1n, the video signals output from the individual signal sources 31 are frequency-modulated by the FM modulator 41, and the modulated transmitted signals have equal intervals B (30) as shown in FIG.
To a desired value between 60 MHz) and the light source 51
The intensity of the light emitted by the optical modulator 61 is modulated by the above-mentioned one or more transmitted signals, and the optical signal is converted into an optical signal.
Is coupled to the optical fiber transmission line 7 and transmitted to the optical fiber transmission line 7.

【0026】この場合、同一波長群に属する送信局11
〜1nのFM変調器41の変調周波数は次のように設定
してある。1番目の送信局11が図3における搬送波の
1番目からm番目までを使用するとき、2番目の送信局
12では図3における搬送波の前記送信局11により使
用されていないm+1番目からn番目までを使用し、続
く別の送信局13はn+1番目以降の搬送波を使用する
という具合に、搬送波の周波数が重ならないようにす
る。ここでは搬送波周波数の帯域を0.9〜1.8GH
z(1オクターブ以内)としてある。帯域を1オクター
ブ以内とすることで、受光器81、82で受光した光信
号に2次歪み成分が発生しないようにしてある。また帯
域を0.9〜1.8GHzとすることで前記FM復調器
101に既製の衛星放送用チューナ等、民生用機器を流
用することが可能としてある。
In this case, the transmitting stations 11 belonging to the same wavelength group
The modulation frequency of the FM modulator 41 of 1n is set as follows. When the first transmitting station 11 uses the 1st to mth carriers in FIG. 3, the second transmitting station 12 uses the m + 1th to nth carriers not used by the transmitting station 11 in FIG. , And the following another transmitting station 13 uses the n + 1th and subsequent carriers, and so on, so that the frequencies of the carriers do not overlap. Here, the carrier frequency band is 0.9 to 1.8 GH.
z (within 1 octave). By setting the band within 1 octave, the second-order distortion component is not generated in the optical signals received by the photodetectors 81 and 82. Further, by setting the band to 0.9 to 1.8 GHz, it is possible to use a consumer device such as a ready-made satellite broadcasting tuner as the FM demodulator 101.

【0027】また前記波長群について、同一でない近接
する波長群の周波数配列を互いに異なるようにずらして
ある。例えば次のように設定してある。1.31μm帯
においては図3(a)(b)のように、第1の波長群λ
11に対し、第2の波長群λ12の搬送波をその配列間隔B
の1/2だけシフトし、前後の波長群における搬送波周
波数配列が重ならないようにしてある。また、1.55
μm帯においても図3(c)(d)のように、第1の波
長群λ21に対し第2の波長群λ22では搬送波をその配列
間隔Bの1/4だけシフトし、前後の波長群における搬
送波周波数配列が重ならないようにしてある。但し、異
なる波長帯に属する波長群においては搬送波の配列が重
なってもよく、例えば図3(a)に示す波長群λ11の配
列と図3(c)に示す波長群λ21の配列は重ねてある。
Further, with respect to the wavelength groups, the frequency arrays of adjacent wavelength groups which are not the same are shifted so as to be different from each other. For example, it is set as follows. In the 1.31 μm band, as shown in FIGS. 3A and 3B, the first wavelength group λ
11 , the carrier of the second wavelength group λ 12 is arranged at the array interval B.
Of the carrier wavelengths in the front and rear wavelength groups are not overlapped. Also, 1.55
Also in the μm band, as shown in FIGS. 3C and 3D, the carrier waves in the second wavelength group λ 22 are shifted from the first wavelength group λ 21 by ¼ of the arrangement interval B, and the wavelengths before and after are shifted. The carrier frequency arrays in the groups are made non-overlapping. However, the arrangement of the carrier waves may overlap in the wavelength groups belonging to different wavelength bands. For example, the arrangement of the wavelength group λ 11 shown in FIG. 3A and the arrangement of the wavelength group λ 21 shown in FIG. There is.

【0028】また前記波長群について、同一波長群に属
する複数の送信局11〜1nからの光信号は、合波され
たときの光レベルが所望レベルになるよう調整されてお
り、複数の光信号からなる波長群の光を受光器92にお
いて受光したときに歪み等が生じないようにしてある。
With respect to the wavelength group, the optical signals from a plurality of transmitting stations 11 to 1n belonging to the same wavelength group are adjusted so that the optical level when they are multiplexed becomes a desired level. When the light of the wavelength group consisting of is received by the light receiver 92, distortion or the like is prevented.

【0029】前記受信局2は波長分割型光分波器12、
光分波器91、92、光フィルタ94、受光器81、8
2、FM復調器101〜10n、モニタTV111〜1
1nから構成されている。この受信局2に入射される光
は先ず波長分割型光分波器12で1.31μm帯と1.
55μm帯の光信号に分波され、夫々の波長帯の光信号
が光分波器91、92で波長群に分離され、波長群毎に
受光器81、82で受光されるようにしてある。また受
光器81、82で受光されて変換された電気信号はFM
復調器101〜10nで元の映像信号に戻され、各々が
モニタTV111〜11nに表示されるようになってい
る。
The receiving station 2 is a wavelength division type optical demultiplexer 12,
Optical demultiplexers 91 and 92, optical filter 94, light receivers 81 and 8
2, FM demodulators 101 to 10n, monitor TVs 111 to 1
It is composed of 1n. The light incident on the receiving station 2 is first transmitted to the 1.31 μm band and 1.
The optical signals of the 55 μm band are demultiplexed, the optical signals of the respective wavelength bands are separated into wavelength groups by the optical demultiplexers 91 and 92, and the light receivers 81 and 82 receive the signals for each wavelength group. Further, the electric signals received and converted by the light receivers 81 and 82 are FM
The demodulators 101 to 10n restore the original video signals and display them on the monitor TVs 111 to 11n.

