JPH09215205A - Power conversion apparatus - Google Patents

Power conversion apparatus

Info

Publication number
JPH09215205A
JPH09215205A JP8015744A JP1574496A JPH09215205A JP H09215205 A JPH09215205 A JP H09215205A JP 8015744 A JP8015744 A JP 8015744A JP 1574496 A JP1574496 A JP 1574496A JP H09215205 A JPH09215205 A JP H09215205A
Authority
JP
Japan
Prior art keywords
power
switch
voltage
circuit
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8015744A
Other languages
Japanese (ja)
Inventor
Hisami Usui
久視 臼井
Hiroaki Koshin
博昭 小新
Hiroyuki Ono
宏之 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP8015744A priority Critical patent/JPH09215205A/en
Publication of JPH09215205A publication Critical patent/JPH09215205A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems

Abstract

PROBLEM TO BE SOLVED: To provide a conversion apparatus in which a current to be consumed by a parallel-off switch is eliminated in a steady sate, which enhances the efficiency of a photovoltaic power generation system and whose efficiency is high. SOLUTION: An apparatus 4 which supplies electric power to a load 6 in linkage with a commercial power supply system 7 is constituted of a power conversion part 4a in which electric power to be input from a DC power supply 1 is converted into an alternating current so as to be output, of an AC voltage detection circuit 4c which detects the output voltage of the power conversion part 4a, of a parallel-off switch 5 which parallels off linkage with the commercial power supply system 7 and of a switching drive circuit 4e which operates the parallel-off switch 5. In this case, when the parallel-off switch 5 is formed as a switching structure having a self-hold function, a switching part 5a of the parallel-off switch 5 maintains a linkage state even when an exciting current is not available continuously as long as a system voltage and an inverter output voltage are normal, and a parallel-off state is released when the voltages are abnormal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電力変換装置であ
り、特に太陽電池等の直流電源を交流に変換して、商用
電源系統と連系して負荷に電力を供給する電力変換装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power converter, and more particularly to a power converter for converting a direct current power source such as a solar cell into an alternating current and connecting it to a commercial power source system to supply power to a load.

【0002】[0002]

【従来の技術】従来、太陽電池等の直流電源を交流に変
換して、商用電源系統と連系して負荷に電力供給する、
電力変換装置としての系統連系型インバータ装置は、例
えば、特開平1−107661に開示された、図3に示
すものがある。図3は、その太陽光発電システムの基本
構成図である。この太陽光発電システムは、太陽電池1
と、ダイオード2と、コンデンサ3と、インバータ回路
部4と、開閉部5とを有して構成される。そして、商用
電源系統7と連系して負荷6に電力を供給する。
2. Description of the Related Art Conventionally, a DC power source such as a solar cell is converted into an AC power source, and is connected to a commercial power source system to supply power to a load.
An example of a grid interconnection inverter device as a power conversion device is shown in FIG. 3, which is disclosed in JP-A-1-107661. FIG. 3 is a basic configuration diagram of the solar power generation system. This solar power generation system is a solar cell 1
A diode 2, a capacitor 3, an inverter circuit unit 4, and an opening / closing unit 5. Then, the power is supplied to the load 6 in cooperation with the commercial power supply system 7.

【0003】太陽電池1は、電力変換される直流電源で
ある。ダイオード2は、電力変換部であるインバータ回
路部4から電流が逆流するのを防止するもので、太陽電
池1の正極側にアノード端子が、インバータ回路部4の
正極側の入力端にカソード端子が接続される、コンデン
サ3は、太陽電池1の出力電圧を平滑する電解コンデン
サで、正極端子がインバータ回路部4の正極側の入力
端、負極端子がインバータ回路部4の負極側の入力端に
接続される。インバータ回路部4は、太陽電池1の直流
電源を交流に変換して出力する電力変換部分で、コンデ
ンサ3の正極端子と負極端子との両端を介して太陽電池
1の直流出力を入力し、交流に変換して出力する。この
インバータ回路部4は、一般に、図示しない、ブリッジ
接続されてインバータブリッジを形成するスイッチ素子
と、ブリッジ接続の出力端に接続されるローパスフィル
タと、スイッチ素子を制御するPWM制御部と、を有し
て構成される。開閉部5は、例えば交流電源にて駆動さ
れる開閉器である交流コンタクタ装置の開閉部で、この
ような用途の開閉器を一般に解列開閉器と呼ぶ。この開
閉部5は、一端がインバータ回路部4の出力の一端、他
端が負荷6の一端に接続される。また、インバータ回路
部4は、図示しない、インバータ回路部4の出力電圧を
検出する電圧検出部と、開閉部5を電圧検出部の出力号
により操作する開閉操作部とを有して開閉部5を開閉す
る機能を具備する。負荷6は、交流負荷で、商用電源系
統7と、開閉部5を介してインバータ回路部4の出力と
接続される。そして、上記の太陽光発電システムにおい
て、インバータ回路部4は、商用電源系統7と同時に負
荷6に電力を供給する。この接続された状態は、連系と
呼ばれている。
The solar cell 1 is a direct current power source for converting electric power. The diode 2 prevents a current from flowing backward from the inverter circuit section 4 which is a power conversion section, and has an anode terminal on the positive side of the solar cell 1 and a cathode terminal on the positive side input end of the inverter circuit section 4. The connected capacitor 3 is an electrolytic capacitor that smoothes the output voltage of the solar cell 1. The positive electrode terminal is connected to the positive input terminal of the inverter circuit unit 4, and the negative terminal is connected to the negative input terminal of the inverter circuit unit 4. To be done. The inverter circuit unit 4 is a power conversion unit that converts the DC power supply of the solar cell 1 into AC and outputs the AC power. The inverter circuit section 4 inputs the DC output of the solar cell 1 through both ends of the positive electrode terminal and the negative electrode terminal of the capacitor 3, Converted to and output. The inverter circuit unit 4 generally includes a switch element (not shown) that is bridge-connected to form an inverter bridge, a low-pass filter that is connected to an output end of the bridge connection, and a PWM control unit that controls the switch element. Configured. The switch 5 is a switch of an AC contactor device, which is a switch driven by an AC power source, for example, and a switch for such an application is generally called a disconnecting switch. The opening / closing unit 5 has one end connected to one end of the output of the inverter circuit unit 4 and the other end connected to one end of the load 6. Further, the inverter circuit unit 4 has a voltage detection unit (not shown) that detects the output voltage of the inverter circuit unit 4 and an opening / closing operation unit that operates the opening / closing unit 5 by the output signal of the voltage detection unit. It has a function to open and close. The load 6 is an AC load, and is connected to the commercial power supply system 7 and the output of the inverter circuit unit 4 via the switching unit 5. Then, in the above solar power generation system, the inverter circuit unit 4 supplies power to the load 6 at the same time as the commercial power supply system 7. This connected state is called interconnection.

