JPH09227294A - Production of artificial quartz crystal - Google Patents

Production of artificial quartz crystal

Info

Publication number
JPH09227294A
JPH09227294A JP6378696A JP6378696A JPH09227294A JP H09227294 A JPH09227294 A JP H09227294A JP 6378696 A JP6378696 A JP 6378696A JP 6378696 A JP6378696 A JP 6378696A JP H09227294 A JPH09227294 A JP H09227294A
Authority
JP
Japan
Prior art keywords
crystal
growth
seed crystal
artificial quartz
temp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6378696A
Other languages
Japanese (ja)
Inventor
Kunio Hamaguchi
邦夫 濱口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Original Assignee
Toyo Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd filed Critical Toyo Communication Equipment Co Ltd
Priority to JP6378696A priority Critical patent/JPH09227294A/en
Publication of JPH09227294A publication Critical patent/JPH09227294A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently and inexpensively obtain an artificial quartz crystal of less linear defect density by controlling the convection in autoclave and varying the growth rates by the positions of the Z growth face within the same crystal at the time of producing the artificial quartz crystal by a water heat method. SOLUTION: The autoclave 6 filled with an aq. alkaline soln. is internally provided with a high-temp. section and a low-temp. section to generate the convection of the aq. alkaline soln. A quartz crystal raw material is melted in the high-temp. section and is made into a supersaturated soln. in the low-temp. section to precipitate and grow the crystal 9 of the quartz crystal on a seed crystal 7 of the quartz crystal previously hung in the low-temp. section. At this time, baffle plates 8 are arranged above and below the seed crystal 7 hung in the autoclave 6 or iron plates 10 are inclined along side the seed crystal 7 to vary the flow velocity of the convection of the alkaline soln. near the seed crystal 7 by the positions in the Y-axis direction of the seed crystal 7. As a result, the growth speeds of the Z growth face are varied by the positions in the Y-axis direction even within the same crystal and this Z growth face is grown to incline with the Z face, by which the artificial quartz crystal 9 is obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は水熱法で製造する人
工水晶に関し、特に、Z成長面の位置による成長速度を
異ならせることにより線状欠陥を減少させた人工水晶の
製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a synthetic quartz produced by a hydrothermal method, and more particularly to a synthetic quartz production method in which linear defects are reduced by varying the growth rate depending on the position of the Z growth surface.

【0002】[0002]

【従来の技術】水晶デバイスの小型化要請に伴って人工
水晶の加工法もフォトリソ技術を応用した微細加工法に
よる水晶デバイスが多くなってきた。一方、水晶の結晶
から所定の切り出し角度で板状に切り出した水晶基板を
エッチング加工するとエッチチャネル(エッチパイプ、
エッチチューブ、エッチトンネルとも云う)と呼ばれる
針状の細孔が形成されることが知られている。エッチチ
ャネルは水晶をエッチングすることにより内部に存在す
る線状欠陥が選択的にエッチングされて生じる欠陥であ
り、最終製品の特性及び歩留まりに大きな影響を及ぼす
ことが知られている。
2. Description of the Related Art With the demand for miniaturization of quartz devices, the number of quartz devices manufactured by microfabrication methods using photolithography technology has also increased as a method of processing artificial quartz. On the other hand, when a quartz substrate cut out from a crystal of quartz at a predetermined cutting angle is processed by etching, an etch channel (etch pipe,
It is known that needle-shaped pores called an etch tube or an etch tunnel) are formed. It is known that the etch channel is a defect caused by selectively etching linear defects existing inside by etching quartz, and has a great influence on the characteristics and yield of the final product.