【0030】[0030]

【発明の実施の形態2】本発明の光信号伝送方法の第2
の実施の形態を図4〜図6に基づいて詳細に説明する。
図4の光信号伝送方法は送信局11〜1n、受信局2及
び共通の光伝送路7から構成されている。各送信局11
〜1nでは、カメラ3で捉えた被伝送信号が変調器41
〜4nで各々異なる周波数の副搬送波信号に変調され、
更に、異なる発振波長λ1〜λnを有する電気/光変換
器5で光信号に変換される。各光信号は光カプラ等の光
合波器61〜6nを介して共通の光伝送路7に送られ、
受信局2に送られるようにしてある。この光伝送方式で
は各送信局11〜1nの光信号はその波長の違いにより
図5に示す様に2つの波長群Gλ1及びGλ2に分けら
れている。例えば送信局11〜1iの光波長λ1〜λi
は波長群Gλ1、送信局1i+1〜1nの光波長λi+
1〜λnが波長群Gλ2と分類されている。
Second Embodiment of the Invention Second Embodiment of Optical Signal Transmission Method of the Present Invention
The embodiment will be described in detail with reference to FIGS.
The optical signal transmission method shown in FIG. 4 includes transmitting stations 11 to 1n, a receiving station 2 and a common optical transmission line 7. Each transmitting station 11
In 1n, the transmitted signal captured by the camera 3 is the modulator 41.
Are modulated to subcarrier signals of different frequencies by ~ 4n,
Further, it is converted into an optical signal by the electro-optical converter 5 having different oscillation wavelengths λ1 to λn. Each optical signal is sent to the common optical transmission line 7 via the optical multiplexers 61 to 6n such as an optical coupler,
It is sent to the receiving station 2. In this optical transmission system, the optical signals of the transmitting stations 11 to 1n are divided into two wavelength groups Gλ1 and Gλ2 as shown in FIG. For example, the optical wavelengths λ1 to λi of the transmitting stations 11 to 1i
Is the wavelength group Gλ1 and the optical wavelengths λi + of the transmitting stations 1i + 1 to 1n.
1 to λn are classified as the wavelength group Gλ2.

【0031】図4の光伝送システムでは受信局2に、共
通の光伝送路7を通過してきたn波の光信号を各々が属
する波長群ごとに分離するための波長分割型光分波器1
2及び分割された光信号を受光するための光/電気変換
器81、82が設置されている。n波の光信号は波長分
割型光分波器12を通過する際に、図2に示す様に各々
が属する波長群Gλ1、Gλ2ごとに分離され、そのう
ち波長群Gλ1に属するλ1〜λiの光信号は光/電気
変換器81に導かれ、波長群Gλ2に属するλi+1〜
λnの光信号は光/電気変換器82にそれぞれ導かれ
る。
In the optical transmission system of FIG. 4, a wavelength division type optical demultiplexer 1 for separating the optical signals of n waves that have passed through the common optical transmission line 7 into the receiving station 2 for each wavelength group to which they belong.
Optical / electrical converters 81 and 82 for receiving the two and the split optical signals are installed. When the n-wave optical signal passes through the wavelength division type optical demultiplexer 12, as shown in FIG. 2, the n-wave optical signals are separated into wavelength groups Gλ1 and Gλ2 to which the optical signals of λ1 to λi belong, respectively. The signal is guided to the optical / electrical converter 81 and belongs to the wavelength group Gλ2 λi + 1 to
The optical signals of λn are guided to the optical / electrical converters 82, respectively.

【0032】光/電気変換器81に入射された波長λ1
〜λiの光信号は各々周波数の異なる副搬送波信号に再
変換され、分波器91を介して復調器101〜10iへ
導かれ、そこで予め決められている周波数の副搬送波信
号のみが復調され、モニタ111〜11iに元の被伝送
信号が得られる。光/電気変換器82に入射した波長λ
i+1〜λmの光信号は前記の場合と同様に、分波器9
2を介して復調器10i+1〜10nへ導かれ、そこで
予め決められている周波数の副搬送波信号のみが復調さ
れ、モニタ11i+1〜11nに元の被伝送信号が得ら
れる。
Wavelength λ1 incident on the optical / electrical converter 81
The optical signals of ˜λi are reconverted into subcarrier signals of different frequencies, guided to the demodulators 101 to 10i via the demultiplexer 91, and only the subcarrier signals of a predetermined frequency are demodulated therein. The original transmitted signal is obtained on the monitors 111 to 11i. Wavelength λ incident on the optical / electrical converter 82
The optical signals of i + 1 to λm are sent to the demultiplexer 9 as in the above case.
It is guided to the demodulators 10i + 1 to 10n via 2 and demodulates only the subcarrier signal having a predetermined frequency, and the original transmitted signals are obtained by the monitors 11i + 1 to 11n.