【0004】上記の太陽光発電システムは、インバータ
回路部4にて太陽電池1の出力が正常な電圧値にて電力
変換され、商用電源系統7が電力供給状態であれば、開
閉部5の閉路状態が継続されて連系が維持される。ま
た、異常時すなわち連系時に、前述のインバータ回路部
4の電圧検出部にて異常な電圧値(電圧上昇、電圧低
下、周波数上昇及び周波数低下を意味する)が検出され
た場合、あるいは、商用電源系統7が停電状態の場合、
開閉部5は開路状態となる。
In the above photovoltaic power generation system, when the output of the solar cell 1 is converted to a normal voltage value by the inverter circuit section 4 and the commercial power supply system 7 is in the power supply state, the closing circuit 5 is closed. The state is continued and the interconnection is maintained. In addition, when an abnormal voltage value (meaning voltage increase, voltage decrease, frequency increase, and frequency decrease) is detected by the voltage detection unit of the inverter circuit unit 4 at the time of abnormality, that is, during interconnection, or commercial operation When the power supply system 7 is in a power failure state,
The opening / closing part 5 is opened.

【0005】[0005]

【発明が解決しようとする課題】ところで、上記の連系
の期間が、異常または停電の期間に比べて大幅に長いこ
とは周知の通りである。そして、上記の太陽光発電シス
テムにおいては、連系状態を維持するため、解列開閉器
の交流コンタクタ装置の励磁コイルに励磁電流を絶えず
流し続ける必要があった。従って、上記の電力変換装置
は、定常状態の消費電流がこの励磁電流の分、多いもの
となり、変換効率の低いものであった。
By the way, it is well known that the period of the above interconnection is significantly longer than the period of abnormality or power failure. Further, in the above-described photovoltaic power generation system, in order to maintain the interconnection state, it is necessary to continuously supply the exciting current to the exciting coil of the AC contactor device of the disconnecting switch. Therefore, in the power conversion device described above, the consumption current in the steady state is large by the amount of this exciting current, and the conversion efficiency is low.

【0006】本発明は、上記事由に鑑みてなしたもの
で、その目的とするところは、定常状態において解列開
閉器の消費する電流を無くし、太陽光発電システムの効
率の向上を実現する高効率な電力変換装置を提供するこ
とにある。
The present invention has been made in view of the above circumstances, and an object of the present invention is to eliminate the current consumed by the disconnecting switch in a steady state and to improve the efficiency of the solar power generation system. An object is to provide an efficient power conversion device.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、請求項1記載の電力変換装置は、商用電源系統と連
系して負荷に電力を供給する電力変換装置であって、直
流電源から入力される電力を交流に変換して出力する電
力変換部と、該電力変換部の出力電圧を検出する電圧検
出部と、商用電源系統との連系を解列する解列開閉器
と、該解列開閉器を操作する開閉操作部と、を有する電
力変換装置において、前記解列開閉器は、自己保持機能
を有する開閉構造としている。これにより、解列開閉器
の開閉部は、励磁電流が連続的に無くても系統電圧及び
インバータ出力電圧の正常時は連系状態が維持され、こ
れら電圧の異常時に解列状態が開放される。
In order to achieve the above object, a power conversion device according to claim 1 is a power conversion device that supplies power to a load by linking with a commercial power supply system, and a direct current power supply. A power conversion unit that converts the power input from the AC to output the AC power, a voltage detection unit that detects the output voltage of the power conversion unit, and a disconnecting switch that disconnects the interconnection with the commercial power supply system, In the power conversion device having an opening / closing operation section for operating the disconnecting switch, the disconnecting switch has an opening / closing structure having a self-holding function. As a result, the switching section of the disconnecting switch is maintained in the interconnected state when the system voltage and the inverter output voltage are normal even if the exciting current is not continuously present, and the disconnecting state is released when these voltages are abnormal. .

【0008】また、請求項2記載の電力変換装置は、請
求項1記載の開閉操作部に加え、連系時に充電される充
電部を有し、該充電部の電荷エネルギにて前記解列開閉
器が操作されることとしている。これにより、解列開閉
器を操作する電源回路は、該充電部を有して形成され
る。
The power converter according to a second aspect of the invention has, in addition to the opening / closing operation section of the first aspect, a charging section that is charged at the time of interconnection, and the parallel disconnection switching is performed by the charge energy of the charging section. The vessel is supposed to be operated. Accordingly, the power supply circuit for operating the disconnecting switch is formed to have the charging section.