【0003】人工水晶はアルカリ水溶液を充填したオー
トクレーブと呼ばれる耐圧容器内で、高温高圧状態の下
で一般に水熱育成法と呼ばれる方法で育成される。この
方法の特徴は耐圧容器内に高温部と低温部を設けて温度
差をつけることにより、高温部で水晶原材料が溶融し低
温部で過飽和溶液になり、予め低温部に吊しておいた水
晶の種子結晶上に結晶を析出せしめ、結晶を成長させる
方法である。このような現状の人工水晶の育成技術で
は、種子結晶に線状欠陥が存在すると、種子結晶に析出
した水晶結晶も線状欠陥を含んで成長するため、種子結
晶よりも線状欠陥密度の低い人工水晶の育成は不可能と
考えられていた。従来の人工水晶育成法による結晶成長
領域のエッチチャネル密度(本/cm2)と種子結晶の
それとを比較した図を図7に示す。3個の試料A、B及
びCについて種子結晶と成長領域のエッチチャネル密度
(本/cm2)を測定した結果、成長領域のエッチチャ
ネル密度は種結晶の密度より夫々12.1%、2.9%
及び2.2%と増加していた。
Synthetic quartz is grown in a pressure vessel called an autoclave filled with an alkaline aqueous solution under a high temperature and high pressure condition by a method generally called a hydrothermal growth method. The feature of this method is that by providing a high temperature part and a low temperature part in the pressure vessel to make a temperature difference, the crystal raw material is melted in the high temperature part and becomes a supersaturated solution in the low temperature part, and the crystal is hung in the low temperature part in advance. This is a method of precipitating a crystal on the seed crystal of the above and growing the crystal. In such a current state of the art artificial quartz growth technology, when a linear defect is present in the seed crystal, the crystalline crystal precipitated in the seed crystal also grows to include the linear defect, so that the linear defect density is lower than that of the seed crystal. It was considered impossible to grow artificial crystals. FIG. 7 shows a diagram comparing the etch channel density (pieces / cm 2 ) of the crystal growth region by the conventional artificial crystal growth method with that of the seed crystal. As a result of measuring the etch channel densities (pieces / cm 2 ) of the seed crystal and the growth region for the three samples A, B and C, the etch channel density of the growth region is 12.1% than the density of the seed crystal, and 2. 9%
And 2.2%.

【0004】上記のような線状欠陥が存在する人工水晶
であっても従来の機械的加工、例えばラッピングやポリ
ッシング(研磨)仕上げの水晶基板を用いる水晶振動デ
バイスでは、線状欠陥が所定の密度以下であれば、水晶
振動デバイスの特性、例えば、電気的等価定数(Q値、
モーショナル・インダクタンス、キャパシタンス、C
I)及びエージング等にほとんど影響しなかった。しか
し、ここ数年来、水晶基板の加工法としてフォトリソ技
法とエッチング手法を用いた振動デバイスが多くなり、
従来の線状欠陥密度では使用に耐えられなくなってき
た。例えば、ATカット超薄型振動子基板をエッチング
手法で仕上げる場合、線状欠陥が選択的にエッチングさ
れて微小な穴が開き、基板表裏に設けた電極が短絡した
り、振動子のQ値が極端に減少するなど、最終製品の歩
留まりが著しく悪化することが分かってきた。このため
線状欠陥の少ない人工水晶を目指して改良に取り組んで
きた。
Even in the case of synthetic quartz having linear defects as described above, in a crystal vibrating device using a conventional quartz substrate that has been mechanically processed, for example, lapping or polishing (polishing), the linear defects have a predetermined density. If the following, the characteristics of the crystal vibrating device, for example, the electrical equivalent constant (Q value,
Motional inductance, capacitance, C
I) and aging were hardly affected. However, over the past few years, the number of vibrating devices that use photolithography and etching as the processing method for quartz substrates has increased,
Conventional linear defect densities have become unusable. For example, when finishing an AT-cut ultra-thin oscillator substrate by an etching method, linear defects are selectively etched to open minute holes, the electrodes provided on the front and back of the substrate are short-circuited, and the Q value of the oscillator is It has been found that the yield of the final product is remarkably deteriorated, such as an extreme decrease. For this reason, we have been working on the improvement aiming at artificial quartz with few linear defects.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記の
ように現状の人工水晶育成法では線状欠陥の少ない人工
水晶を効率良く育成できないという問題があった。本発
明は上記課題を解決するためになされたものであって線
状欠陥密度の少ない人工水晶を多量に且つ、安価に提供
することを目的とする。
However, as described above, there is a problem that the current artificial quartz growing method cannot efficiently grow artificial quartz with few linear defects. The present invention has been made to solve the above problems, and an object of the present invention is to provide a large amount of artificial quartz having a low linear defect density and at a low cost.

