JPH09220031A - Environment adjusting facility - Google Patents

Environment adjusting facility

Info

Publication number
JPH09220031A
JPH09220031A JP8053902A JP5390296A JPH09220031A JP H09220031 A JPH09220031 A JP H09220031A JP 8053902 A JP8053902 A JP 8053902A JP 5390296 A JP5390296 A JP 5390296A JP H09220031 A JPH09220031 A JP H09220031A
Authority
JP
Japan
Prior art keywords
water
cooling water
solar cell
power generation
solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8053902A
Other languages
Japanese (ja)
Inventor
Atsushi Hirayama
淳 平山
Yutaka Okazaki
裕 岡崎
Masakatsu Oya
正克 大矢
Kazuyoshi Terajima
一嘉 寺島
Kanichi Ito
寛一 伊藤
Kazuo Kinoshita
和夫 木下
Hidemitsu Otsuka
秀光 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP8053902A priority Critical patent/JPH09220031A/en
Publication of JPH09220031A publication Critical patent/JPH09220031A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment
    • Y02A20/208Off-grid powered water treatment
    • Y02A20/212Solar-powered wastewater sewage treatment, e.g. spray evaporation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/90Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in food processing or handling, e.g. food conservation
    • Y02A40/963Off-grid food refrigeration
    • Y02A40/966Powered by renewable energy sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/12Technologies relating to agriculture, livestock or agroalimentary industries using renewable energies, e.g. solar water pumping

Landscapes

  • Photovoltaic Devices (AREA)
  • Greenhouses (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide environment adjusting facilities which makes efficient use of utilities on the whole, minimizes external utility introduction, and can perform independent plant cultivation in a desert, a remote island, etc., and adjust the environment of a housing space. SOLUTION: This facilities are equipped with a thermostatic chamber 2, a solar power generating device 1, and feed water facilities (pump 51). Then the solar power generating device 1 has a solar battery 11 arranged above the thermostatic chamber 2, a jacket type permeation vaporizing film 12 is fitted onto the reverse surface of the solar battery 11, and cooling water is supplied to the gap 13 between the solar battery 11 and permeation vaporizing film 12; and vapor 62 of the cooling water permeates the permeation vaporizing film 12 and is discharged into the thermostatic chamber 2, and the solar battery 11 is cooled by using the sensible heat of the cooling water and latent heat generated when the cooling water vaporizes. The feed water facilities obtain driving electric power from the solar power generating device 11 and supplies the cooling water to the gap between the solar battery 11 and permeation vaporizing film 12.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は屋内における環境調
整のユーティリティー(水、エネルギー等の環境調整に
必要なもの及び設備)の効率的利用が可能な環境調整設
備に関し、特に砂漠や孤島などのエネルギーや淡水が得
にくい地域での植物生産施設の環境調整に適した環境調
整設備に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an environment adjusting facility capable of efficiently utilizing indoor environment adjusting utilities (things and facilities necessary for environment adjusting such as water and energy), and particularly energy for deserts and isolated islands. The present invention relates to an environmental adjustment facility suitable for environmental adjustment of a plant production facility in an area where fresh water is difficult to obtain.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】砂漠や
孤島等過酷な環境下では温度の日較差や飲料水、用水等
の確保が生活や生産活動の障害となっている。この様な
エネルギーや淡水が得にくい地域では、これらユーティ
リティーの効率的利用が望まれている。このことは特に
植物栽培等を行う生産拠点においては死活問題である。
2. Description of the Related Art Under severe environments such as deserts and isolated islands, daily temperature differences and securing drinking water, water, etc. are obstacles to daily life and production activities. In such areas where it is difficult to obtain energy and fresh water, efficient use of these utilities is desired. This is a life-and-death problem particularly in production bases where plant cultivation and the like are performed.

【0003】しかしながら、現状の海水淡水化技術は電
力等のエネルギーを大量に必要とし、砂漠など電源のな
い辺境地域では効率的な海水淡水化施設や植物栽培施設
を作ることが難しい。例えば空調用或いは淡水化設備用
に、大量の燃料を溜めるか膨大な面積の太陽電池を別途
設置しなければならない。また、植物栽培温室や居住施
設と淡水化設備は密接な関係にありながらも、全く別の
設備として作られ、例えば冷凍機を動かす為にわざわざ
電力或いは燃料を用い、しかも冷却水の熱は冷却搭から
空気中に捨てている。
However, the current seawater desalination technology requires a large amount of energy such as electric power, and it is difficult to construct an efficient seawater desalination facility or plant cultivation facility in a remote area where there is no power source such as a desert. For example, for air conditioning or desalination equipment, it is necessary to store a large amount of fuel or separately install a solar cell having a huge area. In addition, although the plant cultivation greenhouse and residential facilities and the desalination equipment are closely related to each other, they are made as completely different equipments, for example, electric power or fuel is used to operate the refrigerator, and the heat of the cooling water is cooled. I throw it away from the board into the air.

【0004】電気駆動冷凍機は電力を大量に消費し、ま
た吸収冷凍機も燃料確保の問題から独立システムに用い
ることは大変困難である。淡水化施設であるため、膨大
なパイプラインを設置したり、水の移動に手間を要す
る。これらの問題に対処するため、特開平6−2256
47号公報には太陽電池で光を遮って光の量を調整する
技術が開示されているが、太陽電池を冷却していないた
めに、発電効率が悪い。また、植物栽培に必要な水は別
の施設より供給するしかないという問題がある。
The electric driven refrigerator consumes a large amount of electric power, and the absorption refrigerator is very difficult to use as an independent system because of the problem of fuel reservation. Since it is a desalination facility, it takes time and effort to install a huge pipeline and move water. To deal with these problems, Japanese Patent Laid-Open No. 6-2256
Japanese Patent Publication No. 47 discloses a technique of adjusting the amount of light by blocking light with a solar cell, but the power generation efficiency is poor because the solar cell is not cooled. There is also a problem that the water required for plant cultivation can only be supplied from another facility.

【0005】実開平1−88350号公報には太陽電池
を冷却して熱を得る技術が開示されているが、部屋の冷
却は同時には行われていない。この様に個々の問題への
対応技術は開発されつつあるが、全体にユーティリティ
ーを効率的に運用して特に外部からのユーティリティー
導入を最小限に抑えて、独立して砂漠や孤島等での植物
栽培、居住空間の環境を調節する設備がなく、このよう
な環境調整設備の開発が望まれている。
Japanese Utility Model Application Laid-Open No. 1-88350 discloses a technique for cooling solar cells to obtain heat, but the rooms are not cooled at the same time. In this way, technology for responding to individual problems is being developed, but it is possible to operate the utility as a whole efficiently and minimize the introduction of the utility in particular, and to independently install plants in deserts or islands. There is no facility for adjusting the environment of cultivation and living space, and development of such an environment adjusting facility is desired.

【0006】本発明は上述の点に鑑みてなされたもの
で、全体的にユーティリティーを効率的に運用して特に
外部からのユーティリティー導入を最小限に抑えて、独
立して砂漠や孤島等での植物栽培、居住空間の環境調整
ができる環境調整設備を提供することを目的とする。
The present invention has been made in view of the above-mentioned points, and it is possible to operate the utility as a whole efficiently to minimize the introduction of the utility from the outside and to independently operate the utility in a desert or an isolated island. It is an object of the present invention to provide an environment adjusting facility capable of adjusting the environment of plant cultivation and living space.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
本願請求項1に記載の発明は、恒温室、太陽光発電装置
及び送水設備を具備し、太陽光発電装置は前記恒温室の
上部に配置された太陽電池を有し、該太陽電池の裏面に
ジャケット型の透過気化膜を取り付け、該太陽電池と該
透過気化膜の間の間隙に冷却用水を供給し、該冷却用水
の蒸気が該透過気化膜を透過して恒温室内に放出され、
該冷却用水の顕熱と該冷却用水が蒸発するときの潜熱を
用いて太陽電池を冷却するように構成され、送水設備は
太陽光発電装置からの駆動電力を得、太陽電池と透過気
化膜の間の間隙に冷却用水を供給するように構成された
ことを特徴とする環境調整設備にある。
In order to solve the above-mentioned problems, the invention according to claim 1 of the present application comprises a temperature-controlled room, a solar power generator and a water supply facility, and the solar power generator is provided above the temperature-controlled room. A solar cell is disposed, a jacket-type pervaporation film is attached to the back surface of the solar cell, cooling water is supplied to the gap between the solar cell and the pervaporation film, and the vapor of the cooling water is After passing through the pervaporation membrane, it is released into the thermostatic chamber,
The sensible heat of the cooling water and the latent heat when the cooling water evaporates are used to cool the solar cell, and the water supply equipment obtains driving power from the solar power generation device, and the solar cell and the pervaporation film It is an environment adjustment facility characterized in that it is configured to supply cooling water to the gap between them.