【0009】また、請求項3記載の電力変換装置は、請
求項1又は2記載の電圧検出部に加え、出力電圧を光絶
縁素子に入力して検出することとしている。これによ
り、解列開閉器を操作する開閉操作部が光絶縁素子にて
電力回路から絶縁される。
Further, in the power converter according to the third aspect, in addition to the voltage detecting section according to the first or the second aspect, the output voltage is input to the optical insulation element to detect the output voltage. As a result, the opening / closing operation section that operates the disconnecting switch is insulated from the power circuit by the optical isolation element.

【0010】また、請求項4記載の電力変換装置は、請
求項1乃至3記載の電圧検出部に加え、過電圧と不足電
圧の両方を検出することとしている。これにより、1つ
の電圧検出部により過電圧と不足電圧が検出される。
In addition to the voltage detecting unit according to the first to third aspects, the power converter according to the fourth aspect detects both an overvoltage and an undervoltage. As a result, the overvoltage and the undervoltage are detected by the one voltage detection unit.

【0011】[0011]

【発明の実施の形態】以下、本発明の電力変換装置の実
施の形態を図1及び図2に基づいて説明する。図1は、
本発明の電力変換装置のシステム構成図、図2は、本発
明の電力変換装置の要部である、交流電圧検出回路と開
閉器駆動回路の回路構成図である。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of a power converter according to the present invention will be described below with reference to FIGS. 1 and 2. FIG.
FIG. 2 is a system configuration diagram of the power conversion device of the present invention, and FIG. 2 is a circuit configuration diagram of an AC voltage detection circuit and a switch drive circuit, which are main parts of the power conversion device of the present invention.

【0012】この電力変換装置4は、入力側に直流電源
としての太陽電池1が接続され、出力側に負荷6、6が
接続される。負荷6、6は、単相3線配線の中性線を介
し、電力変換装置2と、商用電源系統7とが接続され
る。そして、電力変換装置2は、太陽電池1から入力さ
れた直流電力を交流電力に変換し、この交流電力を、負
荷6と商用電源系統7に供給する。
The power converter 4 has a solar cell 1 as a DC power source connected to an input side and loads 6, 6 connected to an output side. The loads 6 and 6 are connected to the power conversion device 2 and the commercial power supply system 7 via a neutral wire of single-phase three-wire wiring. Then, the power conversion device 2 converts the DC power input from the solar cell 1 into AC power, and supplies this AC power to the load 6 and the commercial power supply system 7.

【0013】電力変換装置4は、図1に示したように、
従来例のものと同様に、入力段に電流が逆流するのを防
止するダイオードであるダイオードD1と、太陽電池1
からの入力電圧を平滑するコンデンサであるコンデンサ
C1とを有している。そして、インバータ回路4aと、
インバータ駆動回路4bと、電圧検出部である交流電圧
検出回路4c、4cと、交流電流検出回路4dと、直流
電圧検出回路4fと、インバータ制御回路4gと、開閉
操作部である開閉器駆動回路4eと、開閉部5a、5
a、5aを有する解列開閉器である有極型ラッチングリ
レー5により構成される。
The power converter 4 is, as shown in FIG.
Similar to the conventional example, the diode D1 which is a diode for preventing current from flowing back to the input stage and the solar cell 1
And a capacitor C1 which is a capacitor for smoothing the input voltage from. And an inverter circuit 4a,
Inverter drive circuit 4b, AC voltage detection circuits 4c and 4c that are voltage detection units, AC current detection circuit 4d, DC voltage detection circuit 4f, inverter control circuit 4g, and switch drive circuit 4e that is a switching operation unit. And the opening / closing parts 5a, 5
It is constituted by a polar type latching relay 5 which is a disconnecting switch having a and 5a.

【0014】インバータ回路4aは、ブリッジ接続され
てインバータを形成するスイッチ素子Q1、Q2、Q
3、Q4と、前記インバータ回路の出力端に接続される
ローパスフィルタを形成するチョークコイルL1とコン
デンサC2とを有して構成される。また、スイッチ素子
Q1、Q2、Q3、Q4のエミッタ、コレクタ間にはダ
イオードD1、D2、D3、D4が、それぞれのエミッ
タ側がアノードでコレクタ側がカソードになるように接
続される。
The inverter circuit 4a is composed of switch elements Q1, Q2, Q which are bridge-connected to form an inverter.
3, Q4, a choke coil L1 forming a low-pass filter connected to the output terminal of the inverter circuit, and a capacitor C2. In addition, diodes D1, D2, D3, and D4 are connected between the emitters and collectors of the switch elements Q1, Q2, Q3, and Q4 such that the emitter side of each is the anode and the collector side is the cathode.

【0015】インバータ駆動回路4bは、スイッチ素子
Q1、Q2、Q3、Q4をスイッチング制御するPWM
制御回路で、インバータ制御回路4fからのPWM制御
信号を入力してスイッチ素子Q1、Q2、Q3、Q4を
スイッチング制御する。
The inverter drive circuit 4b is a PWM for controlling switching of the switch elements Q1, Q2, Q3 and Q4.
The control circuit inputs the PWM control signal from the inverter control circuit 4f to control switching of the switch elements Q1, Q2, Q3, Q4.