【0006】[0006]

【課題を解決するための手段】オートクレーブ内に吊さ
れた種子結晶の上下にバッフル板を配置しあるいは種子
結晶に鉄板等を傾けてかざし種子結晶の側を流れる流速
を種子結晶のY軸方向の位置によって異ならしめること
により、同一結晶内であってもZ成長面の成長速度をY
軸方向の位置によって異ならしめ該Z成長面をZ面に対
し傾斜させて育成する人工水晶の製造方法である。
Means for Solving the Problems Baffle plates are arranged above and below a seed crystal suspended in an autoclave, or an iron plate or the like is tilted over the seed crystal, and the flow velocity on the side of the seed crystal is set in the Y-axis direction of the seed crystal. By making them different depending on the position, the growth rate of the Z growth surface can be changed to Y even within the same crystal.
This is a method for producing an artificial quartz in which the Z-grown surface is tilted with respect to the Z-plane and is grown by varying the axial position.

【0007】[0007]

【発明の実施の形態】以下、本発明を図面に示した実施
の形態に基づいて詳細に説明する。本発明の理解を助け
るため、人工水晶について少しく説明すると、人工水晶
の成長は結晶の異方性に支配され、図5に示すように成
長領域は5つの異なる領域に分かれる。尚、図5はY軸
方向に長い通称「Y棒水晶」と称される人工水晶をその
結晶軸Yに対して垂直な面で切断したときの断面であっ
て、図中上方が+X軸、右方が+Z軸( C軸、光軸と
も云う)である。即ち、種子水晶1と4つの成長領域、
即ち、+X領域2、S領域3、Z領域4、および−X領
域5から構成されている。各領域の境界はX線トポグラ
フ等により明確に観察される。水晶応用製品に使用する
場合は、殊に上記の境界に集中発生する双晶や脈理、そ
の他の欠陥等が存在すると水晶の光学的あるいは電気的
特性が悪化することが知られている。このため、光学製
品や水晶振動子等に人工水晶を用いる場合には、光学的
及び電気的品質が劣化する種子1、+X及び−X領域
(2及び5)、並びにS領域3は通常除去し、特に品質
の良好な図5のZ領域4を選んで使用するのが一般的で
ある。Y棒水晶はY軸方向に長い種子を用いたものであ
り、良質なZ領域の比率が少ない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail based on an embodiment shown in the drawings. In order to help understanding of the present invention, the artificial quartz is briefly described. The growth of the artificial quartz is controlled by the anisotropy of the crystal, and the growth region is divided into five different regions as shown in FIG. Note that FIG. 5 is a cross section of an artificial quartz, which is commonly called “Y rod quartz” long in the Y-axis direction, cut along a plane perpendicular to the crystal axis Y, and the upper side in the figure is the + X axis. The right side is the + Z axis (also called the C axis or the optical axis). That is, seed crystal 1 and four growth areas,
That is, it is composed of a + X region 2, an S region 3, a Z region 4, and a -X region 5. The boundary of each region is clearly observed by an X-ray topography or the like. It is known that when used in a crystal application product, the optical or electrical characteristics of the crystal are deteriorated especially when twin crystals, striae, and other defects that are concentrated at the above-mentioned boundaries are present. Therefore, when artificial quartz is used for optical products, crystal oscillators, etc., the seed 1, + X and -X regions (2 and 5), which deteriorate in optical and electrical quality, and the S region 3 are usually removed. Generally, it is general to select and use the Z region 4 of FIG. 5 which has particularly good quality. The Y-bar crystal uses seeds that are long in the Y-axis direction and has a small proportion of good-quality Z regions.