【0008】本願請求項2に記載の発明は請求項1に記
載の発明において、恒温室内には冷却器が配置され、該
冷却器には送水設備から冷却用水を供給するように構成
され、該冷却器で恒温室内に放出された蒸気を凝縮し、
蒸留水を得ると共に、恒温室内を冷却するように構成さ
れたことを特徴とする。
According to a second aspect of the present invention, in the first aspect of the invention, a cooler is arranged in the temperature-controlled room, and the cooling water is supplied from a water supply facility to the cooler. The cooler condenses the steam released into the temperature-controlled room,
It is characterized in that it is configured to obtain distilled water and to cool the inside of a thermostatic chamber.

【0009】本願請求項3に記載の発明は、恒温室、太
陽光発電装置、冷却器、送水設備、濃縮水熱交換器を具
備し、恒温室の上部に冷却器が配置され、該冷却器の上
部に前記太陽光発電装置が配置され、該太陽光発電装置
と該冷却器の間に空間を形成するように構成され、太陽
光発電装置は恒温室の上部に配置された太陽電池を有
し、該太陽電池の裏面にジャケット型の透過気化膜を取
り付け、該太陽電池と透過気化膜の間の間隙に冷却用水
を供給し、該冷却用水の蒸気が該透過気化膜を透過して
空間に放出され、該冷却用水の顕熱と該冷却用水が蒸発
するときの潜熱を用いて太陽電池を冷却するように構成
され、送水設備は前記太陽光発電装置からの駆動電力を
得、冷却器に冷却用水を送り、該冷却器から排出された
冷却用水は濃縮水熱交換器を通って、太陽電池と透過気
化膜の間の間隙に供給され、更に該濃縮水熱交換器を通
って該濃縮水熱交換器で冷却器から排出された冷却用水
との間で熱交換を行うように構成され、太陽光発電装置
と冷却器の間の空間に放出された蒸気は冷却器で凝縮さ
れ、蒸留水を得るように構成されたことを特徴とする環
境調整設備にある。
The invention according to claim 3 of the present application comprises a temperature-controlled room, a photovoltaic power generator, a cooler, a water supply facility, and a concentrated water heat exchanger, and the cooler is arranged above the temperature-controlled room. Is arranged above the solar power generation device and is configured to form a space between the solar power generation device and the cooler, and the solar power generation device has a solar cell disposed above the temperature-controlled room. Then, a jacket-type pervaporation film is attached to the back surface of the solar cell, cooling water is supplied to the gap between the solar cell and the pervaporation film, and the vapor of the cooling water permeates the permeation film to form a space. And is configured to cool the solar cell by using sensible heat of the cooling water and latent heat when the cooling water evaporates, and the water supply equipment obtains drive power from the solar power generation device and cools the cooler. Cooling water is sent to the cooling water, and the cooling water discharged from the cooler is condensed water heat. Heat is supplied to the gap between the solar cell and the pervaporation membrane through the exchanger, and further passes through the concentrated water heat exchanger and the cooling water discharged from the cooler at the concentrated water heat exchanger. In an environmental conditioning facility, characterized in that it is arranged to perform exchanges and the steam released into the space between the photovoltaic generator and the cooler is condensed in the cooler to obtain distilled water. .

【0010】本願請求項4に記載の発明は恒温室、太陽
光発電装置、凝縮器、蒸留水熱交換器、濃縮水熱交換器
を具備し、恒温室の上部に前記太陽光発電装置が配置さ
れ、該太陽光発電装置と恒温室の間に仕切板が設けら
れ、該太陽光発電装置と仕切板の間に空間を形成するよ
うに構成され、太陽光発電装置は前記恒温室の上部に配
置された太陽電池を有し、該太陽電池の裏面にジャケッ
ト型の透過気化膜を取り付け、該太陽電池と透過気化膜
の間の間隙に冷却用水を供給し、該冷却用水の蒸気が該
透過気化膜を透過して空間に放出され、該冷却用水の顕
熱と該冷却用水が蒸発するときの潜熱を用いて太陽電池
を冷却するように構成され、送水設備は太陽光発電装置
からの駆動電力を得、凝縮器に冷却用水を送り、該凝縮
器から排出された冷却用水は蒸留水熱交換器及び濃縮水
熱交換器を通って、太陽電池と透過気化膜の間の間隙に
供給され、更に該濃縮水熱交換器を通って該濃縮水熱交
換器で蒸留水熱交換器を通った冷却用水との間で熱交換
を行うように構成され、太陽光発電装置と仕切板の間の
空間には前記太陽光発電装置の電力で駆動する換気用フ
ァンで換気用空気を送り込み、該空間から排出された該
換気用空気は凝縮器に導かれ、該凝縮器で該換気用空気
と冷却用水との間で熱交換が行われ、該凝縮器を通った
換気用空気は恒温室に導かれるように構成され、凝縮器
で換気用空気と前記冷却用水との間で熱交換が行われる
際、換気用空気中の蒸気が凝縮して発生する蒸留水は蒸
留水熱交換器を通って冷却用水との間で熱交換を行うよ
うに構成されたことを特徴とする環境調整設備にある。
The invention according to claim 4 of the present application comprises a temperature-controlled room, a solar power generator, a condenser, a distilled water heat exchanger, and a concentrated water heat exchanger, and the solar power generator is arranged above the temperature-controlled room. A partition plate is provided between the solar power generation device and the temperature-controlled room, and is configured to form a space between the solar power generation device and the partition plate, and the solar power generation device is disposed above the temperature-controlled room. A solar cell, a jacket-type pervaporation film is attached to the back surface of the solar cell, cooling water is supplied to the gap between the solar cell and the pervaporation film, and the vapor of the cooling water is the pervaporation film. Is emitted into the space after passing through, and is configured to cool the solar cell by using the sensible heat of the cooling water and the latent heat when the cooling water evaporates, and the water supply facility supplies the drive power from the solar power generation device. Then, send cooling water to the condenser, and cool the water discharged from the condenser. The irrigation water is supplied to the gap between the solar cell and the pervaporation membrane through the distilled water heat exchanger and the concentrated water heat exchanger, and further passes through the concentrated water heat exchanger and distilled water in the concentrated water heat exchanger. It is configured to perform heat exchange with the cooling water that has passed through the heat exchanger, and the space between the solar power generation device and the partition plate is provided with ventilation air by a ventilation fan driven by the power of the solar power generation device. The ventilation air sent in and discharged from the space is guided to a condenser, where heat exchange is performed between the ventilation air and cooling water, and the ventilation air that has passed through the condenser is It is configured to be guided to a temperature-controlled room, and when heat is exchanged between the ventilation air and the cooling water in the condenser, distilled water generated by condensation of steam in the ventilation air is distilled water heat exchange. An environment characterized by being configured to exchange heat with cooling water through a vessel In the settling equipment.

【0011】本願請求項5に記載の発明は、太陽電池を
具備し、該太陽電池の裏面にジャケット型の透過気化膜
を取り付け、該太陽電池と透過気化膜の間の間隙に冷却
用水を供給し、該冷却用水の顕熱と該冷却用水が蒸発す
るときの潜熱を用いて太陽電池を冷却するように構成し
たことを特徴とする太陽光発電装置にある。
According to a fifth aspect of the present invention, a solar cell is provided, a jacket-type pervaporation film is attached to the back surface of the solar cell, and cooling water is supplied to a gap between the solar cell and the pervaporation film. The solar power generation device is configured to cool the solar cell by using the sensible heat of the cooling water and the latent heat when the cooling water evaporates.