【0016】交流電圧検出回路4c、4cは、負荷6、
6に印加される交流電圧を検出する回路である。この交
流電圧検出回路4c、4cは、一端がインバータ回路4
aの出力の一端、他端がR1(R2)を介して中性線に
接続された双方向入力型フォトカプラPC1(PC2)
と、双方向入力型フォトカプラPC1(PC2)の入力
端子の両端に接続されたトライアックT1(T2)と、
一端がトライアックT1(T2)のゲート入力、他端が
インバータ回路4aの出力の一端と接続された抵抗R3
(R4)と、カソードとカソードが接続され直列に接続
されて、アノードの一端がトライアックT1(T2)の
ゲート、他端が双方向入力型フォトカプラPC1(PC
2)の入力端子と抵抗R1(R2)の接続部に接続され
たツェナーダイオードZD1、ZD2(ZD3、ZD
4)とを有して構成される。ここでツェナーダイオード
ZD1、ZD2(ZD3、ZD4)は互いに逆極性で直
列接続されている。そして、インバータ回路4aが開閉
部5a、5a、5aを介して商用電源系統7と連系時
に、双方向入力型フォトカプラPC1(PC2)の入力
端子にインバータ回路4aの出力の一端と中性線との間
の線間電圧を入力し、異常な電圧値、すなわち所定の電
圧範囲以上の電圧上昇と電圧低下を検出して、双方向入
力型フォトカプラPC1(PC2)の出力端子から開閉
器駆動回路4eに検出信号を出力する。また、この交流
電圧検出回路4c、4cは、上記検出信号を後述するイ
ンバータ制御回路4gに同時に出力する。
The AC voltage detection circuits 4c and 4c are connected to the load 6,
6 is a circuit for detecting an AC voltage applied to the circuit 6. One end of each of the AC voltage detection circuits 4c and 4c is an inverter circuit 4
Bidirectional input type photocoupler PC1 (PC2) whose one end and the other end of the output of a are connected to the neutral line through R1 (R2)
And a triac T1 (T2) connected to both ends of the input terminal of the bidirectional input type photocoupler PC1 (PC2),
A resistor R3 having one end connected to the gate input of the triac T1 (T2) and the other end connected to one end of the output of the inverter circuit 4a.
(R4) and the cathodes are connected in series by connecting the cathodes, one end of the anode is the gate of the triac T1 (T2), and the other end is the bidirectional input photocoupler PC1 (PC
2) Zener diodes ZD1 and ZD2 (ZD3 and ZD) connected to the connection between the input terminal and the resistor R1 (R2)
4) and are comprised. Here, the Zener diodes ZD1 and ZD2 (ZD3 and ZD4) are connected in series with mutually opposite polarities. Then, when the inverter circuit 4a is connected to the commercial power supply system 7 via the opening / closing sections 5a, 5a, 5a, one end of the output of the inverter circuit 4a and the neutral line are connected to the input terminal of the bidirectional input photocoupler PC1 (PC2). The voltage between the lines is input to detect an abnormal voltage value, that is, a voltage rise and a voltage drop over a predetermined voltage range, and a switch is driven from the output terminal of the bidirectional input photocoupler PC1 (PC2). The detection signal is output to the circuit 4e. Further, the AC voltage detection circuits 4c and 4c simultaneously output the detection signal to an inverter control circuit 4g described later.

【0017】交流電流検出回路4dは、負荷6、6に流
れる交流電流を検出する回路で、インバータ回路4aと
開閉部5aとの間の接続線の一方又は両方に設けられた
変流器からの出力を入力し、交流電流信号を後述するイ
ンバータ制御回路4fに出力する。
The AC current detection circuit 4d is a circuit for detecting an AC current flowing through the loads 6 and 6, and is provided by one or both of the connection lines between the inverter circuit 4a and the switching section 5a. The output is input and an alternating current signal is output to the inverter control circuit 4f described later.

【0018】開閉器駆動回路4eは、後述する開閉部5
aを有する有極型ラッチングリレー5を駆動するリレー
操作回路である。この開閉器駆動回路4eは、インバー
タ回路4aの出力電圧を整流平滑するダイオードブリッ
ジDB1及びコンデンサC3と、交流電圧検出回路4
c、4cからの出力をコンデンサC3の正極側へプルア
ップする抵抗R5(R6)と、後述する有極型ラッチン
グリレー5の、セット操作コイル5bの一端がコレクタ
端子、前記コンデンサC3の正極側がセットスイッチS
W1と抵抗R9を介してベース端子に接続されて操作コ
イル5bの励磁電流を制御するトランジスタQ4と、リ
セット操作コイル5cの一端がコレクタ端子、交流電圧
検出回路4c、4cからの出力がダイオードD5(D
6)と抵抗R7を介してベース端子に接続されて操作コ
イル5cの励磁電流を制御するトランジスタQ5とを有
して構成される。なお、図中のC4、C5はノイズ吸収
用コンデンサ、R8、R10はトランジスタQ4、Q5
のバイアス用抵抗である。
The switch drive circuit 4e includes an open / close unit 5 which will be described later.
It is a relay operation circuit for driving the polarized latching relay 5 having a. This switch drive circuit 4e includes a diode bridge DB1 and a capacitor C3 that rectify and smooth the output voltage of the inverter circuit 4a, and an AC voltage detection circuit 4
c, a resistor R5 (R6) for pulling up the output from the capacitor C3 to the positive electrode side of the capacitor C3, and one end of the set operation coil 5b of the polar type latching relay 5 described later is the collector terminal, and the positive electrode side of the capacitor C3 is Switch S
A transistor Q4 connected to the base terminal via W1 and a resistor R9 to control the exciting current of the operating coil 5b, one end of the reset operating coil 5c is a collector terminal, and outputs from the AC voltage detection circuits 4c and 4c are diodes D5 ( D
6) and a transistor Q5 connected to the base terminal via a resistor R7 and controlling the exciting current of the operating coil 5c. In the figure, C4 and C5 are noise absorbing capacitors, and R8 and R10 are transistors Q4 and Q5.
This is a bias resistor.

【0019】直流電圧検出回路4fは、コンデンサC1
の両端の直流電圧を検出する電圧検出回路で、太陽電池
1の直流電圧信号をインバータ制御回路4gに出力す
る。
The DC voltage detection circuit 4f includes a capacitor C1.
The voltage detection circuit that detects the DC voltage across the two ends outputs the DC voltage signal of the solar cell 1 to the inverter control circuit 4g.

