JPH09221342A - Method for joining optical members together and joined optical component thereby - Google Patents

Method for joining optical members together and joined optical component thereby

Info

Publication number
JPH09221342A
JPH09221342A JP8024037A JP2403796A JPH09221342A JP H09221342 A JPH09221342 A JP H09221342A JP 8024037 A JP8024037 A JP 8024037A JP 2403796 A JP2403796 A JP 2403796A JP H09221342 A JPH09221342 A JP H09221342A
Authority
JP
Japan
Prior art keywords
optical
optical member
joined
members
optical members
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8024037A
Other languages
Japanese (ja)
Inventor
Kuninori Shinada
邦典 品田
Toshitaka Murakami
敏貴 村上
Mitsuo Tsushima
光雄 対馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP8024037A priority Critical patent/JPH09221342A/en
Publication of JPH09221342A publication Critical patent/JPH09221342A/en
Pending legal-status Critical Current

Links

Landscapes

  • Joining Of Glass To Other Materials (AREA)
  • Polarising Elements (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the productivity of an integrally formed optical component and to reduce the variation in mechanical joining strength of the optical component by closely joining the surface to be joined of a first optical member and the surface to be joined of a second optical member together without using any adhesive. SOLUTION: In this method, plural first optical members 1 and plural second optical members 2 are prepared beforehand and surface roughness values of the surface to be joined of each of the first optical members 1 prepared and the surface to be joined of each of the second optical members 2 prepared are measured and the surfaces to be joined of an optional pair of the optical members 1 and 2, each of which has surface roughness value sufficient to closely join it to the other are closely joined together to integrally form an optical component from this pair. Thus, the objective joined optical component can be produced without performing any complicated work such as repeating a trial for checking the combination of each of pairs randomly selected from the optical members 1 and 2 until a well-matched pair of them are found.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、第1の光学部材の
接合面と第2の光学部材の接合面とを接着剤無しで密着
させ、前記第1、第2の光学部材を一体化する光学部材
の接着方法、及び、これを用いて接着された光学部品に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention integrates the first optical member and the second optical member by bringing the first optical member and the second optical member into close contact with each other without an adhesive. The present invention relates to a method for adhering an optical member and an optical component adhered using the same.

【0002】[0002]

【従来の技術】最近、レーザー光を利用した製品の研究
・開発が盛んであるが、レーザー光学系に欠かすことが
できない光学部品に、偏光ビームスプリッタや波長板が
ある。
2. Description of the Related Art Recently, although research and development of products using laser light have been actively conducted, polarizing beam splitters and wave plates are optical components indispensable for laser optical systems.

【0003】偏光ビームスプリッタは、直交する2つの
偏光成分を分離して取り出すことが可能な光学部品であ
る。偏光ビームスプリッタは、通常、一対のプリズムか
ら成り、各プリズムが斜面と斜面を合わせるようにして
一体化されている。具体的には、一方のプリズムの斜面
に所定の多層膜が形成されており、この多層膜と他方の
プリズムの斜面の間に塗布された光学接着剤によって、
これら2つのプリズムが一体化されている。2つのプリ
ズムの間に配された多層膜については、入射した光を所
定の2つの偏光成分に分離できるよう、膜物質、膜厚、
層数等が設定される。光学接着剤としては、例えば、メ
タクリレート、キャプリネート、エポキシー等が用いら
れる。
A polarization beam splitter is an optical component capable of separating and extracting two orthogonal polarization components. The polarization beam splitter is usually composed of a pair of prisms, and the prisms are integrated so that their slopes are aligned with each other. Specifically, a predetermined multilayer film is formed on the slope of one prism, and an optical adhesive applied between the multilayer film and the slope of the other prism
These two prisms are integrated. Regarding the multilayer film arranged between the two prisms, the film material, the film thickness, and the film thickness are set so that the incident light can be separated into two predetermined polarization components.
The number of layers is set. As the optical adhesive, for example, methacrylate, caprate, epoxy or the like is used.

【0004】波長板は、互いに垂直な方向に振動する偏
光の光路差を所定波長分変化させることが可能な光学部
品であり、例えば、結晶材料(例えば、水晶)を薄い板
状にして製作する。短波長が使用される光学系に挿入さ
れる波長板については、その厚みが極薄(例えば、数十
μm)となるため、この極薄の結晶材料に、補強用の部
材(例えば、光学ガラス基板)を前述の光学接着剤で接
着することもある。
The wave plate is an optical component capable of changing the optical path difference of polarized lights vibrating in directions perpendicular to each other by a predetermined wavelength. For example, a crystal material (for example, quartz) is manufactured in a thin plate shape. . Since the thickness of a wave plate inserted into an optical system in which short wavelengths are used is extremely thin (for example, several tens of μm), a reinforcing member (for example, optical glass) is added to this extremely thin crystal material. The substrate) may be adhered by the above-mentioned optical adhesive.