【0008】ここで、Y棒水晶に代わって、品質が良い
Z領域を多く含むZ板水晶が製造され多量に使われてい
る。図6はZ板水晶であり、同(a)はX軸方向から見
た図、(b)はZ軸方向から見た図ある。従来のZ板は
図6(a)に示すようにZ軸に垂直な方向の面所謂Z面
にほぼ並行に成長するように育成されていた。このよう
に育成するとZ領域の収率が最もよい人工水晶となる。
このように育成した人工水晶内の線状欠陥を上記のX線
トポグラフで観察すると、Z領域では線状欠陥はZ軸か
ら約15°の範囲で円錐状に分布していることが分かっ
ている。このことからZ軸から約15°の範囲内でしか
線状欠陥は育成領域内へ伸長出来ないと推論した。
Here, in place of the Y rod crystal, Z plate crystal containing a large amount of good Z region has been manufactured and used in large quantities. 6A and 6B show a Z-plate crystal, FIG. 6A is a view seen from the X-axis direction, and FIG. 6B is a view seen from the Z-axis direction. As shown in FIG. 6 (a), the conventional Z plate has been grown so that it grows substantially parallel to a plane perpendicular to the Z axis, the so-called Z plane. When grown in this manner, an artificial quartz crystal with the highest Z region yield is obtained.
When the linear defects in the artificial quartz thus grown are observed by the above X-ray topography, it is known that the linear defects are conically distributed within the range of about 15 ° from the Z axis in the Z region. . From this, it was inferred that the linear defects could extend into the growing region only within the range of about 15 ° from the Z axis.

【0009】即ち、図1(a)に種子表面、Z面及びZ
成長面の関係を表す図を示す。一般に種子はZカット
(主面がZ軸と垂直)の種子を用いるためZ面は種子表
面と平行であり、上述したように従来のZ板水晶はZ面
に平行に成長するように育成していた。本発明の人工水
晶はZ成長面をZ面からθ°傾けて育成することを特徴
とし、推論によると成長方向(Z軸からφ°)がZ軸か
ら15°以内(φ<15°)では転位成長が可能範囲で
あり、この角度を越す(φ>15°)と転位成長不可能
範囲となると考えている。ここで転位(dislocation)
とは格子欠陥の一種で結晶内のずれに起因して線状につ
ながっておきている一連の原子の変位であり、転位は成
長方向と平行に形成される。また、人工水晶のZ領域は
付着成長によりZ面が成長すると考えられている。即
ち、Z成長面は種子結晶のZ面に概ね平行に育成されの
で、Z成長面をZ面から約15°傾斜させて人工水晶を
育成した場合、種子結晶内の線状欠陥をZ成長領域に引
き継がなくなると考え、本発明に係る各種の実験を行っ
た。
That is, in FIG. 1 (a), the seed surface, Z plane and Z
The figure showing the relationship of a growth surface is shown. Generally, seeds are Z-cut (the main surface is perpendicular to the Z axis), so the Z surface is parallel to the seed surface. As described above, the conventional Z plate crystal is grown so as to grow parallel to the Z surface. Was there. The synthetic quartz crystal of the present invention is characterized by growing by inclining the Z growth surface by θ ° from the Z surface, and it is inferred that the growth direction (φ ° from the Z axis) is within 15 ° from the Z axis (φ <15 °). It is considered that dislocation growth is possible, and if this angle is exceeded (φ> 15 °), dislocation growth is considered impossible. Where dislocation
Is a kind of lattice defect, which is a displacement of a series of atoms connected linearly due to a shift in the crystal, and dislocations are formed parallel to the growth direction. Further, it is considered that the Z surface of the artificial quartz has a Z surface grown by adhesion growth. That is, since the Z growth surface is grown substantially parallel to the Z surface of the seed crystal, when an artificial quartz crystal is grown with the Z growth surface tilted at about 15 ° from the Z surface, linear defects in the seed crystal are observed in the Z growth area. Various experiments according to the present invention were carried out on the assumption that they would no longer be handed over.