【0012】本願請求項6に記載の発明は、恒温室を具
備し、請求項5に記載の太陽光発電装置を該恒温室の上
部に配置し、該恒温室内の環境を調整する設備の駆動電
力を該太陽光発電装置から供給するようにしたことを特
徴とする恒温室装置にある。
The invention according to claim 6 of the present application comprises a thermostatic chamber, the solar power generation device according to claim 5 is arranged above the thermostatic chamber, and the equipment for adjusting the environment in the thermostatic chamber is driven. A constant temperature chamber device is characterized in that electric power is supplied from the solar power generation device.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて説明する。但し、本願発明はこの実施の形態
に限定されるものではない。図1は本願発明の環境調整
設備の構成を示す図である。本環境調整設備は、太陽光
発電装置1、該太陽発電装置を取り付けた恒温室2、冷
却器3、濃縮水熱交換器4、ポンプ51及びポンプ52
を具備する送水装置、浅井戸6を具備する。該送水装置
には太陽光発電装置1より電力が供給される。このため
本環境調整設備は独立して機能することができる。
Embodiments of the present invention will be described below with reference to the drawings. However, the present invention is not limited to this embodiment. FIG. 1 is a diagram showing a configuration of an environment adjusting facility of the present invention. This environment adjustment facility includes a solar power generation device 1, a temperature-controlled room 2 to which the solar power generation device is attached, a cooler 3, a concentrated water heat exchanger 4, a pump 51 and a pump 52.
And a shallow well 6. Electric power is supplied from the solar power generation device 1 to the water supply device. Therefore, this environment adjustment facility can function independently.

【0014】浅井戸6からポンプ51によって吸い上げ
られた塩水(水温約25℃のかん水又は海水)61は恒
温室2内上部の太陽光発電装置1に近い部分に設けられ
た冷却器3の冷却コイル31に導かれ、ここで約40℃
まで加熱され、更に濃縮熱交換器4に導かれ、ここで約
65℃まで加熱され、太陽光発電装置1を構成する太陽
電池11とその裏面に取り付けられたジャケット型の透
過気化膜12の間隙13に供給される。ここで塩水61
の顕熱で太陽電池11を冷却すると共に、該塩水の一部
が蒸発する時の潜熱でも太陽電池11を冷却する。
The salt water (branch water or seawater having a water temperature of about 25 ° C.) 61 sucked up from the shallow well 6 by the pump 51 is a cooling coil of the cooler 3 provided in the upper part of the temperature-controlled room 2 near the solar power generator 1. Led to 31, where about 40 ℃
To the condensing heat exchanger 4, where it is heated to about 65 ° C. and the gap between the solar cell 11 constituting the photovoltaic power generator 1 and the jacket-type pervaporation film 12 attached to the back surface thereof. 13 is supplied. Salt water here 61
The solar cell 11 is cooled by the sensible heat of 1, and the solar cell 11 is also cooled by the latent heat when a part of the salt water is evaporated.

【0015】砂漠等においては、日中の高温時は恒温室
2の壁面や屋根面の温度が110℃にも達するため、太
陽電池11の発電性能を維持する為には冷却が不可欠で
ある。塩水61は蒸発して透過気化膜12を通り抜けた
蒸気62と、蒸発により高濃度の塩水となった濃縮水6
5に分かれ、該濃縮水65の温度は約70℃に昇温して
いる。この濃縮水65を濃縮水熱交換器4に導き、該濃
縮水熱交換器4で塩水61と熱交換した後、最初の塩水
を得た浅井戸に影響を与えないように捨てる。
In a desert or the like, the temperature of the wall surface or the roof surface of the temperature-controlled room 2 reaches 110 ° C. at a high temperature in the daytime, so that cooling is indispensable for maintaining the power generation performance of the solar cell 11. The salt water 61 evaporates and the steam 62 that has passed through the pervaporation membrane 12 and the concentrated water 6 that has become highly concentrated salt water by evaporation.
The temperature of the concentrated water 65 is increased to about 70 ° C. The concentrated water 65 is introduced into the concentrated water heat exchanger 4, and after exchanging heat with the salt water 61 in the concentrated water heat exchanger 4, the concentrated water is discarded so as not to affect the shallow well in which the first salt water was obtained.

【0016】一方蒸発した蒸気62は透過気化膜12を
通り抜けて恒温室2内に導入され、冷却器3の冷却コイ
ル31を通る塩水(温度25℃)61により冷却され
て、該冷却コイル31の表面から落下した約50℃の蒸
留水63となる。冷却器3は冷却コイル31と蒸留水受
皿32を具備し、蒸気62の冷却だけではなく、恒温室
2内も同時に冷却する。蒸留水受皿32は冷却コイル3
1の真下に位置し、蒸留水63を集め、貯留する。但し
冷却コイル31からの凝結した蒸留水はそのまま受皿3
2を経ず滴下させても良い。
On the other hand, the vaporized vapor 62 passes through the pervaporation membrane 12 and is introduced into the temperature-controlled room 2 where it is cooled by salt water (temperature 25 ° C.) 61 which passes through the cooling coil 31 of the cooler 3 to cool the cooling coil 31. The distilled water 63 of about 50 ° C. drops from the surface. The cooler 3 includes a cooling coil 31 and a distilled water receiving tray 32, and cools not only the steam 62 but also the interior of the temperature-controlled room 2. The distilled water tray 32 is the cooling coil 3
It is located just below 1, and collects and stores distilled water 63. However, the condensed distilled water from the cooling coil 31 remains in the saucer 3
It may be dropped without passing through 2.

【0017】蒸留水63は蒸留水受皿32に溜められて
いる間に、恒温室2の室温により約30℃に冷却され、
需要に応じて供給水64としてポンプ52によって恒温
室2内で消費される。本環境調整設備では恒温室2にお
いて植物81の栽培を行う場合を示している。導入され
た供給水64は多孔管等の散水装置71により植物81
に供給される。植物81の栽培育成のために必要な太陽
光82は太陽光発電装置1の太陽電池11と太陽電池1
1の間の間隙14より供給され、本例では恒温室2内は
比較的高温多湿になるため、熱帯植物等の栽培に適す
る。
The distilled water 63 is cooled to about 30 ° C. by the room temperature of the temperature-controlled room 2 while being stored in the distilled water receiving tray 32.
According to demand, it is consumed in the temperature-controlled room 2 by the pump 52 as the supply water 64. This environment adjustment facility shows a case where the plant 81 is cultivated in the temperature-controlled room 2. The introduced water 64 is introduced into the plant 81 by the sprinkler 71 such as a perforated pipe.
Is supplied to. The sunlight 82 necessary for cultivating and growing the plant 81 is the solar cell 11 and the solar cell 1 of the solar power generation device 1.
It is supplied from the gap 14 between the two, and in the present example, the temperature inside the temperature-controlled room 2 is relatively high in temperature and humidity, so that it is suitable for cultivation of tropical plants and the like.

【0018】恒温室2には太陽光発電装置1の電力で駆
動するファン72が設けられ、該ファン72で換気用空
気を恒温室2内に導くと共に、恒温室2の上部に設けた
開口21から高温の空気を恒温室2の外に排出する。な
お、図1において、濃縮水熱交換器4からの塩水61は
最上部の太陽電池11と透過気化膜12の間の間隙13
に供給されるように図示されているが、図示は省略する
が、他の太陽電池11と透過気化膜12の間の間隙13
にも同様に塩水61は供給されるようになっている。ま
た、図1においては、恒温室2内に一個の冷却コイル3
1と蒸留水受皿32からなる冷却器3を示しているが、
実際の冷却イル31と蒸留水受皿32は必要に応じて複
数個適宜恒温室2の内部に配置される。
The temperature-controlled room 2 is provided with a fan 72 which is driven by the electric power of the solar power generator 1. The fan 72 guides ventilation air into the temperature-controlled room 2 and an opening 21 provided on the upper side of the temperature-controlled room 2. Hot air is discharged from outside the temperature-controlled room 2. In FIG. 1, the salt water 61 from the concentrated water heat exchanger 4 has a gap 13 between the uppermost solar cell 11 and the pervaporation film 12.
Although not shown in the drawing, the gap 13 between the other solar cell 11 and the pervaporation film 12 is shown.
Similarly, salt water 61 is supplied. Further, in FIG. 1, one cooling coil 3 is provided in the temperature-controlled room 2.
Although the cooler 3 including the 1 and the distilled water saucer 32 is shown,
If necessary, a plurality of actual cooling ills 31 and distilled water trays 32 are appropriately arranged inside the temperature-controlled room 2.