【0005】しかしながら、前述の光学接着剤は、ある
程度の機械的接合強度を得ることができるものの、使用
波長によっては、光学性能(偏光比、透過率等)に悪影
響を及ぼすことがある。
However, although the above-mentioned optical adhesive can obtain mechanical bonding strength to some extent, it may adversely affect optical performance (polarization ratio, transmittance, etc.) depending on the wavelength used.

【0006】このような場合、従来では、2つの光学部
材の各接合面を接着剤無しで密着させ、これらを一体化
する接着方法、いわゆるオプティカルコンタクトが用い
られていた。オプティカルコンタクトでは、まず、2つ
の光学部材の各接合面を十分に清掃し、その後、これら
を重ね合わせ、一体化する。この際、2つの光学部材に
水銀灯の光等を透過させてニュートン縞を出し、このニ
ュートン縞を観察しながら、一方の光学部材を押す等し
てニュートン縞を減らしていく。
In such a case, conventionally, a so-called optical contact has been used, which is a bonding method in which the respective bonding surfaces of the two optical members are brought into close contact with each other without using an adhesive and these are integrated. In the optical contact, first, the joint surfaces of the two optical members are thoroughly cleaned, and then these are superposed and integrated. At this time, the light of a mercury lamp or the like is transmitted through the two optical members to generate Newton fringes, and while observing the Newton fringes, one optical member is pushed to reduce the Newton fringes.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、オプテ
ィカルコンタクトを用いた、従来の光学部品の製造方法
では、何個もの光学部材を予め用意しておき、その中の
2つを無作為に選び出して順次組合せていた。この場
合、選んだ2つの光学部材を運よくオプティカルコンタ
クトできればよいが、このようなことは、極まれなこと
で、実際には、相性の合う2つの光学部材から一つの光
学部品を作製するために、かなりの回数、光学部材を組
み合わせることが必要であった。すなわち、従来では、
相性の合う2つの光学部材が見つかるまで、光学部材の
組み合わせ作業が行われていた。
However, in the conventional method of manufacturing an optical component using the optical contact, a number of optical members are prepared in advance, and two of them are randomly selected and sequentially selected. It was a combination. In this case, it suffices if the two selected optical members can be brought into optical contact with good luck, but such a thing is extremely rare, and in fact, in order to manufacture one optical component from two compatible optical members. , It was necessary to combine the optical members quite a number of times. That is, conventionally,
Until the two compatible optical members were found, the work of combining the optical members was carried out.

【0008】また、一体化された2つの光学部材は、そ
の後、所定の厚さまで研削・研磨されることもあるが、
従来では、これら2つの光学部材の機械的接合強度にば
らつきがあったため、ある光学部品では、正常に研削・
研磨を行うことができたが、別の光学部品の研削・研磨
時においては、2つの光学部材が分離されてしまうとい
った問題が生じていた。
Further, the two integrated optical members may be subsequently ground / polished to a predetermined thickness.
In the past, there was variation in the mechanical bonding strength between these two optical members.
Although it was possible to carry out polishing, there was a problem that two optical members were separated when grinding and polishing another optical component.

【0009】このような問題点を鑑み、本発明は、第1
の光学部材の接合面と第2の光学部材の接合面とを接着
剤無しで密着させることで一体化する光学部品の生産性
の向上と、該光学部品の機械的接合強度のばらつきの低
減を目的として為されたものである。
In view of these problems, the present invention provides a first
To improve the productivity of the optical component integrated by adhering the joint surface of the optical member and the joint surface of the second optical member without using an adhesive, and to reduce the variation in the mechanical joint strength of the optical component. It was done for the purpose.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
の本発明の第1の態様によれば、第1の光学部材の接合
面と第2の光学部材の接合面とを接着剤無しで密着さ
せ、前記第1、第2の光学部材を一体化する光学部材の
接着方法において、前記第1の光学部材の接合面、及
び、前記第2の光学部材の接合面の各表面粗さを測定
し、前記各接合面が相互に密着可能な表面粗さを前記各
接合面が有している場合に、これらの接合面を密着さ
せ、前記第1、第2の光学部材を一体化することを特徴
とする光学部材の接着方法が提供される。
According to the first aspect of the present invention for achieving the above object, the bonding surface of the first optical member and the bonding surface of the second optical member are formed without an adhesive. In the method of adhering an optical member, which is brought into close contact with each other to integrate the first and second optical members, the surface roughnesses of the joint surface of the first optical member and the joint surface of the second optical member Measured, and when each of the joint surfaces has a surface roughness capable of closely adhering to each other, these joint surfaces are brought into close contact with each other to integrate the first and second optical members. A method for adhering an optical member is provided.