【0020】インバータ制御回路4gは、前記インバー
タ駆動回路4bの駆動信号を出力する回路である。この
インバータ制御回路4gは、交流電圧検出回路4cから
交流電圧信号、交流電流検出回路4dから交流電流信
号、直流電圧検出回路4fから直流電圧信号を入力し
て、太陽電池1の発電効率が最大となるようにインバー
タ回路4aのPWM制御信号を変化させる。
The inverter control circuit 4g is a circuit for outputting the drive signal of the inverter drive circuit 4b. The inverter control circuit 4g receives the AC voltage signal from the AC voltage detection circuit 4c, the AC current signal from the AC current detection circuit 4d, and the DC voltage signal from the DC voltage detection circuit 4f to maximize the power generation efficiency of the solar cell 1. The PWM control signal of the inverter circuit 4a is changed so that

【0021】有極型ラッチングリレー5は、電力変換器
4と商用電源系統7の接続を開閉する解列開閉器で、電
力変換器4の出力と商用電源系統7との接続線の間に配
設された3つの開閉部5a、5a、5aと、開閉部5a
を開閉操作するセット操作コイル5bと、リセット操作
コイル5cとを有して構成される。この有極型ラッチン
グリレー5は、3極の開閉部5a、5a、5aが、セッ
ト操作コイル5bにパルス状の励磁電流が流れて閉状
態、リセット操作コイル5cにパルス状の励磁電流が流
れて開状態となり、励磁電流の無い状態においてもその
直前の状態を保持する。
The polarized latching relay 5 is a disconnecting switch that opens and closes the connection between the power converter 4 and the commercial power system 7, and is arranged between the output of the power converter 4 and the connecting line between the commercial power system 7. Three open / close parts 5a, 5a, 5a provided and the open / close part 5a
It is configured to have a set operation coil 5b for opening / closing and a reset operation coil 5c. In this polarized latching relay 5, the three-pole switching parts 5a, 5a, 5a are closed by a pulsed exciting current flowing through the set operating coil 5b, and a pulsed exciting current flows through the reset operating coil 5c. The open state is maintained, and the state immediately before that is maintained even when there is no exciting current.

【0022】次に、上記の構成による電力変換装置の動
作について説明する。太陽電池1から直流電力が出力さ
れると、まず、コンデンサC1に蓄電される。このコン
デンサC1により、0〜大略300Vまで変化して絶え
ず変動する太陽電池の出力する直流電圧は、平滑化され
てインバータ回路4aに入力される。そして、インバー
タ回路4aのインバータブリッジを形成するスイッチ素
子Q1、Q2、Q3、Q4によりスイッチングされ、商
用電源に同期した高調波分を含む略正弦波電流に変換さ
れる。この略正弦波電流は、チョークコイルL1とコン
デンサC2とによるローパスフィルタにより平滑された
商用電源に変換され、交流電流として出力される。そし
て、この交流電流出力は、開閉器駆動回路4eのセット
スイッチSW1が押されてセット操作コイル5bにトラ
ンジスタQ4を介して大略1秒の間操作電流を流すこと
により、開閉部5a、5a、5aが閉状態となって、商
用電源系統7からの供給電流と合成され、負荷6、6に
入力されるものとなる。
Next, the operation of the power conversion device having the above configuration will be described. When DC power is output from the solar cell 1, first, it is stored in the capacitor C1. By this capacitor C1, the DC voltage output from the solar cell, which changes from 0 to approximately 300 V and constantly changes, is smoothed and input to the inverter circuit 4a. Then, it is switched by the switch elements Q1, Q2, Q3, Q4 forming the inverter bridge of the inverter circuit 4a, and is converted into a substantially sine wave current including harmonic components synchronized with the commercial power supply. This substantially sine wave current is converted into a commercial power source smoothed by a low pass filter including a choke coil L1 and a capacitor C2, and output as an alternating current. The alternating current output is generated by pressing the set switch SW1 of the switch drive circuit 4e and passing an operating current through the set operating coil 5b through the transistor Q4 for about 1 second, thereby opening / closing the opening / closing sections 5a, 5a, 5a. Becomes a closed state, is combined with the supply current from the commercial power supply system 7, and is input to the loads 6, 6.

【0023】電力変換器4にて太陽電池1の出力が正常
な電圧値にて電力変換され、商用電源系統7が電力供給
状態であれば、開閉部5の閉路状態が継続されて連系が
維持される。そして、異常時すなわち交流電圧検出回路
4cにて電圧上昇又は電圧低下が検出された場合、フォ
トカプラPC1又はPC2がオフ状態となり、開閉部5
は開状態となる。詳しくは、インバータ回路4aと開閉
部5aとの間の接続線に過電圧が発生したとき、ツェナ
ーダイオードZD1、ZD2、ZD3、ZD4のどれか
が過電圧の極性と合致してオン状態となる。そして、そ
のツェナーダイオードがゲート端子に接続されたトライ
アックT1又はT2がオン状態となる。そして、フォト
カプラPC1又はPC2がオフ状態となり、ダイオード
D5又はD6のカソード側の電圧が上昇してトランジス
タQ5を介して有極型ラッチングリレー5のリセット操
作コイル5cに操作電流が流れて開閉部5a、5a、5
aが開状態となる。また、インバータ回路4aの出力が
著しく低下又はオフしたときも、フォトカプラPC1、
PC2はオフ状態となり、ダイオードD5又はD6のカ
ソード側の電圧が上昇し、トランジスタQ5を介して有
極型ラッチングリレー5のリセット操作コイル5cに、
コンデンサC3から操作電流が流れて開閉部5a、5
a、5aが開状態となる。
If the output of the solar cell 1 is converted to a normal voltage value by the power converter 4 and the commercial power supply system 7 is in the power supply state, the closed state of the opening / closing section 5 is continued and the interconnection is established. Maintained. Then, at the time of abnormality, that is, when the voltage increase or voltage decrease is detected by the AC voltage detection circuit 4c, the photocoupler PC1 or PC2 is turned off, and the opening / closing unit 5 is opened.
Is opened. Specifically, when an overvoltage is generated in the connection line between the inverter circuit 4a and the opening / closing section 5a, any one of the Zener diodes ZD1, ZD2, ZD3, and ZD4 is turned on in accordance with the polarity of the overvoltage. Then, the triac T1 or T2 whose Zener diode is connected to the gate terminal is turned on. Then, the photocoupler PC1 or PC2 is turned off, the voltage on the cathode side of the diode D5 or D6 rises, and an operation current flows through the reset operation coil 5c of the polar type latching relay 5 via the transistor Q5 to open / close the opening / closing section 5a. 5a, 5
a is in an open state. Also, when the output of the inverter circuit 4a is significantly reduced or turned off, the photocoupler PC1,
The PC2 is turned off, the voltage on the cathode side of the diode D5 or D6 rises, and the reset operation coil 5c of the polar type latching relay 5 is connected via the transistor Q5.
The operating current flows from the capacitor C3, and the opening / closing sections 5a, 5
a and 5a are opened.