【0019】また、冷却コイル31には管をコイル状に
形成し、該管に塩水61を供給するように構成されたも
の、或いは図4に示すように管31aの外周に多数のフ
ィン31bを設け、管31a内に塩水を供給するように
したもの等、各種の冷却コイルが利用できる。
Further, a tube is formed in the cooling coil 31 in the shape of a coil, and salt water 61 is supplied to the tube, or as shown in FIG. 4, a large number of fins 31b are provided on the outer circumference of the tube 31a. Various cooling coils can be used, such as one provided so as to supply salt water into the pipe 31a.

【0020】図2は本願発明の環境調整設備の他の構成
を示す図である。本環境調整設備は、太陽光発電装置
1、恒温室2、冷却器3、濃縮水熱交換器4、ポンプ5
1を具備する送水装置、浅井戸6を具備する。本環境調
整設備においては、送水装置のポンプ51によって各部
に供給され、該ポンプ51の駆動電力は太陽光発電装置
1から供給されるようになっている。このため本設備は
独立して機能することができる。
FIG. 2 is a diagram showing another configuration of the environment adjusting facility of the present invention. This environment adjustment facility includes a photovoltaic power generator 1, a temperature-controlled room 2, a cooler 3, a concentrated water heat exchanger 4, a pump 5
1. A water supply device including 1 and a shallow well 6 are included. In this environment adjustment facility, each part is supplied by the pump 51 of the water supply device, and the drive power of the pump 51 is supplied from the solar power generation device 1. Therefore, this equipment can function independently.

【0021】浅井戸6からポンプ5によって吸い上げら
れた塩水(水温約25℃のかん水又は海水)61は太陽
光発電装置1と恒温室2の間に層状に設けられた冷却器
3に導かれ、約40℃まで加熱される。該加熱された塩
水61はさらに濃縮水熱交換器4で約65℃まで加熱さ
れて、太陽光発電装置1の太陽電池11とその裏面に取
り付けられたジャケット型の透過気化膜12の間の間隙
13に供給され、顕熱で太陽電池11を冷却すると共
に、該塩水の一部が蒸発する時の潜熱でも太陽電池11
を冷却する。
The salt water (branch water or seawater having a water temperature of about 25 ° C.) 61 sucked up from the shallow well 6 by the pump 5 is guided to the cooler 3 provided in layers between the solar power generator 1 and the temperature-controlled room 2, Heat to about 40 ° C. The heated salt water 61 is further heated to about 65 ° C. by the concentrated water heat exchanger 4, and the gap between the solar cell 11 of the solar power generation device 1 and the jacket-type pervaporation film 12 attached to the back surface thereof. 13 to cool the solar cell 11 with sensible heat, and also with the latent heat when part of the salt water evaporates.
To cool.

【0022】砂漠等においては、日中の高温時は恒温室
2の壁面や屋根面の温度が110℃にも達するため、太
陽電池11の発電性能を維持する為には冷却が不可欠で
ある。塩水61は蒸発して透過気化膜12を通り抜けた
蒸気62と、蒸発により高濃度の塩水となった濃縮水6
5に分かれ、該濃縮水65の温度は約70℃に昇温して
いる。この濃縮水65を濃縮水熱交換器4に導き、該濃
縮水熱交換器4で塩水61と熱交換した後、最初の塩水
を得た浅井戸6に影響を与えないように捨てる。
In a desert or the like, the temperature of the wall surface and the roof surface of the temperature-controlled room 2 reaches 110 ° C. at a high temperature during the day, so that cooling is indispensable for maintaining the power generation performance of the solar cell 11. The salt water 61 evaporates and the steam 62 that has passed through the pervaporation membrane 12 and the concentrated water 6 that has become highly concentrated salt water by evaporation.
The temperature of the concentrated water 65 is increased to about 70 ° C. This concentrated water 65 is guided to the concentrated water heat exchanger 4, and after exchanging heat with the salt water 61 in the concentrated water heat exchanger 4, the concentrated water 65 is discarded so as not to affect the shallow well 6 that has obtained the first salt water.

【0023】一方蒸発した蒸気62は透過気化膜12を
通り抜けて反対側の空間15に導かれ、冷却器3内の塩
水61により冷却されて蒸留水63になる。冷却器3は
透明の層に塩水61を通す構造になっており、蒸気62
の冷却だけではなく、恒温室2内も同時に冷却し、更に
恒温室2内に透過する光に含まれる有害な紫外線を抑制
する役目も果たしている。冷却器3は恒温室2の上部に
勾配をもって設けられており、冷却器3の上面で凝縮し
た蒸留水63は該冷却器3の上面を流下して、冷却器3
の下端部と恒温室2の内壁面で形成された蒸留水溜部3
1に溜められる。
On the other hand, the vaporized vapor 62 passes through the pervaporation membrane 12 and is guided to the space 15 on the opposite side, where it is cooled by the salt water 61 in the cooler 3 to become distilled water 63. The cooler 3 has a structure in which salt water 61 is passed through a transparent layer, and steam 62
In addition to the above cooling, the inside of the temperature-controlled room 2 is also cooled at the same time, and it also serves to suppress harmful ultraviolet rays contained in the light transmitted through the temperature-controlled room 2. The cooler 3 is provided on the upper part of the temperature-controlled room 2 with a gradient, and the distilled water 63 condensed on the upper surface of the cooler 3 flows down on the upper surface of the cooler 3 and the cooler 3
Distilled water reservoir 3 formed by the lower end of the chamber and the inner wall surface of the temperature-controlled room 2
It is stored in 1.

【0024】蒸留水溜部31の底部は約25℃の塩水6
1が冷却器3に入る入口となっているため、該塩水61
による冷却と外部への放熱により、集められた蒸留水6
3は約30℃に保たれる。蒸留水63は需要に応じて供
給水64として恒温室2に導かれる。冷却器3は恒温室
2の上部に屋根のように設けられているため、特にポン
プの送水手段を用いなくとも重力により蒸留水63は恒
温室2内に導入可能である。本環境調整設備では恒温室
2内において、植物81の栽培を行っている。導入され
た供給水64は多孔管等の散水装置71により植物に供
給される。
The bottom of the distilled water reservoir 31 is about 25 ° C. salt water 6
Since 1 is an inlet for entering the cooler 3, the salt water 61
Distilled water collected by cooling by 6 and heat dissipation to the outside 6
3 is kept at about 30 ° C. The distilled water 63 is guided to the temperature-controlled room 2 as supply water 64 according to demand. Since the cooler 3 is provided on the upper part of the temperature-controlled room 2 like a roof, the distilled water 63 can be introduced into the temperature-controlled room 2 by gravity without using a water supply means such as a pump. In this environment adjustment facility, the plant 81 is cultivated in the temperature-controlled room 2. The introduced supply water 64 is supplied to the plant by a sprinkler 71 such as a perforated pipe.

【0025】植物81の栽培育成のための太陽光は太陽
光発電装置1の太陽電池11と太陽電池11の間に設け
られた採光用の間隙14により、冷却器3を通過して供
給される。また、恒温室2には太陽光発電装置1の電力
で駆動するファン72が設けられ、該ファン72で換気
用空気を恒温室2内に導き、恒温室2の上部に設けた開
口21から高温の空気を恒温室2の外に排出する。な
お、図1において、濃縮水熱交換器4からの塩水61は
最上部の太陽電池11と透過気化膜12の間の間隙13
に供給されるように図示されているが、図示は省略する
が、他の太陽電池11と透過気化膜12の間の間隙13
にも同様に塩水61は供給されるようになっている。
[0025] The sunlight for cultivating and growing the plant 81 is supplied through the cooler 3 by the solar cell 11 of the photovoltaic power generator 1 and the space 14 for daylighting provided between the solar cells 11. . Further, the temperature-controlled room 2 is provided with a fan 72 that is driven by the electric power of the photovoltaic power generator 1, and the fan 72 guides ventilation air into the temperature-controlled room 2 and a high temperature is obtained from an opening 21 provided in the upper part of the temperature-controlled room 2. The air is discharged out of the temperature-controlled room 2. In FIG. 1, the salt water 61 from the concentrated water heat exchanger 4 has a gap 13 between the uppermost solar cell 11 and the pervaporation film 12.
Although not shown in the drawing, the gap 13 between the other solar cell 11 and the pervaporation film 12 is shown.
Similarly, salt water 61 is supplied.