【0011】上記目的を達成するための本発明の第2の
態様によれば、第1の態様において、前記第1の光学部
材の接合面の前記表面粗さ、及び、前記第2の光学部材
の接合面の前記表面粗さのそれぞれは、およそRa2n
m以下であることを特徴とする光学部材の接着方法が提
供される。
According to a second aspect of the present invention for achieving the above object, in the first aspect, the surface roughness of the joint surface of the first optical member and the second optical member are provided. Each of the above-mentioned surface roughnesses of the joint surfaces is about Ra2n.
Provided is a method for adhering an optical member, which is characterized by being m or less.

【0012】上記目的を達成するための本発明の第3の
態様によれば、接着剤無しで接着された2つの光学部材
(第1の光学部材、第2の光学部材とする)を含んだ光
学部品において、前記第1の光学部材は、前記第2の光
学部材と密着した第1の接合面を有し、前記第2の光学
部材は、前記第1の光学部材の前記第1の接合面と密着
した第2の接合面を有し、前記第1の接合面の表面粗
さ、及び、前記第2の接合面の表面粗さのそれぞれは、
およそRa2nm以下であることを特徴とする光学部品
が提供される。
According to a third aspect of the present invention for achieving the above object, it includes two optical members (a first optical member and a second optical member) adhered without an adhesive. In the optical component, the first optical member has a first joint surface that is in close contact with the second optical member, and the second optical member is the first joint of the first optical member. Each of the surface roughness of the first bonding surface and the surface roughness of the second bonding surface,
An optical component having a Ra of about 2 nm or less is provided.

【0013】[0013]

【発明の実施の形態】以下、光学部品の一つである波長
板に本発明を適用した場合の一実施形態について、図面
を参照しながら説明する。波長板は、互いに垂直な方向
に振動する偏光の光路差を所定波長分変化させることが
可能な光学部品であり、与える光路差に応じて、四分の
一波長板、二分の一波長板等に分類される。このような
波長板は、例えば、結晶材料(例えば、水晶)を薄い板
状にして製作する。また、短波長が使用される光学系に
挿入される波長板については、その厚みが極薄(例え
ば、数十μm)となるため、この極薄の結晶材料に、補
強用の部材(例えば、光学ガラス基板)を接着すること
もある。本実施形態では、このタイプの波長板を、2つ
の円板形の光学部材(光学部材1、2)を用いて作製す
る。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment in which the present invention is applied to a wave plate which is one of optical components will be described below with reference to the drawings. A wave plate is an optical component that can change the optical path difference of polarized light vibrating in directions perpendicular to each other by a predetermined wavelength. Depending on the optical path difference given, a quarter wave plate, a half wave plate, etc. are categorized. Such a wave plate is manufactured by forming a crystal material (for example, crystal) into a thin plate shape. In addition, since the thickness of the wave plate inserted into the optical system in which the short wavelength is used is extremely thin (for example, several tens of μm), the reinforcing member (for example, Optical glass substrate) may be adhered. In this embodiment, this type of wavelength plate is manufactured using two disk-shaped optical members (optical members 1 and 2).

【0014】図1には、光学部材1、2の断面の様子が
示されている。光学部材1は、厚さ約8mmの水晶板で
ある。光学部材2は、厚さ約8mmの光学ガラス基板で
あり、前述した補強用部材に相当するものである。光学
部材2は、石英ガラスで形成されている。光学部材1、
2の直径は互いに等しく、約80mmである。光学部材
1の片面(接合面1a)及び光学部材2の片面(接合面
2a)は、それぞれ十分に光学研磨された状態にある。
具体的には、接合面1aの表面粗さがRa0.8nm、
接合面2aの表面粗さがRa1.2nmであり、何れも
Ra2nm以下に設定されている。なお、光学部材1に
ついては、後述する研削工程において接合面の反対側の
面を研削され、所定の厚さ(約500μm)に設定され
る。Raは、固体表面の微細な凹凸を表示する方法の一
つで、中心線平均粗さを示す。表面粗さの測定には、1
0nm程度以下の横分解能を持つ測定装置(例えば、原
子間力顕微鏡(AFM)や走査型トンネル顕微鏡(ST
M))を用いて行う。Ra2nm以下の表面粗さを測定
するためには、この程度の横分解能を持つ測定装置が必
要となる。横分解能とは、測定装置のプローブの移動方
向における分解能である。測定装置による表面粗さ測定
は、各接合面の光学研磨を行う際に随時行われる。光学
研磨については、光学的精研磨可能な、一般的な研磨機
を用いて行うことができる。
FIG. 1 shows the cross section of the optical members 1 and 2. The optical member 1 is a crystal plate having a thickness of about 8 mm. The optical member 2 is an optical glass substrate having a thickness of about 8 mm, and corresponds to the reinforcing member described above. The optical member 2 is made of quartz glass. Optical member 1,
The two diameters are equal to each other and are approximately 80 mm. One surface of the optical member 1 (bonding surface 1a) and one surface of the optical member 2 (bonding surface 2a) are in a sufficiently optically polished state.
Specifically, the surface roughness of the bonding surface 1a is Ra 0.8 nm,
The surface roughness of the bonding surface 2a is Ra 1.2 nm, and both are set to Ra 2 nm or less. The surface of the optical member 1 opposite to the bonding surface is ground in a grinding step described later to set a predetermined thickness (about 500 μm). Ra is one of the methods of displaying the fine unevenness | corrugation of a solid surface, and shows centerline average roughness. 1 for surface roughness measurement
Measuring device with lateral resolution of about 0 nm or less (for example, atomic force microscope (AFM) or scanning tunneling microscope (ST
M)). In order to measure the surface roughness of Ra 2 nm or less, a measuring device having such a lateral resolution is required. The lateral resolution is the resolution in the moving direction of the probe of the measuring device. The surface roughness measurement by the measuring device is performed at any time when the optical polishing of each bonding surface is performed. The optical polishing can be performed using a general polishing machine that can perform optical precision polishing.