【0033】波長分割型光分波器12としては同一波長
帯の光フィルタや1.3μm/1.55μm帯光フィル
タなど、ある波長を基準としてそれより長波長のもの
と、短波長のものを分離して取り出すことができるよう
な光部品が用いられる。ここで、波長群Gλ1およびG
λ2の波長配列は図5に示すようになっている。λ1〜
λiの隣り合うiケの波長が波長群Gλ1、λi+1〜
λnの隣り合うn−iケの波長がGλ2に属している。
この光伝送システムでは受信局2で受光する各送信局か
らの光信号レベルは不均一であるため、図5に示すよう
に隣り合う光信号の受光レベル差は各々Δpとなってい
る。しかしこの光伝送システムでは各波長群ごとに受光
される光/電気変換器81、82が異なるためめ、各光
/電気変換器81、82における最大受光レベル差は各
々(i−1)Δp及び(n−i−1)Δpとなり、1つ
の光/電気変換器でn波の光信号を受光する場合に比べ
て、最大受光レベル差は非常に小さくなる。
As the wavelength division type optical demultiplexer 12, one having a wavelength longer than that of a certain wavelength such as an optical filter having the same wavelength band or an optical filter having a wavelength band of 1.3 μm / 1.55 μm and a filter having a shorter wavelength than the certain wavelength are used. An optical component that can be separated and taken out is used. Here, the wavelength groups Gλ1 and G
The wavelength array of λ2 is as shown in FIG. λ1
The adjacent i wavelengths of λi are wavelength groups Gλ1, λi + 1 to
The adjacent n-i wavelengths of λn belong to Gλ2.
In this optical transmission system, since the optical signal levels from the transmitting stations received by the receiving station 2 are non-uniform, the light receiving level difference between adjacent optical signals is Δp as shown in FIG. However, in this optical transmission system, since the optical / electrical converters 81 and 82 to be received are different for each wavelength group, the maximum light receiving level difference in each optical / electrical converters 81 and 82 is (i-1) Δp and (N-i-1) [Delta] p, and the maximum difference in the received light level is very small compared to the case where one optical / electrical converter receives an optical signal of n waves.

【0034】従来例の場合と同様に、このシステムでの
送信局数nと、最も受光レベルの低い光信号のCNRの
関係を図6に示す。ただし1つの波長群は全送信局の半
分の局数を有するするものとする。図6から明らかなよ
うに、同時送信局数として約36程度が得られることが
わかる。また、この図から1つの光/電気変換器に受信
される光信号数が減ったことにより、送信局数nの多い
ところでビート雑音の影響が緩和されることもわかる。
As in the case of the conventional example, FIG. 6 shows the relationship between the number n of transmitting stations in this system and the CNR of the optical signal having the lowest light receiving level. However, one wavelength group is assumed to have half the number of stations as all the transmitting stations. As is clear from FIG. 6, it is understood that about 36 simultaneous transmission stations can be obtained. It can also be seen from this figure that the effect of beat noise is mitigated in the case where the number of transmitting stations n is large because the number of optical signals received by one optical / electrical converter is reduced.

【0035】[0035]

【発明の実施の形態3】本発明の光信号伝送方法の第3
の実施の形態を図7を用いて説明する。図7は各送信局
が有する電気/光変換器の発振波長が1.3μm付近の
波長帯である場合の波長配列例を示したものである。双
方向通信を行う光信号伝送方法等においては、上り系及
び下り系で使用波長帯を異ならせることが多く、上り系
に用いることができる波長帯が1つである場合がある。
そのような場合でも全光信号を複数の波長群に分割し、
それらを受信する光/電気変換器が異なっていれば、受
光レベルが不均一であっても、前記の場合と同様に同時
送信可能局数を増加させることができる。この場合、受
信局の波長分割型光分波器の波長分離特性に応じて、波
長群ごとの波長間隔が設定されている。
Embodiment 3 of the Invention The third embodiment of the optical signal transmission method of the present invention
The embodiment will be described with reference to FIG. FIG. 7 shows an example of a wavelength arrangement in the case where the oscillation wavelength of the electro-optical converter included in each transmitting station is in the wavelength band around 1.3 μm. In an optical signal transmission method or the like for performing bidirectional communication, the used wavelength band is often different between the upstream system and the downstream system, and in some cases, only one wavelength band can be used for the upstream system.
Even in such a case, split the all-optical signal into multiple wavelength groups,
If the optical / electrical converters that receive them are different, the number of stations that can be simultaneously transmitted can be increased as in the case described above even if the light receiving level is uneven. In this case, the wavelength interval for each wavelength group is set according to the wavelength separation characteristic of the wavelength division type optical demultiplexer of the receiving station.

【0036】[0036]

【発明の実施の形態4】本発明の光信号伝送方法の第4
の実施の形態を図8を用いて説明する。図8は各波長群
ごとに波長帯が異なる場合の波長配列例である。この場
合は波長群Gλ1の波長帯を1.3μm、波長群Gλ2
の波長帯を1.5μmとしたものである。この場合は波
長分割型光分波器として1.3μm/1.55μm帯光
フィルタ等により各波長群ごとに分離して取り出すこと
ができるものを使用する。
Fourth Embodiment of the Fourth Embodiment of Optical Signal Transmission Method of the Present Invention
The embodiment will be described with reference to FIG. FIG. 8 is an example of a wavelength array when the wavelength bands are different for each wavelength group. In this case, the wavelength band of the wavelength group Gλ1 is 1.3 μm, and the wavelength group Gλ2 is
The wavelength band of is set to 1.5 μm. In this case, a wavelength division type optical demultiplexer that can be separated and taken out for each wavelength group by a 1.3 μm / 1.55 μm band optical filter or the like is used.