【0026】図3は本願発明の環境調整設備の他の構成
を示す図である。本環境調整設備は、太陽光発電装置
1、恒温室2、凝縮器33、原水熱交換器41、ポンプ
51、52、53を具備する送水装置、浅井戸6、蒸留
水熱交換器42、濃縮水熱交換器43等を具備する。本
環境調整設備においては、送水装置のポンプ51、5
2、53によって塩水及び内部水は各部に供給され、該
ポンプ51の駆動電力は太陽光発電装置1から供給され
るようになっている。このため本設備は独立して機能す
ることができる。
FIG. 3 is a diagram showing another configuration of the environment adjusting facility of the present invention. This environment adjustment facility includes a solar power generation device 1, a temperature-controlled room 2, a condenser 33, a raw water heat exchanger 41, a water supply device including pumps 51, 52, 53, a shallow well 6, a distilled water heat exchanger 42, and a concentrating device. A water heat exchanger 43 and the like are provided. In this environment adjustment facility, the pumps 51, 5 of the water supply device
The salt water and the internal water are supplied to each part by 2, 53, and the driving power of the pump 51 is supplied from the solar power generation device 1. Therefore, this equipment can function independently.

【0027】浅井戸6からポンプ51によって吸い上げ
られた塩水(水温約25℃のかん水又は海水)61は原
水熱交換器41に導入され、ここで約30℃に昇温され
た後、凝縮器33により約35℃まで昇温され、更に蒸
留水熱交換器42により約60℃まで加熱される。そし
て更に濃縮水熱交換器43で約65℃まで加熱され、太
陽光発電装置1の太陽電池11とその裏面に取り付けら
れたジャケット型の透過気化膜12の間の間隙13に供
給され、顕熱で太陽電池11を冷却すると共に、該塩水
の一部が蒸発する時の潜熱でも太陽電池11を冷却す
る。
The salt water (brine water or seawater having a water temperature of about 25 ° C.) 61 sucked up by the pump 51 from the shallow well 6 is introduced into the raw water heat exchanger 41, where it is heated to about 30 ° C., and then the condenser 33. Is heated to about 35 ° C., and further heated to about 60 ° C. by the distilled water heat exchanger 42. Then, it is further heated to about 65 ° C. by the concentrated water heat exchanger 43, supplied to the gap 13 between the solar cell 11 of the solar power generation device 1 and the jacket type pervaporation film 12 attached to the back surface thereof, and sensible heat is generated. In addition to cooling the solar cell 11, the solar cell 11 is also cooled by the latent heat when part of the salt water evaporates.

【0028】日中の高温時は恒温室2の壁面や屋根面の
温度が110℃にも達するため、太陽電池11の発電性
能を維持する為には冷却が不可欠である。塩水61は蒸
発して透過気化膜12を通り抜けた蒸気62と蒸発によ
り高濃度の塩水となった濃縮水67に分かれ、該濃縮水
67の温度は約70℃に昇温されている。この濃縮水6
7は濃縮水熱交換器43に導かれ、該濃縮水熱交換器4
3で塩水61と熱交換した後、最初の塩水を得た浅井戸
6に影響を与えないにように捨てられる。
At high temperatures during the day, the temperature of the wall surface and roof surface of the temperature-controlled room 2 reaches 110 ° C. Therefore, cooling is indispensable for maintaining the power generation performance of the solar cell 11. The salt water 61 is divided into steam 62 that has evaporated and passed through the pervaporation membrane 12 and concentrated water 67 that has become highly concentrated salt water by evaporation, and the temperature of the concentrated water 67 has been raised to about 70 ° C. This concentrated water 6
7 is led to the concentrated water heat exchanger 43, and the concentrated water heat exchanger 4
After exchanging heat with the salt water 61 at 3, the shallow well 6 that has obtained the first salt water is discarded so as not to affect it.

【0029】一方蒸発した蒸気62は透過気化膜12を
通り抜けて、反対側の空間15に導かれた後、主に太陽
光発電装置1の電力で駆動される換気用ファン16によ
り導かれる換気用空気73と共に凝縮器33に供給さ
れ、塩水61により冷却され、約40℃の換気用空気7
3と蒸留水65に分離される。なお、前記空間15は太
陽光発電装置1との間に間隙を設けて恒温室2の上部に
設けた仕切板23で形成されたもので、該仕切板23は
太陽光82が透過する材料で構成されている。上記分離
された換気用空気73は原水熱交換器41に導かれる。
ここで原水である塩水61と熱交換を行い約30℃に冷
却され、恒温室2に導き日中の高温により室温の温度が
上昇するのを抑制する。これは恒温室2の冷却と共に、
換気用空気73を供給する役割を果たしている。
On the other hand, the vaporized vapor 62 passes through the permeation vaporization film 12 and is guided to the space 15 on the opposite side, and is then mainly guided by the ventilation fan 16 driven by the power of the photovoltaic power generator 1 for ventilation. It is supplied to the condenser 33 together with the air 73, cooled by the salt water 61, and the ventilation air 7 at about 40 ° C.
3 and distilled water 65. The space 15 is formed by a partition plate 23 provided above the constant temperature chamber 2 with a gap provided between the space 15 and the photovoltaic power generator 1, and the partition plate 23 is made of a material through which the sunlight 82 penetrates. It is configured. The separated ventilation air 73 is guided to the raw water heat exchanger 41.
Here, heat exchange is performed with the salt water 61 that is the raw water, and the salt water is cooled to about 30 ° C., and is guided to the temperature-controlled room 2 to prevent the temperature of room temperature from rising due to the high temperature during the day. This is the cooling of the temperature-controlled room 2,
It serves to supply the ventilation air 73.

【0030】一方凝縮器33で凝縮されて生じた約65
℃の蒸留水65はポンプ52により、蒸留水熱交換器4
2に導かれ、該蒸留水熱交換器42で塩水61と熱交換
を行い約37℃になり蒸留水タンク72に貯留される。
蒸留水65は需要に応じてポンプ53により供給水66
として恒温室2内に導かれる。本環境調整設備では恒温
室2内において、植物81の栽培を行っている。導入さ
れた供給水66は多孔管等の散水装置71により植物8
1に供給される。植物81の栽培育成のための太陽光8
2は太陽光発電装置1の太陽電池11と太陽電池11の
間に設けられた採光用の間隙14により、仕切板23を
通して恒温室2内に供給される。
On the other hand, about 65 generated by condensation in the condenser 33
The distilled water 65 at ℃ is supplied to the distilled water heat exchanger 4 by the pump 52.
2, the heat of the distilled water heat exchanger 42 is exchanged with that of the salt water 61 to reach about 37 ° C. and the water is stored in the distilled water tank 72.
Distilled water 65 is supplied by the pump 53 according to demand 66
Is introduced into the temperature-controlled room 2. In this environment adjustment facility, the plant 81 is cultivated in the temperature-controlled room 2. The introduced supply water 66 is supplied to the plant 8 by a sprinkler 71 such as a perforated pipe.
1 is supplied. Sunlight 8 for cultivation and cultivation of plant 81
2 is supplied to the inside of the temperature-controlled room 2 through the partition plate 23 by the solar cell 11 of the solar power generation device 1 and the space 14 for daylighting provided between the solar cells 11.

【0031】送水装置の各ポンプ51、52、53には
通常のいずれも適用できるが、浅井戸6からかん水又は
海水の塩水61を汲み上げるポンプ51や塩水に触れる
ポンプは腐食を考慮した部材、例えばステンレスを用い
ることが好ましい。また、給水を飲料水に用いる場合淡
水の送水用のポンプ等もステンレスを用いることが好ま
しい。これらポンプは太陽光発電装置1より給電される
電力のみで駆動され外部の電力供給手段からの電力を必
要としない。環境調整のための冷却水、散水、淡水化等
は主に日中の高温時のみに問題となるので、太陽光発電
装置1による発電はその時期だけでよいのであるが、但
し夜間、曇天、雨天時等の電力が必要な場合は図示しな
い、既存の蓄電装置や補助電源を用いることを妨げな
い。
Although any of the usual pumps 51, 52, 53 of the water supply device can be applied, the pump 51 for pumping salt water or salt water 61 of seawater from the shallow well 6 and the pump that comes into contact with salt water are members considering corrosion, for example, It is preferable to use stainless steel. Further, when the water supply is used for drinking water, it is preferable to use stainless steel also for a pump for sending fresh water. These pumps are driven only by the electric power supplied from the photovoltaic power generator 1, and do not require the electric power from the external power supply means. Since cooling water, water sprinkling, desalination, etc. for environmental adjustment are mainly problems only during high temperatures during the day, power generation by the photovoltaic power generator 1 is sufficient only at that time, but at night, in cloudy weather, When electric power is required in the case of rain, it is possible to use an existing power storage device or an auxiliary power source (not shown).