【0015】図1の光学部材1、2については、その
後、各接合面をオプティカルコンタクトし、図2に示す
ように一体化する。オプティカルコンタクトについて
は、「従来技術」の項で説明した通りである。
After that, the optical members 1 and 2 shown in FIG. 1 are optically contacted at their respective joint surfaces to be integrated as shown in FIG. The optical contact is as described in the “Prior art” section.

【0016】また、図3に示すように、表面粗さRa
1.8nmの接合面を有する光学部材3と、表面粗さR
a1.5nmの接合面を有する光学部材4とをオプティ
カルコンタクトしたところ、これらについても、完全に
一体化することができた。
Further, as shown in FIG. 3, the surface roughness Ra
Optical member 3 having a bonded surface of 1.8 nm and surface roughness R
When an optical contact was made with the optical member 4 having a cemented surface of a 1.5 nm, it was also possible to completely integrate them.

【0017】しかしながら、表面粗さRa2.8nmの
接合面を有する光学部材5と、表面粗さRa2.3nm
の接合面を有する光学部材6を用いた場合においては、
各接合面をオプティカルコンタクトすることができなか
った。図4には、光学部材5、6が示されているが、こ
れらは、オプティカルコンタクトしていない状態、すな
わち、光学部材6の上に光学部材5が単に重なっている
だけの状態にある。
However, the optical member 5 having a cemented surface with a surface roughness Ra of 2.8 nm and the surface roughness Ra of 2.3 nm.
In the case of using the optical member 6 having the joint surface of
It was not possible to make optical contact with each joint surface. Although optical members 5 and 6 are shown in FIG. 4, they are in a state where they are not in optical contact, that is, the optical member 5 simply overlaps the optical member 6.

【0018】以上の結果は、図5に示されている。図5
の「○」は、オプティカルコンタクトが可能であったこ
と(2つの光学部材を一体化することができたこと)を
示す。図5の「×」は、オプティカルコンタクトが不可
能であったことを示す。
The above results are shown in FIG. FIG.
"○" indicates that optical contact was possible (two optical members could be integrated). The “x” in FIG. 5 indicates that optical contact was impossible.

【0019】ここでは、同程度の表面粗さを持つ2つの
光学部材を3組オプティカルコンタクトさせたが、その
オプティカルコンタクトの可/不可は、図5に示すよう
に、表面粗さ約Ra2.0を境に分かれている。
Here, three sets of two optical members having the same surface roughness are brought into optical contact, but whether the optical contact is possible or not is shown in FIG. It is divided by.