【0037】[0037]

【発明の実施の形態5】本発明の光信号伝送方法の第5
の実施の形態を図9を用いて説明する。図9は信号光の
共通の光伝送路7がループ状に構成されており、伝送路
切断等のトラブル時にはその光伝送路7を利用して通常
通信時の逆方向から通信を行うことができるようにした
ものである。この光通信システムでは通常は各送信局1
1〜1nからの各信号光は受信局2のAポートに入力す
るように設定されているが、例えば光伝送路7の×印の
地点において切断が生じた場合は、光信号の伝送方向が
切替えられて受信局2のBポートに入力されるようにし
てある。
Fifth Embodiment of the Invention Fifth Embodiment of Optical Signal Transmission Method of the Present Invention
The embodiment will be described with reference to FIG. In FIG. 9, the common optical transmission line 7 for the signal light is configured in a loop shape, and when trouble occurs such as disconnection of the transmission line, the optical transmission line 7 can be used to perform communication from the reverse direction of normal communication. It was done like this. In this optical communication system, normally each transmitting station 1
The signal lights from 1 to 1n are set so as to be input to the A port of the receiving station 2. However, for example, when a disconnection occurs at a point of the optical transmission line 7 marked with x, the transmission direction of the optical signal is It is adapted to be switched and input to the B port of the receiving station 2.

【0038】受信局2での各信号光の受光レベルが通常
通信時に均一となるように設定されている場合は、伝送
路切断時に信号の伝送方向が切り替るとその設定が崩れ
て受光レベルが不均一になるが、本発明の伝送方式では
各信号光の受光レベルは通常でも不均一であるため、信
号の伝送方向が切り替っても各信号光の受光レベル差は
通常通信時と同様であり、伝送信号の品質が損なわれる
ことはない。
When the receiving level of each signal light at the receiving station 2 is set to be uniform during normal communication, if the transmission direction of the signal is switched when the transmission line is disconnected, the setting is destroyed and the receiving level is changed. Although the light reception levels of the respective signal lights are not uniform in the transmission method of the present invention, the difference in the light reception levels of the respective signal lights is the same as in the normal communication even if the signal transmission direction is switched. Yes, the quality of the transmitted signal is not compromised.

【0039】以上説明した本発明の光信号伝送方法は図
4に示したバス型のシステム形態以外にも、バススター
型、スター型等の多地点からの光信号を集信する形態の
光伝送システムに適用可能であり、これらの光伝送シス
テムにおいても充分な効果を発揮することができる。
The above-described optical signal transmission method of the present invention is not limited to the bus type system form shown in FIG. 4, but is also an optical transmission form for collecting optical signals from multiple points such as a bus star type and a star type. It can be applied to the system, and can sufficiently exert the effect also in these optical transmission systems.

【0040】上記の説明では波長の異なる多数の光信号
を2つの波長群に分ける場合について述べたが、本発明
はその限りではなく、1つの波長群に族する2以上の光
信号を1つの光/電気変換器で受信する方式であれば、
波長群を3以上に設定することも可能である。ただしそ
の場合は波長群ごとに光信号を分離するための波長分割
型光分波器と、波長群の数と同じ数の光/電気変換器が
必要になる。
In the above description, the case where a large number of optical signals having different wavelengths are divided into two wavelength groups has been described, but the present invention is not limited to this, and two or more optical signals belonging to one wavelength group are combined into one. If it is a method of receiving with an optical / electrical converter,
It is also possible to set the wavelength group to 3 or more. However, in that case, a wavelength division type optical demultiplexer for separating an optical signal for each wavelength group and an optical / electrical converter of the same number as the number of wavelength groups are required.

【0041】[0041]

【発明の効果】本発明のうち請求項1記載の光信号伝送
方法は、多数の送信局から送信される波長多重された光
信号が2以上の波長群に分かれており、それらの波長群
を波長群毎に、しかも1つの波長群に属する波長は同時
に1つの受光器で受光するため次のような効果がある。 .被伝送信号の周波数帯域を広くすることなく、多局
化、多チャンネル化が可能である。 .複数の受光器が存在するので、1つの受光器で全て
の光信号を受信する場合に比べ、受信可能な光信号波数
が向上する。よって、個々の送信局の被伝送信号の数を
少なくして送信局の即ち数信号光波数を増やすことによ
り、光信号伝送システム全体のチャンネル数は減らさず
に、個々の送信局の光源において発生する歪成分を抑え
て良好な通信を確保することが可能となる。
According to the optical signal transmission method of the first aspect of the present invention, the wavelength-multiplexed optical signals transmitted from a large number of transmitting stations are divided into two or more wavelength groups. For each wavelength group, and since the wavelengths belonging to one wavelength group are simultaneously received by one light receiver, the following effects are obtained. . Multiple stations and multiple channels are possible without widening the frequency band of the transmitted signal. . Since there are a plurality of optical receivers, the number of receivable optical signal waves is improved as compared with the case where one optical receiver receives all optical signals. Therefore, by reducing the number of transmitted signals of each transmitting station and increasing the number of lightwaves of the transmitting station, that is, by increasing the number of signal lightwaves, the number of channels of the entire optical signal transmission system is not decreased, and the light source of each transmitting station is generated. It is possible to suppress the generated distortion component and ensure good communication.