【0032】太陽電池11は高温になると発電効率が低
下する。従って冷却器が必要となるが、本環境調整設備
の太陽電池11は透過気化膜12を裏面に取り付け、太
陽電池11と透過気化膜の間隙13に冷却用の塩水を流
す構造になっており、塩水の顕熱で冷却するだけではな
く、気化した水が潜熱を奪い透過気化膜12を通過して
熱を外に逃がすため、従来の数倍から数十倍の冷却効果
が得られる。
When the temperature of the solar cell 11 becomes high, the power generation efficiency decreases. Therefore, a cooler is required, but the solar cell 11 of the present environmental adjustment facility has a structure in which a pervaporation film 12 is attached to the back surface, and salt water for cooling is made to flow in a gap 13 between the solar cell 11 and the permeation film, In addition to cooling with sensible heat of salt water, vaporized water takes latent heat and passes through the pervaporation membrane 12 to release heat, so that a cooling effect that is several times to several tens times that of the conventional case can be obtained.

【0033】蒸気を回収・凝縮して再利用するために
は、透過気化膜12の外側に仕切板23等の覆いや換気
用ファン16のように循環装置等をつけることにより効
果的となる。これらは施工性を良くするため一体化され
ることが望ましい。太陽電池11は流す冷却用流体の沸
点以上にならないため、例えば間隙13に冷却用流体の
種類を変えることにより、太陽電池11の温度を制御で
きる。
In order to collect and condense the vapor and reuse it, it is effective to cover the partition plate 23 or the like on the outer side of the pervaporation membrane 12 or attach a circulation device such as the ventilation fan 16. It is desirable that these be integrated to improve workability. The temperature of the solar cell 11 can be controlled by changing the type of the cooling fluid in the gap 13, for example, because the boiling point of the cooling fluid flowing in the solar cell 11 does not exceed the boiling point.

【0034】また、太陽光発電装置1の太陽電池11は
適当な量の光を恒温室2に導入可能になるように、恒温
室2の壁面又は屋根面を完全に被覆するのではなく、適
当な間隙14を開けて配置することが好ましい。配線な
らびに電気抵抗の関係から太陽電池11は平行して配置
することが特に好ましい。また、太陽電池11の設置面
積は少なくとも送水装置等の駆動電力を満たすだけであ
ればよく、電力的に独立したシステムにすることができ
る。恒温室2に導入する太陽光82の量の適当な範囲は
栽培する植物の性質等利用目的により異なる。太陽電池
11の間隙を調節できるように構成すれば利用目的の変
化や太陽光の季節変動、植物の成長過程に対応すること
ができるので好ましい。なお、太陽電池11と太陽電池
11の隙間14には光を拡散する光拡散装置を設け、恒
温室2内に供給される光を拡散させるようにすることが
好ましい。
Further, the solar cell 11 of the photovoltaic power generator 1 does not completely cover the wall surface or the roof surface of the temperature-controlled room 2 so that an appropriate amount of light can be introduced into the temperature-controlled room 2. It is preferable to arrange them with a large gap 14 therebetween. It is particularly preferable to arrange the solar cells 11 in parallel in terms of wiring and electric resistance. Further, the installation area of the solar cell 11 need only satisfy at least the drive power of the water supply device or the like, and an electrically independent system can be obtained. The appropriate range of the amount of sunlight 82 introduced into the temperature-controlled room 2 depends on the purpose of use such as the nature of the plant to be cultivated. It is preferable to configure the solar cell 11 so that the space between the solar cells 11 can be adjusted, because it is possible to cope with changes in the purpose of use, seasonal changes in sunlight, and plant growth processes. It is preferable to provide a light diffusing device for diffusing light in the gap 14 between the solar cells 11 and the solar cells 11 so as to diffuse the light supplied into the temperature-controlled room 2.

【0035】本環境調整設備においては、恒温室2を植
物栽培のための温室としているが、居室等としても利用
することができ、蒸留水散水装置71から散水して植物
栽培用水として用いる他に飲料水や生活用水として用い
ることができる。砂漠等で問題となる塩害については土
中にシート等の防水手段を設けたり、プランター等での
栽培により回避することができる。また、恒温室2には
空調用冷水が井戸から循環され、過酷な気温の日較差等
のに日中の高温を和らげる。
In this environment adjusting facility, the temperature-controlled room 2 is used as a greenhouse for cultivating plants, but it can also be used as a living room or the like, and is used as water for cultivating plants by sprinkling water from the distilled water sprinkler 71. It can be used as drinking water or domestic water. Salt damage, which is a problem in the desert and the like, can be avoided by providing a waterproofing means such as a sheet in the soil or cultivating in a planter or the like. In addition, cold water for air conditioning is circulated from the well in the temperature-controlled room 2 to mitigate the high temperature during the day due to the severe daily temperature range.

【0036】恒温室2は特に植物栽培を行う場合、屋根
や壁には太陽光を透過する材料を用い適当な量の日射を
得られるように構成することが好ましい。但し、人工光
源や光ファイバー等による太陽光の導入も構わない。
When the plant is cultivated, it is preferable that the constant temperature chamber 2 is made of a material that allows sunlight to pass through the roof and walls so that an appropriate amount of solar radiation can be obtained. However, introduction of sunlight by an artificial light source, an optical fiber or the like is also acceptable.

【0037】上記図1、図2及び図3に示す環境調整設
備はいずれも、塩水の昇温や蒸気の凝縮等ら熱交換器を
用いて外部エネルギーを用いることなく、工程を進める
ため、極めて効率的にユーティリティーを活用できる。
The environment-adjusting equipment shown in FIG. 1, FIG. 2 and FIG. 3 all uses a heat exchanger such as temperature rise of salt water and condensation of steam without using external energy, so that the process is extremely advanced. You can use the utility efficiently.

【0038】上記環境調整設備によれば、下記のことが
可能となる。即ち、 (1)太陽光発電装置1の太陽電池11で日陰をつくり
植物の栽培等植生に適した環境を作ると共に電力を供給
すること。 (2)冷却、散水、淡水化、発電は全て日射量の多い時
に主に行う。 (3)設備の動力となる電力は全て太陽光発電装置1で
発電する電力でまかなうことができる。 (4)植生に必要な水を同一の施設で生産できる。 (5)恒温室2及び太陽光発電装置1の冷却の排熱を淡
水化装置の原水の余熱に利用できる。 (6)淡水設備(淡水装置2及び吸収冷凍機4)の排熱
を使って温室を冷却できる。
According to the above environment adjusting facility, the following can be achieved. That is, (1) A shade is created by the solar cell 11 of the solar power generation device 1 to create an environment suitable for vegetation such as cultivation of plants and supply power. (2) Cooling, water sprinkling, desalination, and power generation are all mainly performed when the amount of solar radiation is large. (3) All the electric power that drives the equipment can be supplied by the electric power generated by the solar power generation device 1. (4) Water required for vegetation can be produced in the same facility. (5) The exhaust heat of the cooling of the constant temperature chamber 2 and the solar power generation device 1 can be used as the residual heat of the raw water of the desalination device. (6) The greenhouse can be cooled by using the exhaust heat of the fresh water equipment (the fresh water device 2 and the absorption refrigerator 4).

【0039】[0039]

【発明の効果】以上説明したように本願発明によれば、
環境調整に必要な冷却、散水、淡水化、発電等のユーテ
ィリティーを自ら得、これらを効率的に運用して特に外
部からのユーティリティー導入を最小限に抑えることが
できるから、砂漠や孤島のようにユーティリティーが得
られない、過酷な環境下においても居住施設や生産拠点
等の環境調整が独立して且つ効率的に行うことができ、
快適な屋内環境調整が可能となるという優れた効果が得
られる。
As described above, according to the present invention,
You can get the necessary utilities such as cooling, water sprinkling, desalination, power generation, etc. for environmental adjustment, and operate them efficiently to minimize the introduction of utilities especially from outside. Even in a harsh environment where a utility is not available, it is possible to independently and efficiently adjust the environment of living facilities and production bases.
The excellent effect that a comfortable indoor environment can be adjusted is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る環境調整設備の構成を示す図であ
る。
FIG. 1 is a diagram showing a configuration of an environment adjustment facility according to the present invention.