【0020】また、図6には、オプティカルコンタクト
で一体化した2つの光学部材の引っ張り強度に関するデ
ータが示されている。ここでは、接合面の表面粗さが等
しい2つの光学部材を一体化したものを、表面粗さ毎に
4つ用意し、それぞれを引っ張り試験機にかけ、引っ張
り試験を行った。具体的には、接合面の表面粗さが約R
a0.5の2つの光学部材を一体化した光学部品Aと、
接合面の表面粗さが約Ra1.0の2つの光学部材を一
体化した光学部品Bと、接合面の表面粗さが約Ra1.
5の2つの光学部材を一体化した光学部品Cと、接合面
の表面粗さが約Ra2.0の2つの光学部材を一体化し
た光学部品Dの合計4つの光学部品に関する引っ張り試
験を行った。同図に示すように、光学部品A、B、C、
Dの各引っ張り強度は、約8〜10(kg/cm2)の範囲に
収まっており、バラつきが見られない。なお、特に図示
しないが、図1、図3の光学部品の引っ張り強度も、約
8〜10(kg/cm2)の範囲に収まっていた。
Further, FIG. 6 shows data on the tensile strength of two optical members integrated by optical contact. Here, four optical members having two surface-roughened surfaces having the same surface roughness were integrated for each surface roughness, and each was subjected to a tensile tester to perform a tensile test. Specifically, the surface roughness of the joint surface is about R.
an optical component A in which two optical members of a0.5 are integrated,
An optical component B in which two optical members having a surface roughness of the joint surface of about Ra1.0 are integrated, and a surface roughness of the joint surface is about Ra1.
A tensile test was performed on a total of four optical components, namely, an optical component C in which two optical members of 5 are integrated and an optical component D in which two optical members of which the surface roughness of the joint surface is about Ra2.0 are integrated. . As shown in the figure, the optical components A, B, C,
Each tensile strength of D is within the range of about 8 to 10 (kg / cm 2 ), and no variation is seen. Although not particularly shown, the tensile strength of the optical components shown in FIGS. 1 and 3 was within the range of about 8 to 10 (kg / cm 2 ).

【0021】光学部品A、B、C、Dや、図1、図3の
光学部品は、その後、研削工程にて、所定の厚さまで研
削し、さらに、光学研磨する。例えば、図2の光学部品
においては、光学部材1の背面1bを研削、光学的精研
磨し、光学部材1の厚さを約数十μmに設定する。その
他の光学部品についても、このような厚さに設定する。
研削及び光学的精研磨については、一般的な研磨機を用
いることができる。なお、本実施形態の光学部品によれ
ば、前述したように、それぞれの引っ張り強度が一定に
保たれている。したがって、ある光学部品の引っ張り強
度を予め測定しておけば、その他の光学部品の引っ張り
強度を大方予想することができる。そこで、研削時(又
は研磨時)に各光学部品に付与する研削力を、この引っ
張り強度以下に予め設定しておけば、ある光学部品では
正常に研削を行うことができたが、別の光学部品の研削
時においては2つの光学部材が分離されてしまうといっ
たような問題を起こすことなく、研削工程をスムーズに
進めることができる。
The optical parts A, B, C and D and the optical parts shown in FIGS. 1 and 3 are then ground to a predetermined thickness in a grinding step and further optically polished. For example, in the optical component shown in FIG. 2, the back surface 1b of the optical member 1 is ground and finely polished to set the thickness of the optical member 1 to about several tens of μm. The other optical parts are also set to have such a thickness.
For grinding and optical precision polishing, a general polishing machine can be used. According to the optical component of this embodiment, as described above, the tensile strength of each is kept constant. Therefore, if the tensile strength of a certain optical component is measured in advance, the tensile strengths of other optical components can be roughly predicted. Therefore, if the grinding force applied to each optical component at the time of grinding (or polishing) is set to be equal to or less than the tensile strength in advance, it is possible to normally grind with one optical component, but with another optical component. It is possible to smoothly proceed the grinding process without causing a problem that the two optical members are separated when the component is ground.

【0022】なお、光学部品A、B、C、Dや、図1、
図2の光学部品については、その後、波長300nm、
250nm、200nmの測定光を順次透過させ、それ
ぞれの透過率を測定した。この透過率は、300nm以
下の波長を使用波長とする、単一の部材で形成された光
学部品に、前記3種の測定光を順次透過させた場合の透
過率と同程度であった。すなわち、接合面の表面粗さが
Ra2nm以下に設定された2つの光学部材から成る本
光学部品によれば、その使用波長を300nm以下に設
定することができる。
The optical parts A, B, C and D, and FIG.
For the optical component of FIG.
The measurement light of 250 nm and 200 nm was sequentially transmitted, and the respective transmittances were measured. This transmittance was about the same as the transmittance when the above-mentioned three kinds of measuring light were sequentially transmitted through an optical component formed of a single member and having a wavelength of 300 nm or less as a use wavelength. That is, according to the present optical component including the two optical members in which the surface roughness of the bonding surface is set to Ra 2 nm or less, the wavelength used can be set to 300 nm or less.

【0023】以上、本発明を波長板に適用した場合の一
実施形態について説明したが、本発明は、これに限定さ
れるわけでなく、第1の光学部材の接合面と第2の光学
部材の接合面とを接着剤無しで密着させることで(オプ
ティカルコンタクトさせることで)作製する様々な光学
部品に適用可能である。
An embodiment in which the present invention is applied to a wave plate has been described above, but the present invention is not limited to this, and the bonding surface of the first optical member and the second optical member are not limited to this. It can be applied to various optical components that are produced by making close contact with the joint surface of (1) without using an adhesive (by making optical contact).