【0042】本発明のうち請求項2記載の光信号伝送方
法は、多数の送信局から送信される波長の異なる多数の
光信号を2以上の波長群に分け、それらの信号を、送信
側において、受信側での受光レベルが均一化される様に
制御することなく、送信側から送り出し、しかも波長群
ごとに1つの光/電気変換器で受光するため次の様な効
果がある。 .1つの波長群における多数の光信号間の最大受光レ
ベル差が、一つの光/電気変換器で全ての光信号を受光
する場合に比べて小さくなるため、各送信局の光信号レ
ベルを制御して受光器における各信号光の受光レベルを
均一にしなくとも、多数の同時送信可能局数を確保する
ことが可能となる。また、光伝送システムを簡略化する
ことができ、同システムの柔軟性が向上する。 .多数の光信号を波長群に分けたことにより、一つの
光/電気変換器に受信される光信号数が減り、送信局数
が多くてもビート雑音の影響が緩和される。 .各送信局の光信号レベルを制御して受光器における
各信号光の受光レベルを均一にしないので、通常通信時
でも光/電気変換器で受光される多数の光信号の受光レ
ベルは不均一である。従って、光伝送路7をループ状に
して光信号の伝送方向を切替えても各信号光の受光レベ
ル差は通常通信時と同様であり、伝送信号の品質が損な
われることがない。
In the optical signal transmitting method according to the second aspect of the present invention, a large number of optical signals having different wavelengths transmitted from a large number of transmitting stations are divided into two or more wavelength groups, and those signals are transmitted on the transmitting side. The following effects are obtained because the light is sent from the transmitting side without being controlled so that the light receiving level at the receiving side is made uniform, and light is received by one optical / electrical converter for each wavelength group. . Since the maximum received light level difference between many optical signals in one wavelength group is smaller than that in the case where one optical / electrical converter receives all optical signals, the optical signal level of each transmitting station is controlled. Therefore, it is possible to secure a large number of stations capable of simultaneous transmission without making the light receiving level of each signal light in the light receiver uniform. Moreover, the optical transmission system can be simplified, and the flexibility of the system is improved. . By dividing a large number of optical signals into wavelength groups, the number of optical signals received by one optical / electrical converter is reduced, and the influence of beat noise is mitigated even if the number of transmitting stations is large. . Since the optical signal level of each transmitting station is not controlled to make the light receiving level of each signal light in the light receiver uniform, the light receiving level of many optical signals received by the optical / electrical converter is not uniform even during normal communication. is there. Therefore, even if the optical transmission path 7 is looped and the optical signal transmission direction is switched, the light reception level difference of each signal light is the same as that during normal communication, and the quality of the transmission signal is not impaired.

【0043】本発明のうち請求項3記載の光信号伝送方
法は、2以上の波長群の全てが同一波長帯であるため、
受信局4側において光信号を波長帯域毎に分離する必要
がなく、チャンネル数が少ない場合にシステム構成が簡
潔となり有効である。
In the optical signal transmission method according to claim 3 of the present invention, since all of the two or more wavelength groups are in the same wavelength band,
It is not necessary to separate the optical signal for each wavelength band on the receiving station 4 side, and when the number of channels is small, the system configuration becomes simple and effective.

【0044】本発明のうち請求項4記載の光信号伝送方
法は、2以上の波長群が夫々異なる波長帯に属するた
め、受信局側において光信号を波長帯域毎に分離する必
要があるが、各波長帯域に光信号を配置できるため、よ
り一層の多局化、多チャンネル化が可能となる。
In the optical signal transmission method according to claim 4 of the present invention, since the two or more wavelength groups belong to different wavelength bands, it is necessary to separate the optical signal for each wavelength band at the receiving station side. Since the optical signal can be arranged in each wavelength band, it is possible to further increase the number of stations and the number of channels.

【0045】本発明のうち請求項5記載の光信号伝送方
法は、被伝送信号の周波数配列を近接する波長群につい
て互いに重ならないようにずらしたため、各波長群の光
信号を受光器5で受光した際に、他の波長群の光信号に
よる影響を低減することができ、ノイズを低減すること
ができる。
In the optical signal transmission method according to the fifth aspect of the present invention, the frequency arrays of the transmitted signals are shifted so that adjacent wavelength groups do not overlap with each other. Therefore, the optical signals of the respective wavelength groups are received by the photodetector 5. In doing so, the influence of optical signals of other wavelength groups can be reduced, and noise can be reduced.

【0046】本発明のうち請求項6記載の光信号伝送方
法は、被伝送信号の周波数配列をその波長群内で等間隔
としたため、既存のCATVシステム等がそうであるよ
うに、実用的な信号伝送システムを構築できる。
In the optical signal transmission method according to the sixth aspect of the present invention, the frequency arrangement of the transmitted signals is set to be evenly spaced within the wavelength group, so that it is practical as is the case with existing CATV systems. A signal transmission system can be constructed.

【0047】本発明のうち請求項7記載の光信号伝送方
法では、被伝送信号の周波数配列をその波長群内で等間
隔とし且つ近接する波長群については互いに重ならない
ようにずらしたため、低ノイズで実用的なシステムを構
築することができる。
In the optical signal transmission method according to the seventh aspect of the present invention, the frequency arrangement of the transmitted signals is set at equal intervals within the wavelength group, and adjacent wavelength groups are shifted so as not to overlap with each other, so that low noise is generated. You can build a practical system with.

【0048】本発明のうち請求項8記載の光信号伝送方
法は、被伝送信号の周波数配列を1オクターブ以内とし
たため、受光器で発生する2次歪み成分が信号帯域内に
発生せず、従って、各伝送系に接続される各種機器、特
に光源、受光器、FM復調器に対する性能特性の要求が
緩和され、機器のコストを低減することができる。
In the optical signal transmitting method according to the eighth aspect of the present invention, the frequency arrangement of the transmitted signal is within one octave, so that the second-order distortion component generated in the photodetector is not generated within the signal band, and accordingly, The requirements for the performance characteristics of various devices connected to each transmission system, particularly the light source, the light receiver, and the FM demodulator are alleviated, and the cost of the device can be reduced.

【0049】本発明のうち請求項9記載の光信号伝送方
法は、2以上の波長群の波長帯を1.31μm又は1.
55μmにしたので、従来からの光信号通信と同様の光
信号通信を容易に実現することができる。
In the optical signal transmission method according to claim 9 of the present invention, the wavelength band of two or more wavelength groups is 1.31 μm or 1.
Since the thickness is 55 μm, it is possible to easily realize the same optical signal communication as the conventional optical signal communication.