【図2】本発明に係る環境調整設備の構成を示す図であ
る。
FIG. 2 is a diagram showing a configuration of environment adjustment equipment according to the present invention.

【図3】本発明に係る環境調整設備の構成を示す図であ
る。
FIG. 3 is a diagram showing a configuration of environment adjustment equipment according to the present invention.

【図4】冷却コイルの一例を示す図である。FIG. 4 is a diagram showing an example of a cooling coil.

【符号の説明】[Explanation of symbols]

1 太陽光発電装置 2 恒温室 3 冷却器 4 濃縮水熱交換器 33 凝縮器 41 原水熱交換器 42 蒸留水熱交換器 43 濃縮水熱交換器 1 Photovoltaic generator 2 Constant temperature room 3 Cooler 4 Concentrated water heat exchanger 33 Condenser 41 Raw water heat exchanger 42 Distilled water heat exchanger 43 Concentrated water heat exchanger

フロントページの続き (72)発明者 寺島 一嘉 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 (72)発明者 伊藤 寛一 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 (72)発明者 木下 和夫 神奈川県藤沢市本藤沢4丁目2番1号 株 式会社荏原総合研究所内 (72)発明者 大塚 秀光 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内Front page continuation (72) Inventor Kazuyoshi Terashima 11-11 Haneda Asahi-cho, Ota-ku, Tokyo Inside the EBARA CORPORATION (72) Inventor Kanichi Ito 11-1 Haneda-Asahi-cho, Ota-ku, Tokyo EBARA CORPORATION (72) Inventor Kazuo Kinoshita 4-2-1 Honfujisawa, Fujisawa, Kanagawa Prefecture Ebara Research Institute Ltd. (72) Hidemitsu Otsuka 11-11 Haneda-Asahicho, Ota-ku, Tokyo Ebara Manufacturing Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 恒温室、太陽光発電装置及び送水設備を
具備し、 前記太陽光発電装置は前記恒温室の上部に配置された太
陽電池を有し、該太陽電池の裏面にジャケット型の透過
気化膜を取り付け、該太陽電池と該透過気化膜の間の間
隙に冷却用水を供給し、該冷却用水の蒸気が該透過気化
膜を透過して前記恒温室内に放出され、該冷却用水の顕
熱と該冷却用水が蒸発するときの潜熱を用いて太陽電池
を冷却するように構成され、 前記送水設備は前記太陽光発電装置からの駆動電力を
得、前記太陽電池と透過気化膜の間の間隙に冷却用水を
供給するように構成されたことを特徴とする環境調整設
備。
1. A thermostatic chamber, a solar power generation device, and a water supply facility are provided, and the solar power generation device has a solar cell disposed above the thermostatic chamber, and a jacket-type transparent member is provided on the back surface of the solar cell. A vaporization film is attached, cooling water is supplied to the gap between the solar cell and the permeation vaporization film, and the vapor of the cooling water permeates the permeation vaporization film and is discharged into the temperature-controlled room, and the cooling water is exposed. It is configured to cool the solar cell by using heat and latent heat when the cooling water evaporates, the water supply equipment obtains driving power from the solar power generation device, and between the solar cell and the pervaporation film. An environmental adjustment facility configured to supply cooling water to the gap.
【請求項2】 前記恒温室内には冷却器が配置され、該
冷却器には前記送水設備から冷却用水を供給するように
構成され、該冷却器で前記恒温室内に放出された前記蒸
気を凝縮し、蒸留水を得ると共に、前記恒温室内を冷却
するように構成されたことを特徴とする請求項1に記載
の環境調整設備。
2. A cooler is arranged in the temperature-controlled room, and is configured to supply cooling water from the water supply facility to the cooler, and the cooler condenses the vapor discharged into the temperature-controlled room. Then, the environment adjusting facility according to claim 1, which is configured to obtain distilled water and cool the inside of the temperature-controlled room.
【請求項3】 恒温室、太陽光発電装置、冷却器、送水
設備及び濃縮水熱交換器を具備し、 前記恒温室の上部に前記冷却器が配置され、該冷却器の
上部に前記太陽光発電装置が配置され、該太陽光発電装
置と該冷却器の間に空間を形成するように構成され、 前記太陽光発電装置は前記恒温室の上部に配置された太
陽電池を有し、該太陽電池の裏面にジャケット型の透過
気化膜を取り付け、該太陽電池と透過気化膜の間の間隙
に冷却用水を供給し、該冷却用水の蒸気が該透過気化膜
を透過して前記空間に放出され、該冷却用水の顕熱と該
冷却用水が蒸発するときの潜熱を用いて太陽電池を冷却
するように構成され、 前記送水設備は前記太陽光発電装置からの駆動電力を
得、前記冷却器に冷却用水を送り、該冷却器から排出さ
れた冷却用水は前記濃縮水熱交換器を通って、前記太陽
電池と透過気化膜の間の間隙に供給され、更に該濃縮水
熱交換器を通って該濃縮水熱交換器で前記冷却器から排
出された冷却用水との間で熱交換を行うように構成さ
れ、 前記太陽光発電装置と前記冷却器の間の空間に放出され
た蒸気は前記冷却器で凝縮され、蒸留水を得るように構
成されたことを特徴とする環境調整設備。
3. A thermostatic chamber, a photovoltaic power generator, a cooler, a water supply facility, and a concentrated water heat exchanger, wherein the cooler is arranged above the thermostatic chamber, and the solar light is above the cooler. A power generation device is disposed and configured to form a space between the solar power generation device and the cooler, the solar power generation device having a solar cell disposed above the thermostatic chamber, and A jacket-type pervaporation film is attached to the back surface of the battery, cooling water is supplied to the gap between the solar cell and the pervaporation film, and vapor of the cooling water permeates the permeation film and is discharged into the space. , The sensible heat of the cooling water and the latent heat when the cooling water evaporates is configured to cool the solar cell, the water supply equipment obtains drive power from the solar power generation device, to the cooler Sending cooling water, the cooling water discharged from the cooler is Cooling water supplied to the gap between the solar cell and the pervaporation membrane through the concentrated water heat exchanger and further discharged from the cooler at the concentrated water heat exchanger through the concentrated water heat exchanger. Is configured to perform heat exchange between the solar power generation device and the vapor released into the space between the cooler is condensed in the cooler, it is configured to obtain distilled water. Characteristic environment adjustment equipment.
【請求項4】 恒温室、太陽光発電装置、凝縮器、蒸留
水熱交換器、濃縮水熱交換器を具備し、 前記恒温室の上部に前記太陽光発電装置が配置され、該
太陽光発電装置と恒温室の間に仕切板が設けられ、該太
陽光発電装置と仕切板の間に空間を形成するように構成
され、 前記太陽光発電装置は前記恒温室の上部に配置された太
陽電池を有し、該太陽電池の裏面にジャケット型の透過
気化膜を取り付け、該太陽電池と透過気化膜の間の間隙
に冷却用水を供給し、該冷却用水の蒸気が該透過気化膜
を透過して前記空間に放出され、該冷却用水の顕熱と該
冷却用水が蒸発するときの潜熱を用いて太陽電池を冷却
するように構成され、 前記送水設備は前記太陽光発電装置からの駆動電力を
得、前記凝縮器に冷却用水を送り、該凝縮器から排出さ
れた冷却用水は前記蒸留水熱交換器及び前記濃縮水熱交
換器を通って、前記太陽電池と透過気化膜の間の間隙に
供給され、更に該濃縮水熱交換器を通って該濃縮水熱交
換器で前記蒸留水熱交換器を通った冷却用水との間で熱
交換を行うように構成され、 前記太陽光発電装置と前記仕切板の間の空間には前記太
陽光発電装置の電力で駆動する換気用ファンで換気用空
気を送り込み、該空間から排出された該換気用空気は前
記凝縮器に導かれ、該凝縮器で該換気用空気と前記冷却
用水との間で熱交換が行われ、該凝縮器を通った換気用
空気は前記恒温室に導かれるように構成され、 前記凝縮器で前記換気用空気と前記冷却用水との間で熱
交換が行われる際、前記換気用空気中の蒸気が凝縮して
発生する蒸留水は前記蒸留水熱交換器を通って該蒸留水
熱交換器で前記冷却用水との間で熱交換を行うように構
成されたことを特徴とする環境調整設備。
4. A thermostatic chamber, a photovoltaic power generation device, a condenser, a distilled water heat exchanger, and a concentrated water heat exchanger, wherein the photovoltaic power generation device is arranged above the thermostatic chamber. A partition plate is provided between the device and the temperature-controlled room, and is configured to form a space between the solar power generation device and the partition plate, and the solar power generation device includes a solar cell disposed above the temperature-controlled room. Then, a jacket-type pervaporation film is attached to the back surface of the solar cell, cooling water is supplied to the gap between the solar cell and the pervaporation film, and the vapor of the cooling water permeates the permeation film to The solar water is discharged to the space, and is configured to cool the solar cell using sensible heat of the cooling water and latent heat when the cooling water evaporates, and the water supply equipment obtains drive power from the solar power generation device, Send cooling water to the condenser, and cool the water discharged from the condenser. Waste water is supplied to the gap between the solar cell and the pervaporation membrane through the distilled water heat exchanger and the concentrated water heat exchanger, and further passes through the concentrated water heat exchanger to the concentrated water heat exchanger. Is configured to perform heat exchange with the cooling water that has passed through the distilled water heat exchanger, and the space between the solar power generation device and the partition plate is a ventilation driven by the power of the solar power generation device. Ventilation air is sent by a fan for ventilation, the ventilation air discharged from the space is guided to the condenser, and heat exchange is performed between the ventilation air and the cooling water in the condenser, and The ventilation air that has passed through the condenser is configured to be guided to the temperature-controlled room, and when heat is exchanged between the ventilation air and the cooling water in the condenser, the steam in the ventilation air Of the distilled water passes through the distilled water heat exchanger to generate the distilled water heat. Environment adjustment equipment, characterized in that it is configured to perform heat exchange between the cooling water in exchanger.
【請求項5】 太陽電池を具備し、該太陽電池の裏面に
ジャケット型の透過気化膜を取り付け、該太陽電池と透
過気化膜の間の間隙に冷却用水を供給し、該冷却用水の
顕熱と該冷却用水が蒸発するときの潜熱を用いて太陽電
池を冷却するように構成したことを特徴とする太陽光発
電装置。
5. A solar cell is provided, a jacket-type pervaporation film is attached to the back surface of the solar cell, cooling water is supplied to a gap between the solar cell and the pervaporation film, and sensible heat of the cooling water is provided. And a solar battery configured to cool the solar cell by using latent heat when the cooling water evaporates.
【請求項6】 恒温室を具備し、前記請求項5に記載の
太陽光発電装置を該恒温室の上部に配置し、該恒温室内
の環境を調整する設備の駆動電力を該太陽光発電装置か
ら供給するようにしたことを特徴とする恒温室装置。
6. A solar power generation apparatus comprising a temperature-controlled room, wherein the solar power generation apparatus according to claim 5 is disposed above the temperature-controlled room, and the drive power of equipment for adjusting the environment inside the temperature-controlled room is the solar power generation apparatus. A temperature-controlled room device characterized by being supplied from
JP8053902A 1996-02-16 1996-02-16 Environment adjusting facility Pending JPH09220031A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8053902A JPH09220031A (en) 1996-02-16 1996-02-16 Environment adjusting facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8053902A JPH09220031A (en) 1996-02-16 1996-02-16 Environment adjusting facility