【0010】上述したようにオートクレーブの下部に高
温部を、上部に低温部を設けることによりオートクレー
ブ内の上下に温度差を生じさせ、これにより該内部にア
ルカリ溶液の複雑な対流が生ずる。溶液の流速が速い状
態で育成された人工水晶は対流の方向に対して僅かなが
ら楔型に傾いて成長することが知られている。オートク
レーブ内ではアルカリ溶液の対流を制御するバッフル板
の付近の流速が速いので、Z成長面を大きく傾けること
が期待できる。そこで、バッフル開口部の真上に種子結
晶を吊したところ、人工水晶のZ成長面角はZ面に対し
4.6°傾斜していた。更に、この実験を発展させて図
1(b)に示すように種子及びバッフル板を配置して実
験した。図1(b)はオートクレーブ内を模式的に表す
図であって、オートクレーブ6内に吊した種子結晶7の
上下にバッフル板8を配置させ対流を制御し結晶9を育
成する。種子結晶の上下にバッフル板を配置し種子結晶
の側を流れる流速を種子結晶のY軸方向の位置により変
化さて人工水晶を育成したところ、Z成長面はZ面より
さらに大きく傾いて育成されることが分かった。また他
の実験は図1(c)に示すようにで種子結晶7の片面を
鉄板10に張り付け他面にたいしては鉄板10を傾けて
かざし上記と同様に種子結晶のY軸方向の位置により流
速を変化さて人工水晶9を育成したところ予想どうりZ
育成面はZ面より傾いて育成された。
As described above, by providing the high temperature part in the lower part of the autoclave and the low temperature part in the upper part of the autoclave, a temperature difference is generated in the upper and lower parts of the autoclave, which causes complicated convection of the alkaline solution. It is known that artificial quartz grown in a state where the flow rate of the solution is fast grows in a wedge shape slightly with respect to the direction of convection. Since the flow velocity near the baffle plate that controls the convection of the alkaline solution is high in the autoclave, it can be expected that the Z growth surface will be greatly inclined. Therefore, when the seed crystal was hung right above the baffle opening, the Z growth surface angle of the artificial crystal was tilted by 4.6 ° with respect to the Z surface. Furthermore, this experiment was developed and the experiment was conducted by disposing seeds and baffle plates as shown in FIG. 1 (b). FIG. 1 (b) is a diagram schematically showing the inside of the autoclave, in which baffle plates 8 are arranged above and below the seed crystal 7 suspended in the autoclave 6 to control convection and grow the crystal 9. When baffle plates were arranged above and below the seed crystal and the artificial quartz crystal was grown by changing the flow velocity flowing on the side of the seed crystal depending on the position of the seed crystal in the Y-axis direction, the Z growth surface was grown with a larger inclination than the Z surface. I found out. In another experiment, as shown in FIG. 1 (c), one surface of the seed crystal 7 was attached to the iron plate 10 and the iron plate 10 was tilted over the other surface, and the flow rate was changed depending on the position of the seed crystal in the Y-axis direction as described above. When I grew up with artificial quartz 9, it changed as expected Z
The growing surface was inclined with respect to the Z surface.

【0011】本発明に係る人工水晶のZ成長面の傾斜
は、上記のように同一水晶上のY軸方向の各位置おいて
流速による成長速度の違いにより形成される。また、人
工水晶に含まれる水は成長速度が速くなるに従いその含
有量が増加すると言う特性がある。一方、結晶内の水は
赤外領域の特定の波長に吸収を示すので、赤外吸収値か
ら成長速度を算出することが可能である。図4(a)は
バッフル板の真上で育成した人工水晶であり、同図に示
した試料の図中左端面よりa点(35.9mm)、b点
(74.8mm)及びc点(105.4mm)の各点に
おけるZ軸方向の成長速度を図2に示す。この図の成長
速度より算出すると当該試料はZ軸より約4.6°傾斜
したZ成長面で育成された人工水晶であることが逆に明
らかとなる。
The inclination of the Z growth surface of the artificial quartz crystal according to the present invention is formed by the difference in the growth rate depending on the flow velocity at each position in the Y axis direction on the same quartz crystal as described above. Further, the water contained in the artificial quartz has a characteristic that its content increases as the growth rate increases. On the other hand, since water in the crystal absorbs at a specific wavelength in the infrared region, it is possible to calculate the growth rate from the infrared absorption value. FIG. 4 (a) is an artificial crystal grown right above a baffle plate, and the point a (35.9 mm), point b (74.8 mm), and point c (74.8 mm) from the left end face in the figure of the sample shown in FIG. The growth rate in the Z-axis direction at each point (105.4 mm) is shown in FIG. On the contrary, when calculated from the growth rate in this figure, it is apparent that the sample is an artificial quartz grown on the Z growth surface inclined by about 4.6 ° from the Z axis.