【0024】そして、第1の光学部材及び第2の光学部
材のそれぞれを予め複数用意し、用意した第1の光学部
材の各接合面、及び、用意した第2の光学部材の各接合
面の表面粗さを測定し、各接合面が相互に密着可能な表
面粗さを有している場合に(具体的には、各接合面がお
よそRa2nm以下である場合に)、これらの接合面を
密着させれば、前記第1、第2の光学部材を確実に一体
化することができる。すなわち、複数の光学部材の中か
ら2つの光学部材を適当に抽出して、これらを組み合わ
せ、運よくオプティカルコンタクトできたものを完成品
としていた従来と比較して、光学部品の生産効率を飛躍
的に向上させることができる。
A plurality of first optical members and a plurality of second optical members are prepared in advance, and the bonding surfaces of the prepared first optical members and the bonding surfaces of the prepared second optical members are prepared. When the surface roughness is measured and each of the joint surfaces has a surface roughness capable of closely adhering to each other (specifically, when each joint surface is about Ra 2 nm or less), these joint surfaces are The close contact allows the first and second optical members to be reliably integrated. That is, two optical members are appropriately extracted from a plurality of optical members, combined with each other, and it is possible to make optical contact with good results. Can be improved.

【0025】[0025]

【発明の効果】本発明によれば、第1の光学部材の接合
面と第2の光学部材の接合面とを接着剤無しで密着さ
せ、前記第1、第2の光学部材を一体化する際に、何個
もの光学部材を無作為に組み合わせる必要がないので、
光学部品を効率よく生産することができる。
According to the present invention, the joining surface of the first optical member and the joining surface of the second optical member are brought into close contact with each other without an adhesive, and the first and second optical members are integrated. At that time, it is not necessary to randomly combine several optical members,
Optical parts can be produced efficiently.

【0026】また、各光学部品の機械的接合強度にばら
つきがないため、加工作業中に2つの光学部材が分離す
るといった不測の事態を起こすことなく、複数の光学部
品の加工が可能となる。
Further, since there is no variation in the mechanical bonding strength of each optical component, it is possible to process a plurality of optical components without causing an unexpected situation such as separation of two optical members during the processing operation.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る光学部品の一実施形態の2つの光
学部材(光学部材1、2)の断面図。
FIG. 1 is a sectional view of two optical members (optical members 1 and 2) of an embodiment of an optical component according to the present invention.

【図2】図1の光学部材1、2を一体化した場合のこれ
らの断面図。
2 is a sectional view of the optical members 1 and 2 of FIG. 1 when they are integrated.

【図3】本発明に係る光学部品の一実施形態の2つの光
学部材(光学部材3、4)の断面図。
FIG. 3 is a cross-sectional view of two optical members (optical members 3 and 4) of an embodiment of an optical component according to the present invention.

【図4】従来の光学部品の2つの光学部材(光学部材
5、6)の断面図。
FIG. 4 is a sectional view of two optical members (optical members 5 and 6) of a conventional optical component.

【図5】図2〜図4に示した光学部品のオプティカルコ
ンタクトの可否を示した図表。
FIG. 5 is a chart showing whether optical contact of the optical components shown in FIGS.

【図6】本発明に係る光学部品の一実施形態の表面粗さ
と引っ張り強度との関係を示すグラフ。
FIG. 6 is a graph showing the relationship between surface roughness and tensile strength of an embodiment of an optical component according to the present invention.

【符号の説明】[Explanation of symbols]