【0050】本発明のうち請求項10記載の光信号伝送
方法は、2以上の波長群のうち一方の波長群の波長帯を
1.31μm、他方の波長群の波長帯を1.55μmに
したので、従来からの光信号通信と同様の光信号通信を
容易に実現することができる。
In the optical signal transmission method according to claim 10 of the present invention, the wavelength band of one of the two or more wavelength groups is 1.31 μm and the wavelength band of the other wavelength group is 1.55 μm. Therefore, the optical signal communication similar to the conventional optical signal communication can be easily realized.

【0051】本発明のうち請求項11記載の光信号伝送
方法は、光伝送路7をループ状にして光信号の伝送方向
を切替えて送信できるようにしてあるため、冗長伝送系
への対応も可能となり、光伝送システムの柔軟性が向上
し、実用化した場合の効果は大きい。
In the optical signal transmission method according to the eleventh aspect of the present invention, since the optical transmission line 7 is looped so that the transmission direction of the optical signal can be switched and transmitted, it is also compatible with the redundant transmission system. It becomes possible, the flexibility of the optical transmission system is improved, and the effect when put to practical use is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光信号伝送方法の1つの実施形態例を
示した概略図。
FIG. 1 is a schematic diagram showing an embodiment of an optical signal transmission method of the present invention.

【図2】本発明の光信号伝送方法における波長配置例を
示した説明図。
FIG. 2 is an explanatory diagram showing an example of wavelength allocation in the optical signal transmission method of the present invention.

【図3】本発明の光信号伝送方法における被伝送信号の
搬送周波数配置例を示した説明図。
FIG. 3 is an explanatory diagram showing an example of carrier frequency allocation of a transmitted signal in the optical signal transmission method of the present invention.

【図4】本発明の光信号伝送方法の実施形態の一例を示
した概略図。
FIG. 4 is a schematic diagram showing an example of an embodiment of an optical signal transmission method of the present invention.

【図5】本発明の光信号伝送方法における各光信号波長
の配列と受信局での受光レベルの関係を示す模式図。
FIG. 5 is a schematic diagram showing a relationship between an array of optical signal wavelengths and a light receiving level at a receiving station in the optical signal transmission method of the present invention.

【図6】本発明の光信号伝送方法において、最も受光レ
ベルの低い光信号に対する送信局数nとCNRの関係の
例を示す模式図。
FIG. 6 is a schematic diagram showing an example of the relationship between the number n of transmitting stations and CNR for an optical signal having the lowest received light level in the optical signal transmission method of the present invention.

【図7】本発明の光信号伝送方法における各光信号波長
の配列と受信局での受光レベルの関係を示す第2の例の
模式図。
FIG. 7 is a schematic diagram of a second example showing the relationship between the array of optical signal wavelengths and the received light level at the receiving station in the optical signal transmission method of the present invention.

【図8】本発明の光信号伝送方法における各光信号波長
の配列と受信局での受光レベルの関係を示す第3の例の
模式図。
FIG. 8 is a schematic diagram of a third example showing a relationship between an array of optical signal wavelengths and a light reception level at a receiving station in the optical signal transmission method of the present invention.

【図9】本発明の光信号伝送方法の実施形態の他例を示
した概略図。
FIG. 9 is a schematic view showing another example of the embodiment of the optical signal transmission method of the present invention.

【図10】従来の光信号伝送方法の一例を示した概略
図。
FIG. 10 is a schematic diagram showing an example of a conventional optical signal transmission method.

【図11】従来の光信号伝送方法の他の例を示した概略
図。
FIG. 11 is a schematic diagram showing another example of a conventional optical signal transmission method.

【図12】図11の光信号伝送方法における光信号の波
長配列と受光レベルの一例を示す模式図。
12 is a schematic diagram showing an example of a wavelength array of optical signals and a light receiving level in the optical signal transmission method of FIG.

【図13】従来の光信号伝送方法において、最も受光レ
ベルの低い光信号に対する送信局数nとCNRの関係の
例を示す模式図。
FIG. 13 is a schematic diagram showing an example of the relationship between the number n of transmitting stations and CNR for an optical signal having the lowest light receiving level in the conventional optical signal transmission method.

【符号の説明】[Explanation of symbols]

11〜1n 送信局 2 受信局 7 光伝送路 12 波長分割型光分波器 31〜3n 信号源 41〜4n 変調器 51〜5n 電気/光変換器(光源) 61〜6n 光合波器 81、82 光/電気変換器 91、92 分波器 94 光フィルタ 101〜10n 復調器 111〜11n モニタ 87 信号源 88 FM変調器 89 光合波器 Gλ1、Gλ2 波長群 λ1〜λm 信号光波長 11-1n transmitting station 2 receiving station 7 optical transmission line 12 wavelength division type optical demultiplexer 31-3n signal source 41-4n modulator 51-5n electrical / optical converter (light source) 61-6n optical multiplexer 81, 82 Optical / electrical converter 91, 92 Demultiplexer 94 Optical filter 101-10n Demodulator 111-11n Monitor 87 Signal source 88 FM modulator 89 Optical multiplexer Gλ1, Gλ2 Wavelength group λ1-λm Signal light wavelength