【0012】人工水晶の成長領域に発生する線状欠陥は
種子結晶内に存在する線状欠陥の引継によるものが大多
数を占めるため、成長領域の線状欠陥密度は、種子結晶
内の密度より一般に高くなる。ここで、本発明に係るZ
成長面をZ面から傾斜させて育成したA,B及びC3個
の人工水晶のエッチチャンネル密度を種子結晶の密度と
比較して図3に示す。この図を参照して明らかなように
3例共、成長領域のエッチチャネル密度が種子結晶内の
密度に比べて夫々56.7%、59.5%、および5
8.9%と減少していることが分かる。
Since most of the linear defects generated in the growing region of the artificial quartz are due to the succession of the linear defects existing in the seed crystal, the linear defect density in the growing region is higher than that in the seed crystal. Generally higher. Here, Z according to the present invention
FIG. 3 shows the etch channel densities of A, B, and C3 artificial quartz grown with the growth surface inclined from the Z plane in comparison with the density of the seed crystal. As is clear from this figure, in all three cases, the etch channel density in the growth region is 56.7%, 59.5%, and 5 respectively as compared with the density in the seed crystal.
It can be seen that it has decreased to 8.9%.

【0013】図4に本発明を用いて育成したZ板水晶の
形状図をしめす。図4(a)はX軸方向から見た図でZ
成長面がZ面より傾いていることが分かる。即ち成長方
向はZ軸方向からφ°傾けて成長させるため、従来のZ
板水晶のZ寸法が何れの位置でも同一なのに、本発明の
Z板水晶は図中左端のZ寸法と右端のZ寸法が異なって
くる。図4(b)は本発明のZ板水晶をZ軸方向から見
た図である。上記で対流の流速を変化させるため種子結
晶を鉄板で挟むようにした図を示したが流速を変えるに
は鉄板に限る必要はないことは当然である。
FIG. 4 shows a shape diagram of a Z-plate crystal grown by using the present invention. FIG. 4A is a view seen from the X-axis direction, Z
It can be seen that the growth plane is tilted from the Z plane. That is, since the growth direction is tilted by φ ° from the Z-axis direction, the conventional Z
Although the Z dimension of the plate quartz is the same at any position, the Z dimension of the Z plate quartz of the present invention is different in the Z dimension at the left end and the Z dimension at the right end in the figure. FIG. 4B is a view of the Z-plate crystal of the present invention viewed from the Z-axis direction. Although the seed crystal is sandwiched between the iron plates in order to change the flow velocity of convection, the iron plate need not necessarily be used to change the flow velocity.

【0014】[0014]