1、2、3、4、5、6:光学部材、 1, 2, 3, 4, 5, 6: optical member,

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】第1の光学部材の接合面と第2の光学部材
の接合面とを接着剤無しで密着させ、前記第1、第2の
光学部材を一体化する光学部材の接着方法において、 前記第1の光学部材の接合面、及び、前記第2の光学部
材の接合面の各表面粗さを測定し、 前記各接合面が相互に密着可能な表面粗さを前記各接合
面が有している場合に、これらの接合面を密着させ、前
記第1、第2の光学部材を一体化することを特徴とする
光学部材の接着方法。
1. A method of adhering an optical member, wherein the first optical member and the second optical member are brought into close contact with each other without using an adhesive to integrate the first and second optical members. , Measuring the surface roughness of the joint surface of the first optical member, and the joint surface of the second optical member, the joint surface has a surface roughness that can be closely adhered to each other. A bonding method for an optical member, characterized in that the bonding surfaces are brought into close contact with each other, and the first and second optical members are integrated.
【請求項2】請求項1において、 前記第1の光学部材の接合面の前記表面粗さ、及び、前
記第2の光学部材の接合面の前記表面粗さのそれぞれ
は、およそRa2nm以下であることを特徴とする光学
部材の接着方法。
2. The surface roughness of the cemented surface of the first optical member and the surface roughness of the cemented surface of the second optical member are each approximately Ra2 nm or less. A method for adhering an optical member, comprising:
【請求項3】接着剤無しで接着された2つの光学部材
(第1の光学部材、第2の光学部材とする)を含んだ光
学部品において、 前記第1の光学部材は、前記第2の光学部材と密着した
第1の接合面を有し、 前記第2の光学部材は、前記第1の光学部材の前記第1
の接合面と密着した第2の接合面を有し、 前記第1の接合面の表面粗さ、及び、前記第2の接合面
の表面粗さのそれぞれは、およそRa2nm以下である
ことを特徴とする光学部品。
3. An optical component including two optical members (a first optical member and a second optical member) adhered without an adhesive, wherein the first optical member is the second optical member. The first optical member has a first bonding surface in close contact with the optical member, and the second optical member is the first optical member of the first optical member.
And a surface roughness of the first bonding surface and a surface roughness of the second bonding surface are approximately Ra2 nm or less. And optical components.
JP8024037A 1996-02-09 1996-02-09 Method for joining optical members together and joined optical component thereby Pending JPH09221342A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8024037A JPH09221342A (en) 1996-02-09 1996-02-09 Method for joining optical members together and joined optical component thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8024037A JPH09221342A (en) 1996-02-09 1996-02-09 Method for joining optical members together and joined optical component thereby

Publications (1)

Publication Number Publication Date
JPH09221342A true JPH09221342A (en) 1997-08-26

Family

ID=12127313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8024037A Pending JPH09221342A (en) 1996-02-09 1996-02-09 Method for joining optical members together and joined optical component thereby

Country Status (1)

Country Link
JP (1) JPH09221342A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7653275B2 (en) 2005-11-02 2010-01-26 Fujifilm Corporation Optical device having connections with optical members through protective medium
WO2011001947A1 (en) * 2009-07-03 2011-01-06 日本電気硝子株式会社 Element sealing body and method for producing the same
WO2011001946A1 (en) * 2009-07-03 2011-01-06 日本電気硝子株式会社 Glass film laminate
EP2278402A2 (en) 2003-08-26 2011-01-26 Nikon Corporation Optical element and exposure apparatus
JP2011062894A (en) * 2009-09-16 2011-03-31 Seiko Instruments Inc Thermal head and printer
JP2011104886A (en) * 2009-11-18 2011-06-02 Nitto Denko Corp Method for manufacturing laminate
CN102656123A (en) * 2010-02-12 2012-09-05 日本电气硝子株式会社 Reinforced sheet glass and manufacturing method therefor
JP2014024340A (en) * 2013-09-11 2014-02-06 Nitto Denko Corp Method for manufacturing laminate
WO2015098927A1 (en) * 2013-12-25 2015-07-02 株式会社ニコン Calcium fluoride member, method for producing same, and method for pressure-bonding calcium fluoride crystal
TWI500502B (en) * 2010-01-12 2015-09-21 Nippon Electric Glass Co Glass film laminated body and fabricating method thereof,and fabricating method of glass film
EP2479151A4 (en) * 2009-09-18 2016-06-15 Nippon Electric Glass Co Method for producing glass film, method for processing glass film, and glass film laminate
US10138162B2 (en) 2012-02-27 2018-11-27 Ushio Denki Kabushiki Kaisha Method and device for bonding workpieces each produced from glass substrate or quartz substrate
WO2019188010A1 (en) * 2018-03-30 2019-10-03 ソニー株式会社 Optical element, polarization conversion element, image display device, and method for manufacturing optical element
US11543574B2 (en) 2019-05-09 2023-01-03 The Japan Steel Works, Ltd. Wave plate, method for manufacturing wave plate, and optical apparatus