【0024】以上の動作において、解列開閉器を有極型
ラッチングリレー5としたことにより、開閉部5aは、
連系の開始するときのみ励磁電流を流してセットするの
みで、以降励磁電流が無くても定常の連系状態が維持さ
れて、解列開閉器にて連系状態するための励磁電流が不
要となる。従って、電力変換装置4の変換効率が高いも
のとなる。また、コンデンサC3の電荷エネルギにて有
極型ラッチングリレー5の操作コイル5b、5cが操作
されることとしている。これにより、有極型ラッチング
リレー5を操作する電源回路は、充電部すなわちコンデ
ンサC3を有して形成され、インバータ回路4aの出力
が著しく低下またはオフしたときにおいても確実に開閉
部5aが操作されるものとなる。また、交流電圧検出回
路4c、4cは、インバータ回路4aの出力である交流
電圧の入力部に双方向入力型フォトカプラPC1(PC
2)を用いることにより簡単な回路構成により電圧検出
できる。さらに、有極型ラッチングリレー5を操作する
開閉操作部である開閉器駆動回路4eは、光絶縁素子に
より電力回路から絶縁されることとしている。従って、
開閉器駆動回路4eは、インバータ回路4aの出力電圧
を整流平滑するダイオードブリッジDB1及びコンデン
サC3により形成される電源回路のみにて有極型ラッチ
ングリレー5を操作する。その結果、電流の回り込みの
ない回路構成により安定した回路動作が可能となる。ま
た、交流電圧検出回路4c、4cは、双方向入力型フォ
トカプラPC1(PC2)の入力側に、トライアックT
1(T2)と、ツェナーダイオードZD1、ZD2(Z
D3、ZD4)とを有する過電圧を検出する回路を付加
して、不足電圧と過電圧の両方を検出することとしてい
ることにより、有極型ラッチングリレー5を操作する開
閉器駆動回路4eを不足電圧と過電圧の両方の異常時の
操作に兼用でき回路が簡略なものとなるという効果を奏
する。
In the above operation, since the disconnecting switch is the polar type latching relay 5, the opening / closing section 5a is
The exciting current is set only when the interconnection is started, and the steady interconnection state is maintained even if there is no exciting current thereafter, and the excitation current for the interconnection state at the disconnect switch is unnecessary. Becomes Therefore, the conversion efficiency of the power conversion device 4 is high. In addition, the operation energy of the capacitor C3 is used to operate the operation coils 5b and 5c of the polar type latching relay 5. As a result, the power supply circuit for operating the polarized latching relay 5 is formed with the charging portion, that is, the capacitor C3, and the opening / closing portion 5a is reliably operated even when the output of the inverter circuit 4a is significantly reduced or turned off. It will be one. In addition, the AC voltage detection circuits 4c and 4c have a bidirectional input photocoupler PC1 (PC) at the input portion of the AC voltage output from the inverter circuit 4a.
By using 2), the voltage can be detected with a simple circuit configuration. Furthermore, the switch drive circuit 4e, which is an opening / closing operation section for operating the polarized latching relay 5, is insulated from the power circuit by an optical insulation element. Therefore,
The switch drive circuit 4e operates the polarized latching relay 5 only by the power supply circuit formed by the diode bridge DB1 and the capacitor C3 that rectifies and smoothes the output voltage of the inverter circuit 4a. As a result, a stable circuit operation is possible with a circuit configuration in which current does not sneak. The AC voltage detection circuits 4c and 4c are connected to the input side of the bidirectional input type photocoupler PC1 (PC2) by the triac T.
1 (T2) and Zener diodes ZD1 and ZD2 (Z
D3, ZD4) is added to the circuit for detecting an overvoltage to detect both the undervoltage and the overvoltage, so that the switch drive circuit 4e for operating the polarized latching relay 5 is set to the undervoltage. This has an effect that the circuit can be simplified because it can be used for both abnormal operation of overvoltage.