【発明の効果】本発明は、以上説明したように構成した
ので、成長領域の線状欠陥密度を種子結晶よりはるかに
減少させた人工水晶を育成することができ、エッチング
手法を用いて水晶板を加工する際に、水晶振動デバイス
のエッチチャネルによる不良が減少し歩留まりは著しく
向上する。例えば、GTカット等の輪郭系の振動子やA
Tカット超薄板振動子及び多重モードフィルタ等の小型
化、超高周波化、高歩留まりに繋がり、低コスト化にも
顕著な効果がある。更に、光学系に用いる場合にも材料
の歩留まりは極めて向上する。
Since the present invention is configured as described above, it is possible to grow an artificial quartz crystal having a linear defect density in the growth region much lower than that of a seed crystal, and a quartz plate is used by an etching method. During processing, defects due to the etch channel of the crystal vibrating device are reduced and the yield is significantly improved. For example, a contour-based oscillator such as GT cut or A
This leads to downsizing of T-cut ultra-thin plate vibrators, multimode filters, etc., ultra-high frequencies, high yields, and significant cost reduction. Furthermore, the yield of the material is significantly improved when it is used in an optical system.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は種表面、Z軸、Z面、成長方向及び成
長面の関係を示す図、(b)は本発明にかかる対流の流
速を変化させるバッフル板の配置を示す模式図、(c)
は鉄板を用いて流速を変化させる様子示す図である。
FIG. 1A is a diagram showing a relationship between a seed surface, a Z-axis, a Z-plane, a growth direction and a growth surface, and FIG. 1B is a schematic diagram showing an arrangement of a baffle plate for changing the flow velocity of convection according to the present invention. , (C)
FIG. 4 is a diagram showing how the flow velocity is changed using an iron plate.

【図2】人工水晶の試料の端面からの距離と当該部分に
於ける成長速度を示す図である。
FIG. 2 is a diagram showing a distance from an end face of a sample of artificial quartz and a growth rate in the portion.

【図3】種子結晶内及び成長領域内のエッチチャネル密
度を試料三例A、B、及びCを用いて減少率を比較する
図である。
FIG. 3 is a diagram comparing the reduction rates of the etch channel densities in the seed crystal and in the growth region using three sample samples A, B, and C.

【図4】(a)本発明の一例であるZ板水晶のX軸方向
から見た図、(b)はZ軸方向から見た図を示す。
FIG. 4A is a view seen from the X-axis direction of a Z-plate crystal which is an example of the present invention, and FIG. 4B is a view seen from the Z-axis direction.

【図5】人工水晶の断面図であって、成長領域、即ち種
子、+X領域、S領域、Z領域、及び−X領域を説明す
る図である。
FIG. 5 is a cross-sectional view of artificial quartz, which illustrates a growth region, that is, a seed, + X region, S region, Z region, and −X region.

【図6】(a)は従来のZ板水晶のX軸方向から見た
図、(b)はZ軸方向から見た図である。
FIG. 6A is a view of a conventional Z-plate crystal viewed from the X-axis direction, and FIG. 6B is a view viewed from the Z-axis direction.

【図7】従来の人工水晶育成法による種結晶と結晶成長
領域のエッチチャネル密度の比較図を示す図である。
FIG. 7 is a diagram showing a comparison diagram of the etch channel densities of a seed crystal and a crystal growth region by a conventional artificial quartz growth method.

【符号の説明】[Explanation of symbols]

φ……Z軸と成長方向の傾斜角 θ……Z面と成長面の傾斜角 a、b、c……Z板水晶の端面からY軸方向に沿っての
位置を示す点 6……オートクレイブ内壁面 7……種子結晶 8……バッフル板 9……育成結晶 10……鉄板
φ: Inclination angle between Z-axis and growth direction θ: Inclination angle between Z-plane and growth surface a, b, c: Point indicating the position along the Y-axis direction from the end face of Z-plate crystal 6 ... Auto Inner wall of crave 7 …… Seed crystal 8 …… Baffle plate 9 …… Growth crystal 10 …… Steel plate

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 オートクレーブ内に吊された種子結晶の
上下にバッフル板を配置しあるいは種子結晶に鉄板等を
傾けてかざし種子結晶の近傍を流れる流速を種子結晶の
Y軸方向の位置によって異ならしめることにより、同一
結晶内であってもZ成長面の成長速度をY軸方向の位置
によって異ならしめ該Z成長面をZ面に対し傾斜させて
育成することを特徴とする人工水晶の製造方法。
1. A baffle plate is arranged above and below a seed crystal suspended in an autoclave, or an iron plate or the like is tilted over the seed crystal, and the flow velocity near the seed crystal is varied depending on the position of the seed crystal in the Y-axis direction. Thus, the method for producing artificial quartz, wherein the growth rate of the Z growth surface is made different depending on the position in the Y-axis direction even within the same crystal, and the Z growth surface is inclined with respect to the Z plane.
JP6378696A 1996-02-26 1996-02-26 Production of artificial quartz crystal Pending JPH09227294A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6378696A JPH09227294A (en) 1996-02-26 1996-02-26 Production of artificial quartz crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6378696A JPH09227294A (en) 1996-02-26 1996-02-26 Production of artificial quartz crystal