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2278402A2 (en) 2003-08-26 2011-01-26 Nikon Corporation Optical element and exposure apparatus
EP2284615A2 (en) 2003-08-26 2011-02-16 Nikon Corporation Optical element and exposure apparatus
US7653275B2 (en) 2005-11-02 2010-01-26 Fujifilm Corporation Optical device having connections with optical members through protective medium
JP2014166944A (en) * 2009-07-03 2014-09-11 Nippon Electric Glass Co Ltd Method of producing glass film
KR20120037367A (en) * 2009-07-03 2012-04-19 니폰 덴키 가라스 가부시키가이샤 Glass film laminate
WO2011001946A1 (en) * 2009-07-03 2011-01-06 日本電気硝子株式会社 Glass film laminate
US20110045239A1 (en) * 2009-07-03 2011-02-24 Tatsuya Takaya Glass film laminate
WO2011001947A1 (en) * 2009-07-03 2011-01-06 日本電気硝子株式会社 Element sealing body and method for producing the same
EP2450323A4 (en) * 2009-07-03 2013-11-13 Nippon Electric Glass Co Glass film laminate
JP2011183792A (en) * 2009-07-03 2011-09-22 Nippon Electric Glass Co Ltd Glass film laminate
JP2011029169A (en) * 2009-07-03 2011-02-10 Nippon Electric Glass Co Ltd Element sealing body and method of manufacturing the same
CN102428052A (en) * 2009-07-03 2012-04-25 日本电气硝子株式会社 Glass film laminate
CN102448906A (en) * 2009-07-03 2012-05-09 日本电气硝子株式会社 Element sealing body and method for producing the same
US8697241B2 (en) 2009-07-03 2014-04-15 Nippon Electric Glass Co., Ltd. Glass film laminate
KR20120104921A (en) * 2009-07-03 2012-09-24 니폰 덴키 가라스 가부시키가이샤 Element sealing body and method for producing the same
US8507068B2 (en) 2009-07-03 2013-08-13 Nippon Electric Glass Co., Ltd. Element sealed body and method of producing the same
EP2450324A4 (en) * 2009-07-03 2013-11-13 Nippon Electric Glass Co Element sealing body and method for producing the same
JP2011062894A (en) * 2009-09-16 2011-03-31 Seiko Instruments Inc Thermal head and printer
EP2479151A4 (en) * 2009-09-18 2016-06-15 Nippon Electric Glass Co Method for producing glass film, method for processing glass film, and glass film laminate
JP2011104886A (en) * 2009-11-18 2011-06-02 Nitto Denko Corp Method for manufacturing laminate
TWI500502B (en) * 2010-01-12 2015-09-21 Nippon Electric Glass Co Glass film laminated body and fabricating method thereof,and fabricating method of glass film
US9156230B2 (en) 2010-01-12 2015-10-13 Nippon Electric Glass Co., Ltd. Glass film laminate without adhesive
CN102656123A (en) * 2010-02-12 2012-09-05 日本电气硝子株式会社 Reinforced sheet glass and manufacturing method therefor
US10138162B2 (en) 2012-02-27 2018-11-27 Ushio Denki Kabushiki Kaisha Method and device for bonding workpieces each produced from glass substrate or quartz substrate
JP2014024340A (en) * 2013-09-11 2014-02-06 Nitto Denko Corp Method for manufacturing laminate
WO2015098927A1 (en) * 2013-12-25 2015-07-02 株式会社ニコン Calcium fluoride member, method for producing same, and method for pressure-bonding calcium fluoride crystal
US10458042B2 (en) 2013-12-25 2019-10-29 Nikon Corporation Calcium fluoride member, method for producing same, and method for pressure-bonding calcium fluoride crystal
WO2019188010A1 (en) * 2018-03-30 2019-10-03 ソニー株式会社 Optical element, polarization conversion element, image display device, and method for manufacturing optical element
JPWO2019188010A1 (en) * 2018-03-30 2021-05-13 ソニーグループ株式会社 Manufacturing method of optical element, polarization conversion element, image display device and optical element
US11543574B2 (en) 2019-05-09 2023-01-03 The Japan Steel Works, Ltd. Wave plate, method for manufacturing wave plate, and optical apparatus

Similar Documents

Publication Publication Date Title
JPH09221342A (en) Method for joining optical members together and joined optical component thereby
US4688882A (en) Optical contact evanescent wave fiber optic coupler
JP2000143264A (en) Production of optical device
JPH02103507A (en) Manufacture of optical device
JPS62139504A (en) Coupler for connecting optical fiber to ingegrated optical unit
US6597521B2 (en) Optical unit and method for making the same
JPH0579640B2 (en)
EP0457761A1 (en) Methods for rugged attachment of fibers to integrated optics chips and product thereof.
EP1401769A2 (en) Liquid crystal assembly and method of making
JPH11163668A (en) Laminated piezo-electric single crystal substrate and piezo-electric device using it
JP3209390B2 (en) Transmission interferometer
JPH10186112A (en) Prism assembly and its production
JP4532324B2 (en) Workpiece manufacturing method
JP4224336B2 (en) Synthetic corundum cell
JP2000241610A (en) Manufacture of optical prism
JPH0943542A (en) Production of optical low-pass filter
JP3339359B2 (en) Manufacturing method of cross dichroic prism
JPS62222207A (en) Optical device package
JP2000199810A (en) Manufacture of optical device
JP2982721B2 (en) Thin film sample preparation method
JP2005164982A (en) Manufacturing method for compound prism
JP3281702B2 (en) Manufacturing method of polarizing prism
JPH0580225A (en) Optical fiber array
Thomas et al. Ion milled facet for direct coupling to optical waveguides
JPH09309053A (en) Optical part grinding method and optical part