【0025】なお、本発明は、実施形態の説明におい
て、解列開閉器は有極型ラッチングリレーとして説明し
たが、そのものに限定するものでなく、適宜、ロータリ
ーリレーなどを用いても良い。また、光絶縁素子も、双
方向入力型フォトカプラ素子として説明したが、磁気的
な信号伝達手段でも良い。また、有極型ラッチングリレ
ーの操作部は、連系時に充電されるコンデンサ等を有し
て構成するものに限定されるものではなく、適宜電源を
構成しても良い。また、交流電圧検出回路は、過電圧と
不足電圧の両方を検出するもののみに限定するものでも
ない。
In the description of the embodiments of the present invention, the disconnecting switch has been described as a polar type latching relay, but the present invention is not limited to this, and a rotary relay or the like may be used as appropriate. Also, the optical insulation element has been described as a bidirectional input type photocoupler element, but it may be a magnetic signal transmission means. Further, the operating portion of the polarized latching relay is not limited to one having a capacitor or the like that is charged at the time of interconnection, and a power source may be appropriately configured. Further, the AC voltage detection circuit is not limited to one that detects both overvoltage and undervoltage.

【0026】[0026]

【発明の効果】請求項1記載の電力変換装置は、解列開
閉器の開閉部は、励磁電流が連続的に無くても系統電圧
及びインバータ出力電圧の正常時は連系状態が維持さ
れ、これら電圧の異常時に解列状態が開放されるので、
連続的な励磁電流は不要となり、電力変換装置の変換効
率が高いものとなる。
In the power converter according to the first aspect of the present invention, the switching section of the parallel disconnecting switch is maintained in the interconnected state when the system voltage and the inverter output voltage are normal even when the exciting current is not continuously applied. Since the disconnection state is released when these voltages are abnormal,
A continuous exciting current is unnecessary, and the conversion efficiency of the power converter is high.

【0027】また、請求項2記載の電力変換装置は、請
求項1記載のものの効果に加え、解列開閉器を操作する
電源回路は、該充電部を有して形成されるので、インバ
ータ回路の出力が著しく低下またはオフしたときにおい
ても確実に開閉部が操作されるものとなる。
In addition to the effect of the power conversion device according to the first aspect of the present invention, the power supply circuit for operating the decoupling switch is formed to have the charging section. The opening / closing part can be reliably operated even when the output of is significantly reduced or turned off.

【0028】また、請求項3記載のの電力変換装置は、
請求項1又は2記載のものの効果に加え、解列開閉器を
操作する開閉操作部が光絶縁素子にて電力回路から絶縁
されるので、電流の回り込みのない回路構成により安定
した回路動作が可能となる。
The power converter according to a third aspect of the present invention is
In addition to the effect of the first or second aspect, since the switching operation section for operating the disconnecting switch is insulated from the power circuit by the optical insulation element, stable circuit operation is possible by the circuit configuration without current sneak. Becomes

【0029】また、請求項4記載のの電力変換装置は、
請求項1乃至3記載のものの効果に加え、1つの電圧検
出部により過電圧と不足電圧が検出されるので、有極型
ラッチングリレー5を操作する開閉器駆動回路4eを不
足電圧と過電圧の両方の異常時の操作に兼用でき回路が
簡略なものとなる。
The power converter according to a fourth aspect of the present invention is
In addition to the effects of the first to third aspects, since the overvoltage and the undervoltage are detected by one voltage detection unit, the switch drive circuit 4e for operating the polarized latching relay 5 is provided with both the undervoltage and the overvoltage. The circuit can be simplified because it can be used for operation in the event of an abnormality.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態を示すシステム構成図であ
る。
FIG. 1 is a system configuration diagram showing an embodiment of the present invention.

【図2】本発明の電力変換装置の要部である、交流電圧
検出回路と開閉器駆動回路の回路構成図である。
FIG. 2 is a circuit configuration diagram of an AC voltage detection circuit and a switch drive circuit, which are essential parts of the power conversion device of the present invention.

【図3】従来例の太陽光発電システムの基本構成図であ
る。
FIG. 3 is a basic configuration diagram of a conventional photovoltaic power generation system.

【符号の説明】[Explanation of symbols]

1 太陽電池 4 電力変換装置 4a インバータ回路(電力変換部) 4c 交流電圧検出回路(電圧検出部) PC1、PC2 双方向入力型フォトカプラ(光絶縁素
子) 4e 開閉器駆動回路(開閉操作部) C3 コンデンサ(充電部) 5 有極型ラッチングリレー(解列開閉器) 5a 開閉部
1 Solar Cell 4 Power Converter 4a Inverter Circuit (Power Converter) 4c AC Voltage Detector (Voltage Detector) PC1, PC2 Bidirectional Input Photocoupler (Optical Insulation Device) 4e Switch Driver Circuit (Switch Operator) C3 Capacitor (charging part) 5 Polarized latching relay (disconnect switch) 5a Switching part

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H02M 7/48 9181−5H H02M 7/48 R H02N 6/00 H02N 6/00 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Internal reference number FI Technical indication H02M 7/48 9181-5H H02M 7/48 R H02N 6/00 H02N 6/00