Publications (1)

Publication Number Publication Date
JPH09227294A true JPH09227294A (en) 1997-09-02

Family

ID=13239413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6378696A Pending JPH09227294A (en) 1996-02-26 1996-02-26 Production of artificial quartz crystal

Country Status (1)

Country Link
JP (1) JPH09227294A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005289693A (en) * 2004-03-31 2005-10-20 Nikon Corp Artificial quartz member, optical element, optical system, projection aligner, and method for selecting artificial quartz member
JPWO2005005694A1 (en) * 2003-07-10 2006-08-24 株式会社ニコン Artificial quartz member, exposure apparatus, and method of manufacturing exposure apparatus
JP2008088009A (en) * 2006-09-29 2008-04-17 Nippon Dempa Kogyo Co Ltd Manufacturing method of artificial quartz and artificial quartz
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
JPWO2005005694A1 (en) * 2003-07-10 2006-08-24 株式会社ニコン Artificial quartz member, exposure apparatus, and method of manufacturing exposure apparatus
US7835070B2 (en) 2003-07-10 2010-11-16 Nikon Corporation Synthetic quartz member, exposure apparatus, and method of manufacturing exposure apparatus
JP4666157B2 (en) * 2003-07-10 2011-04-06 株式会社ニコン Artificial quartz member, exposure apparatus, and method of manufacturing exposure apparatus
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
JP2005289693A (en) * 2004-03-31 2005-10-20 Nikon Corp Artificial quartz member, optical element, optical system, projection aligner, and method for selecting artificial quartz member
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
JP2008088009A (en) * 2006-09-29 2008-04-17 Nippon Dempa Kogyo Co Ltd Manufacturing method of artificial quartz and artificial quartz
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method

Similar Documents

Publication Publication Date Title
JPH09227294A (en) Production of artificial quartz crystal
US4755314A (en) Single crystal wafer of lithium tantalate
US5114528A (en) Edge-defined contact heater apparatus and method for floating zone crystal growth
JP3670886B2 (en) Method for growing artificial quartz and quartz plate using the same
KR100232537B1 (en) Rutile single crystals and their growth processes
JPS6111914B2 (en)
Malek et al. The effect of growth rate on the defect structure and dielectric properties of tgs single crystals
KR20080056404A (en) Method of manufacturing silicon single crystal and test method of the same
RU2057210C1 (en) Crystalline quartz growing method
KR102607580B1 (en) Method and apparatus for growing silicon single crystal ingot
JP4493292B2 (en) How to grow artificial quartz
JP7336961B2 (en) Single crystal ingot manufacturing method and single crystal wafer manufacturing method
EP0243215B1 (en) A single crystal wafer of lithium tantalate
JP4455929B2 (en) Method for producing seed crystal plate
Shinohara et al. New seed geometry for growth of low dislocation synthetic quartz
Shinohara et al. Characterization of low-dislocation synthetic quartz grown on highly distorted seed by X-ray topography
JPS61242983A (en) Production of semiconductor single crystal rod
RU1789578C (en) Method of growing single crystals of bismuth germanate
JP2814325B2 (en) Rutile single crystal growth method
KR920007340B1 (en) Manufacturing method of 3-4 compound material semiconductor crystal
JPH11106294A (en) Substrate for piezoelectric device and elastic surface wave apparatus using the same
JP2677205B2 (en) Method for growing β-BaB2O4 single crystal
Fan et al. Defects in the bridgman grown lithium tetraborate of three-inch diameter
JP3037829B2 (en) Single crystal growing method and single crystal
JPH0782088A (en) Method for growing single crystal