───────────────────────────────────────────────────── フロントページの続き (72)発明者 清村 淳雄 東京都千代田区丸の内2丁目6番1号 古 河電気工業株式会社内 (72)発明者 加藤 智之 東京都千代田区丸の内2丁目6番1号 古 河電気工業株式会社内 (72)発明者 久保田 昌夫 東京都千代田区内幸町1−1−3 東京電 力株式会社内 (72)発明者 松岡 温雄 東京都千代田区内幸町1−1−3 東京電 力株式会社内 (72)発明者 篠田 雪久 東京都千代田区内幸町1−1−3 東京電 力株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Atsushi Kiyomura 2-6-1, Marunouchi, Chiyoda-ku, Tokyo Furukawa Electric Co., Ltd. (72) Tomoyuki Kato 2-6-1, Marunouchi, Chiyoda-ku, Tokyo No. Furukawa Electric Co., Ltd. (72) Inventor Masao Kubota 1-1-3 Uchiyuki-cho, Chiyoda-ku, Tokyo Tokyo Electric Power Co., Inc. Power Co., Ltd. (72) Inventor Yukihisa Shinoda 1-1-3 Uchisaiwaicho, Chiyoda-ku, Tokyo Tokyo Electric Power Co., Ltd.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】多数の送信局の夫々において被伝送信号を
特定周波数の搬送波にのせ、この信号により夫々の送信
局の光源から発生される光信号を変調し、これら光信号
を共通の光伝送路に送り出して波長多重及び周波数多重
して受信局側に伝送するようにした光信号伝送方法にお
いて、波長多重された光信号が2つ以上の波長群に分か
れており、それらの波長群を波長群毎に、しかもひとつ
の波長群に属する波長は同時に一つの受光器で受光する
ことを特徴とする光信号伝送方法。
1. A transmission signal is placed on a carrier wave of a specific frequency in each of a plurality of transmitting stations, an optical signal generated from a light source of each transmitting station is modulated by this signal, and these optical signals are transmitted by a common optical transmission. In the optical signal transmission method in which the wavelength-division-multiplexed optical signal is sent to the optical path and wavelength-division-multiplexed and frequency-division-multiplexed and transmitted to the receiving station side, the wavelength-division-multiplexed optical signal is divided into two or more wavelength groups. An optical signal transmission method characterized in that wavelengths belonging to one wavelength group are received simultaneously by one light receiver for each group.
【請求項2】多数の送信局の夫々において被伝送信号を
特定周波数の搬送波にのせ、この信号により夫々の送信
局の光源から発生される光信号を変調し、これら光信号
を共通の光伝送路に送り出して波長多重及び周波数多重
して受信局側に伝送するようにした光信号伝送方法にお
いて、夫々の送信局において受信局での各光信号の受光
レベルが均一化されるように制御することなく、夫々の
送信局から信号光を送り出し、それらの波長多重された
光信号が2つ以上の波長群に分かれており、それらの波
長群を波長群毎に、しかも1つの波長群に属する波長は
同時に1つの受光器で受光することを特徴とする光信号
伝送方法。
2. A transmission signal is placed on a carrier of a specific frequency in each of a number of transmitting stations, an optical signal generated from a light source of each transmitting station is modulated by this signal, and these optical signals are transmitted by a common optical transmission. In an optical signal transmission method in which signals are sent out to the optical path, wavelength-multiplexed and frequency-multiplexed and transmitted to the receiving station side, control is performed so that the light receiving level of each optical signal at the receiving station is made uniform at each transmitting station. Signal light is sent out from each transmitting station without any delay, and the wavelength-multiplexed optical signals are divided into two or more wavelength groups, and these wavelength groups belong to each wavelength group and belong to one wavelength group. An optical signal transmission method characterized in that wavelengths are simultaneously received by one light receiver.
【請求項3】請求項1又は請求項2記載の光信号伝送方
法において、2以上の波長群が全て同一波長帯であるこ
とを特徴とする光信号伝送方法。
3. The optical signal transmission method according to claim 1 or 2, wherein two or more wavelength groups are all in the same wavelength band.
【請求項4】請求項1又は請求項2記載の光信号伝送方
法において、2以上の波長群が夫々異なった波長帯に属
することを特徴とする光信号伝送方法。
4. The optical signal transmission method according to claim 1 or 2, wherein two or more wavelength groups belong to different wavelength bands.
【請求項5】請求項1乃至請求項4記載の夫々の光信号
伝送方法において、被伝送信号の周波数配列を近接する
波長群について互いに重ならないようにずらしたことを
特徴とする光信号伝送方法。
5. The optical signal transmission method according to any one of claims 1 to 4, wherein the frequency arrays of the transmitted signals are shifted so that adjacent wavelength groups do not overlap each other. .
【請求項6】請求項1乃至請求項5記載の夫々の光信号
伝送方法において、被伝送信号の周波数配列をその波長
群内で等間隔としたことを特徴とする光信号伝送方法。
6. The optical signal transmission method according to any one of claims 1 to 5, wherein the frequency array of the transmitted signals is set at equal intervals within the wavelength group.
【請求項7】請求項1乃至請求項6記載の夫々の光信号
伝送方法において、被伝送信号の周波数配列をその波長
群内で等間隔とし、近接する波長群については互いに重
ならないようにずらしたことを特徴とする光信号伝送方
法。
7. The optical signal transmission method according to any one of claims 1 to 6, wherein the frequency arrays of the transmitted signals are arranged at equal intervals within the wavelength group, and adjacent wavelength groups are shifted so as not to overlap each other. An optical signal transmission method characterized by the above.
【請求項8】請求項1乃至請求項7記載の夫々の光信号
伝送方法において、被伝送信号の周波数配列を1オクタ
ーブ以内としたことを特徴とする光信号伝送方法。
8. The optical signal transmission method according to any one of claims 1 to 7, wherein the frequency arrangement of the transmitted signals is within one octave.
【請求項9】請求項1乃至請求項8記載の夫々の光信号
伝送方法において、2以上の波長群が全て同一波長帯で
あり、その波長帯が1.3μm付近又は1.5μm付近
であることを特徴とする光信号伝送方法。
9. The optical signal transmission method according to each of claims 1 to 8, wherein two or more wavelength groups are all in the same wavelength band, and the wavelength band is around 1.3 μm or around 1.5 μm. An optical signal transmission method characterized by the above.
【請求項10】請求項1乃至請求項9記載の夫々の光信
号伝送方法において、2以上の波長群が夫々異なった波
長帯に属し、2以上の波長群のうち一方の波長群の波長
帯が1.3μm付近であり、他方の波長群の波長帯が
1.5μm付近であることを特徴とする光信号伝送方
法。
10. The optical signal transmission method according to claim 1, wherein two or more wavelength groups belong to different wavelength bands, and one of the two or more wavelength groups has a wavelength band. Is around 1.3 μm, and the wavelength band of the other wavelength group is around 1.5 μm.
【請求項11】請求項1乃至請求項10記載の夫々の光
信号伝送方法において、2以上の送信局と受信局とを結
ぶ光伝送路をループ状に構成して、光伝送路切断等のト
ラブル時には、同光伝送路を利用して通常通信時の逆方
向から光伝送を行なうようにしたことを特徴とする光信
号伝送方法。
11. The optical signal transmission method according to any one of claims 1 to 10, wherein an optical transmission line connecting two or more transmitting stations and a receiving station is formed in a loop shape so that the optical transmission line is disconnected. In case of trouble, the optical signal transmission method is characterized in that the optical transmission line is used to perform optical transmission from the opposite direction to that in normal communication.
JP8179606A 1995-12-22 1996-07-09 Optical signal transmission method Pending JPH09233053A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8179606A JPH09233053A (en) 1995-12-22 1996-07-09 Optical signal transmission method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP35036895 1995-12-22
JP7-350368 1995-12-22
JP8179606A JPH09233053A (en) 1995-12-22 1996-07-09 Optical signal transmission method