Publications (1)

Publication Number Publication Date
JPH09220031A true JPH09220031A (en) 1997-08-26

Family

ID=12955659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8053902A Pending JPH09220031A (en) 1996-02-16 1996-02-16 Environment adjusting facility

Country Status (1)

Country Link
JP (1) JPH09220031A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110005128A1 (en) * 2009-07-10 2011-01-13 Lite-On Green Technologies, Inc. Solar energy greenhouse
JP2012238766A (en) * 2011-05-12 2012-12-06 Eco holdings co ltd Installation method of cylindrical solar cell
CN104025974A (en) * 2014-06-20 2014-09-10 江苏印加新能源科技发展有限公司 Desert control system for use with photovoltaic power station
CN104186251A (en) * 2014-09-16 2014-12-10 江苏金山环保工程集团有限公司 Combined ecological greenhouse with solar based waste liquid disposal function
CN104396626A (en) * 2014-11-14 2015-03-11 内蒙古风水梁菌业有限公司 Plant cultivation room
JP2016054178A (en) * 2014-09-03 2016-04-14 株式会社ドクター中松創研 Low cost versatile solar panel
CN109258219A (en) * 2018-09-18 2019-01-25 河南师范大学 A kind of efficient sunlight-heat reaources for wheat planting utilize device
CN109956512A (en) * 2019-03-15 2019-07-02 南京航空航天大学 Sunlight heat sea water desalination self actuating system and method
WO2020081249A1 (en) * 2018-10-17 2020-04-23 Mahna Satish Water desalinization systems

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110005128A1 (en) * 2009-07-10 2011-01-13 Lite-On Green Technologies, Inc. Solar energy greenhouse
JP2012238766A (en) * 2011-05-12 2012-12-06 Eco holdings co ltd Installation method of cylindrical solar cell
CN104025974A (en) * 2014-06-20 2014-09-10 江苏印加新能源科技发展有限公司 Desert control system for use with photovoltaic power station
JP2016054178A (en) * 2014-09-03 2016-04-14 株式会社ドクター中松創研 Low cost versatile solar panel
CN104186251A (en) * 2014-09-16 2014-12-10 江苏金山环保工程集团有限公司 Combined ecological greenhouse with solar based waste liquid disposal function
CN104396626A (en) * 2014-11-14 2015-03-11 内蒙古风水梁菌业有限公司 Plant cultivation room
CN109258219A (en) * 2018-09-18 2019-01-25 河南师范大学 A kind of efficient sunlight-heat reaources for wheat planting utilize device
WO2020081249A1 (en) * 2018-10-17 2020-04-23 Mahna Satish Water desalinization systems
US10689265B2 (en) 2018-10-17 2020-06-23 Satish Mahna Water desalinization systems
CN109956512A (en) * 2019-03-15 2019-07-02 南京航空航天大学 Sunlight heat sea water desalination self actuating system and method

Similar Documents

Publication Publication Date Title
Qiblawey et al. Solar thermal desalination technologies
Shekarchi et al. A comprehensive review of solar‐driven desalination technologies for off‐grid greenhouses
US4363703A (en) Thermal gradient humidification-dehumidification desalination system
US20040060808A1 (en) Advective solar collector for use in multi-effect fluid distillation and power co-generation
US7771568B2 (en) Wind-solar desalination farm and park system
US20100011794A1 (en) Solar Powered Heating and Air Conditioning
JP3964069B2 (en) Desalination equipment
KR101324736B1 (en) Mobile homes available for drinking water production using solar power
JPH09220031A (en) Environment adjusting facility
Radhwan et al. Thermal performance of greenhouses with a built-in solar distillation system: experimental study
KR20140019195A (en) A cooling system for cultivation plant
Sharon et al. A review on role of solar photovoltaic (PV) modules in enhancing sustainable water production capacity of solar distillation units
JP3333380B2 (en) Environmental adjustment equipment
OA11540A (en) Greenhouse.
CN105815152A (en) Solar organic farm
Moustafa et al. Design specifications and application of a100 kWc (700 kWth) cogeneration solar power plant
CA2719496A1 (en) Condensation system for dehumidification and desalination
Rajesh et al. Hybrid thermal desalination systems for sustainable development–A critical review
Chaibi et al. Solar thermal processes: A review of solar thermal energy technologies for water desalination
RU2099289C1 (en) Sea water desalter
Awad et al. Enhancement of the performance of stepped solar still using humidification-dehumidification processes
WO2009128320A1 (en) Pneumatic membrane structure
Tahri et al. Desalination of seawater using a humidification-dehumidification seawater greenhouse
JPH08136014A (en) Multipurpose artificial watercourses
WO2019191512A1 (en) Structures and methods for simultaneously growing photosynthetic organisms and harvesting solar energy