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 商用電源系統と連系して負荷に電力を供
給する電力変換装置であって、直流電源から入力される
電力を交流に変換して出力する電力変換部と、該電力変
換部の出力電圧を検出する電圧検出部と、商用電源系統
との連系を解列する解列開閉器と、該解列開閉器を操作
する開閉操作部と、を有する電力変換装置において、 前記解列開閉器は、自己保持機能を有する開閉構造とす
ることを特徴とする電力変換装置。
1. A power conversion device that supplies power to a load by linking with a commercial power supply system, the power conversion unit converting power input from a DC power supply into AC and outputting the AC, and the power conversion unit. In the power conversion device, there is provided a voltage detecting unit for detecting an output voltage of the power converter, a disconnecting switch for disconnecting an interconnection with a commercial power supply system, and an opening / closing operating unit for operating the disconnecting switch. The row switch has an opening / closing structure having a self-holding function.
【請求項2】 前記開閉操作部は、連系時に充電される
充電部を有し、該充電部の電荷エネルギにて前記解列開
閉器が操作されることを特徴とする請求項1記載の電力
変換装置。
2. The opening / closing operation section has a charging section that is charged when the connection is established, and the disconnection switch is operated by the charge energy of the charging section. Power converter.
【請求項3】 前記電圧検出部は、出力電圧を光絶縁素
子に入力して検出することを特徴とする請求項1又は2
記載の電力変換装置。
3. The voltage detecting unit inputs the output voltage to an optical insulation element to detect the output voltage.
The power converter according to any one of the preceding claims.
【請求項4】 前記電圧検出部は、過電圧と不足電圧の
両方を検出することを特徴とする請求項1乃至3記載の
電力変換装置。
4. The power conversion device according to claim 1, wherein the voltage detection unit detects both an overvoltage and an undervoltage.
JP8015744A 1996-01-31 1996-01-31 Power conversion apparatus Pending JPH09215205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8015744A JPH09215205A (en) 1996-01-31 1996-01-31 Power conversion apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8015744A JPH09215205A (en) 1996-01-31 1996-01-31 Power conversion apparatus

Publications (1)

Publication Number Publication Date
JPH09215205A true JPH09215205A (en) 1997-08-15

Family

ID=11897281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8015744A Pending JPH09215205A (en) 1996-01-31 1996-01-31 Power conversion apparatus

Country Status (1)

Country Link
JP (1) JPH09215205A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002027670A (en) * 2000-07-10 2002-01-25 Mitsubishi Electric Corp Non-break self-standing shift type power generation system
JP2003153433A (en) * 2001-11-08 2003-05-23 Mitsubishi Heavy Ind Ltd Instantaneous voltage drop detection device for power system
JP2003333743A (en) * 2002-05-15 2003-11-21 Sanyo Electric Co Ltd Inverter apparatus and system interconnected power plant
JP2007306795A (en) * 2007-08-10 2007-11-22 Kyuhen Co Ltd Parallel operation device for mobile transformer
JP2007325333A (en) * 2006-05-30 2007-12-13 Osaka Gas Co Ltd Distributed power plant
JP5226873B2 (en) * 2009-08-24 2013-07-03 三菱電機株式会社 Power conditioner for photovoltaic power generation
CN103197131A (en) * 2012-01-04 2013-07-10 华北电力科学研究院有限责任公司 Performance test system for photovoltaic power generation system
JP2014124062A (en) * 2012-12-21 2014-07-03 Tsubaki E&M Co Overload detection device and overload detection method
JP2015220791A (en) * 2014-05-14 2015-12-07 三菱電機株式会社 Power supply control device
JP2017192284A (en) * 2016-04-15 2017-10-19 エルエス産電株式会社Lsis Co., Ltd. Photovoltaic voltage control device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002027670A (en) * 2000-07-10 2002-01-25 Mitsubishi Electric Corp Non-break self-standing shift type power generation system
JP2003153433A (en) * 2001-11-08 2003-05-23 Mitsubishi Heavy Ind Ltd Instantaneous voltage drop detection device for power system
JP2003333743A (en) * 2002-05-15 2003-11-21 Sanyo Electric Co Ltd Inverter apparatus and system interconnected power plant
JP2007325333A (en) * 2006-05-30 2007-12-13 Osaka Gas Co Ltd Distributed power plant
JP2007306795A (en) * 2007-08-10 2007-11-22 Kyuhen Co Ltd Parallel operation device for mobile transformer
JP5226873B2 (en) * 2009-08-24 2013-07-03 三菱電機株式会社 Power conditioner for photovoltaic power generation
CN103197131A (en) * 2012-01-04 2013-07-10 华北电力科学研究院有限责任公司 Performance test system for photovoltaic power generation system
JP2014124062A (en) * 2012-12-21 2014-07-03 Tsubaki E&M Co Overload detection device and overload detection method
JP2015220791A (en) * 2014-05-14 2015-12-07 三菱電機株式会社 Power supply control device
JP2017192284A (en) * 2016-04-15 2017-10-19 エルエス産電株式会社Lsis Co., Ltd. Photovoltaic voltage control device
US10651729B2 (en) 2016-04-15 2020-05-12 Lsis Co., Ltd. Apparatus for controlling solar light voltage

Similar Documents

Publication Publication Date Title
US5977659A (en) Inverter apparatus and solar power generation apparatus
JPH0521949Y2 (en)
KR20000077045A (en) Method of operating a power supply system having parallel-connected inverters, and power converting system
US5610805A (en) Uninterruptible power supply with a back-up battery coupled across the a.c. input
US11632056B2 (en) Off-grid phase splitter and inverter system
JP3829846B2 (en) Uninterruptible power system
JPH118976A (en) Inverter device and starting thereof
JPH09215205A (en) Power conversion apparatus
JP3805953B2 (en) Power conditioner and solar power generation system using the same
JP4405654B2 (en) Power converter and power generator
Hirachi et al. Utility-interactive multi-functional bidirectional converter for solar photovoltaic power conditioner with energy storage batteries
JPH09322555A (en) System cooperation system
JPH09117066A (en) System interconnection power supply system
JP2004208345A (en) Three-phase unbalanced voltage restraining apparatus
JP3804276B2 (en) Solar power system
JPH06133462A (en) System interconnection system
JPH07255132A (en) Inverter for system interconnection
RU94035341A (en) Device for control of electric load
JP3563967B2 (en) Solar power system
JP3584613B2 (en) Distributed power system
JP3052479U (en) Power supply for nighttime power use
KR20150062999A (en) Electrical driving system having charging circuit for an energy storage device and method for operating an energy storage device
JP2019134602A (en) Power unit
JPH08317665A (en) Photovoltaic power generation apparatus
JP2002165461A (en) Transformerless inverter power supply

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040615

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041102