Publications (1)

Publication Number Publication Date
JPH09233053A true JPH09233053A (en) 1997-09-05

Family

ID=26499406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8179606A Pending JPH09233053A (en) 1995-12-22 1996-07-09 Optical signal transmission method

Country Status (1)

Country Link
JP (1) JPH09233053A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999035775A1 (en) * 1998-01-09 1999-07-15 Osicom Technologies, Inc. Short distance dense wavelength division multiplexing optical communication system
EP0938001A1 (en) * 1998-02-18 1999-08-25 Lucent Technologies Inc. Dual window wdm optical fiber communication
JP2001333047A (en) * 2000-05-24 2001-11-30 Nippon Telegr & Teleph Corp <Ntt> Optical transmission system
US6671430B2 (en) 1999-05-14 2003-12-30 Fujitsu Limited Optical device, terminal apparatus, and system for wavelength division multiplexing
JP2010171789A (en) * 2009-01-23 2010-08-05 Nippon Telegr & Teleph Corp <Ntt> Optical signal transmission method, optical communication system, optical transmitter, and optical receiver

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999035775A1 (en) * 1998-01-09 1999-07-15 Osicom Technologies, Inc. Short distance dense wavelength division multiplexing optical communication system
EP0938001A1 (en) * 1998-02-18 1999-08-25 Lucent Technologies Inc. Dual window wdm optical fiber communication
US6671430B2 (en) 1999-05-14 2003-12-30 Fujitsu Limited Optical device, terminal apparatus, and system for wavelength division multiplexing
JP2001333047A (en) * 2000-05-24 2001-11-30 Nippon Telegr & Teleph Corp <Ntt> Optical transmission system
JP2010171789A (en) * 2009-01-23 2010-08-05 Nippon Telegr & Teleph Corp <Ntt> Optical signal transmission method, optical communication system, optical transmitter, and optical receiver

Similar Documents

Publication Publication Date Title
US5880865A (en) Wavelength-division-multiplexed network having broadcast capability
US5771111A (en) Optical network
US7366415B2 (en) Wavelength division multiplexing-passive optical network capable of integrating broadcast and communication services
US9124369B2 (en) Multi-direction variable optical transceiver
US5107360A (en) Optical transmission of RF subcarriers in adjacent signal bands
KR100606102B1 (en) Broadcast/communication unified passive optical network system
EP2314003B1 (en) Method for data processing in an optical network, optical network component and communication system
WO2007071154A1 (en) A wavelength division multiplexing passive optical network and its implement method
US20080131125A1 (en) Loopback-type wavelength division multiplexing passive optical network system
WO2010093195A9 (en) Low-noise optical signal transmitter with low-noise multi-wavelength light source, broadcast signal transmitter using low-noise multi-wavelength light source, and optical network with the same
US20100021164A1 (en) Wdm pon rf/video broadcast overlay
US20070189772A1 (en) Hybrid passive optical network using wireless communication
US20070177873A1 (en) Hybrid passive optical network
US20050213970A1 (en) Relay transmission apparatus
JPH09233053A (en) Optical signal transmission method
CN102771071A (en) System and method for distributing digital signals over long-distance switched optical transport networks
US20040141748A1 (en) Use of coarse WDM channels for upstream traffic in fiber-to-the-home systems
US7466921B2 (en) Drop-and-continue device
US7609970B2 (en) Add/drop node for an optical communications network
JP2003234721A (en) Optical communication system
JP3458458B2 (en) Optical WDM transmission system
JP2008244847A (en) Wavelength multiplexing apparatus
JPH0817349B2 (en) Optical connection system between subscriber terminal and branch of communication network
JP3535937B2 (en) Optical transmission system
KR100912544B1 (en) Loopback type wavelength-division multiplexing-passive optical network

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050315