JPH09211504A - Laser pulse compressor - Google Patents

Laser pulse compressor

Info

Publication number
JPH09211504A
JPH09211504A JP1965096A JP1965096A JPH09211504A JP H09211504 A JPH09211504 A JP H09211504A JP 1965096 A JP1965096 A JP 1965096A JP 1965096 A JP1965096 A JP 1965096A JP H09211504 A JPH09211504 A JP H09211504A
Authority
JP
Japan
Prior art keywords
diffraction grating
grating pair
laser pulse
pulse
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP1965096A
Other languages
Japanese (ja)
Inventor
Osamu Noda
修 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP1965096A priority Critical patent/JPH09211504A/en
Publication of JPH09211504A publication Critical patent/JPH09211504A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a laser pulse compressor which is capable of making optimum pulse compression and makes it possible to obtain a circular exit beam with respect to a circular incident beam even if the diffraction grating intervals of a diffraction grating pair are decreased. SOLUTION: This laser pulse compressor is constituted by disposing a total reflection mirror 7 on the downstream side (the right side in Fig. of the diffraction grating pair 5) in the forward path of the laser pulses with respect to the diffraction grating pair 5 so as to reflect the laser pulses past the diffraction grating pair 5 and to make the laser pulses incident again on the inside of the diffraction grating pair 5, thereby passing the laser pulses back and forth within the diffraction grating pair 5. A reflection plate 6 is disposed on the upstream side (on the left side in Fig. of the diffraction grating pair 5) in the forward path of the laser pulses with respect to the diffraction grating pair 5 in such a manner that the laser pulses once passing the diffraction grating pair 5 back and forth may be taken out.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はレーザパルス圧縮装
置に関し、電流銃(例えばFree Electron Laser(自動
電子レーザー)用)、レーザ測長用光源、超音波発生用
光源(レーザVT)等に適用して有用なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laser pulse compressor, which is applied to a current gun (for example, for Free Electron Laser (automatic electronic laser)), a laser length measuring light source, an ultrasonic wave generating light source (laser VT) and the like. And useful.

【0002】[0002]

【従来の技術】レーザパルスの基本的性質として、パル
ス強度に関する時間幅をΔtとしパルスの周波数の広が
り幅をΔνとすると、両者の積は次の[数1]に示す関
係が成立する。
2. Description of the Related Art As a basic property of a laser pulse, when the time width relating to the pulse intensity is Δt and the width of the pulse frequency spread is Δν, the product of the two satisfies the following equation (1).

【0003】[0003]

【数1】 [Equation 1]

【0004】これは、短いパルスは必ず広い周波数スペ
クトルをもち、レーザの周波数スペクトルの広がりが広
くなければ短パルスを形成できないことを意味してい
る。従って、レーザ発振器から得られるレーザパルスの
パルス幅より更に短かいパルス幅のレーザパルスを得る
ために、従来、各種の手法が用いられている。
This means that a short pulse always has a wide frequency spectrum, and a short pulse cannot be formed unless the frequency spectrum of the laser is wide. Therefore, in order to obtain a laser pulse having a pulse width shorter than the pulse width of a laser pulse obtained from a laser oscillator, various methods have been conventionally used.

【0005】従来の手法に係る装置の構成を図2に示
す。同図において、1はパルスレーザ発振器、2−1は
パルスレーザ発振器1から出力されたレーザパルス、3
はファイバーカップリング、4は石英系の単一モードフ
ァイバー、5は回折格子5−1と5−2とを対向させた
回折格子対、2−2は単一モードファイバー4を通過後
のレーザパルス、2−3は回折格子対5を通過後のレー
ザパルスである。
FIG. 2 shows the configuration of an apparatus according to the conventional method. In the figure, 1 is a pulse laser oscillator, 2-1 is a laser pulse output from the pulse laser oscillator 1, and 3 is a laser pulse.
Is a fiber coupling, 4 is a silica single mode fiber, 5 is a diffraction grating pair in which the diffraction gratings 5-1 and 5-2 are opposed to each other, and 2-2 is a laser pulse after passing through the single mode fiber 4. 2-3 are laser pulses after passing through the diffraction grating pair 5.

【0006】パルスレーザ発振器1から出力されたパル
ス幅数100psec以下のレーザパルス2−1のパルス波
形及び周波数のスペクトル分布を図3(a)に示す。前
述した基本特性に従いパルスレーザ発振器1から取出さ
れるパルス幅Δt1 、周波数の広がり幅Δν1 なるレー
ザパルス2−1が得られる。
FIG. 3A shows the pulse waveform and the spectrum distribution of the frequency of the laser pulse 2-1 having a pulse width of 100 psec or less output from the pulse laser oscillator 1. A laser pulse 2-1 having a pulse width Δt 1 and a frequency spread width Δν 1 extracted from the pulse laser oscillator 1 is obtained according to the basic characteristics described above.

【0007】そして、対物レンズを利用したファイバー
カップリング3によりレーザパルス2−1を集光し、単
一モードファイバー4に挿入する。このファイバー4に
挿入されたレーザパルス2−1は、ファイバー4の自己
位相変調効果と正の群速度分散により、ファイバー4伝
播後には周波数がチャーピングして、広がり幅Δν
2(>Δν1 )とパルス幅Δt2 (>Δt1 )なるレー
ザパルス2−2へと変化する。
Then, the laser pulse 2-1 is condensed by the fiber coupling 3 using the objective lens and inserted into the single mode fiber 4. Due to the self-phase modulation effect of the fiber 4 and the positive group velocity dispersion, the laser pulse 2-1 inserted into the fiber 4 has a frequency chirping after the propagation of the fiber 4 and a spread width Δν.
2 (> Δν 1 ) and the pulse width Δt 2 (> Δt 1 ) changes to the laser pulse 2-2.

【0008】ファイバー4中の電場E(t)が強いとき
には、非線形屈折率の項が無視できなくなり、次の[数
2]に示すように、屈折率に変化が生じる。
When the electric field E (t) in the fiber 4 is strong, the term of nonlinear refractive index cannot be ignored, and the refractive index changes as shown in the following [Equation 2].

【0009】[0009]

【数2】 [Equation 2]

【0010】また、屈折率の変化が短時間に生じると、
電場の位相φが変化し、更に周波数の変化が生じる。角
周波数ωの変化は次の[数3]に示すようになる。
If the change in the refractive index occurs in a short time,
The phase φ of the electric field changes, and the frequency also changes. The change of the angular frequency ω is as shown in the following [Equation 3].

【0011】[0011]

【数3】 (Equation 3)

【0012】つまり、ファイバー4を通過するレーザ自
身のパルス強度による屈折率の変化を通じて、レーザ自
身の位相変化、更に周波数変化を受ける自己位相変調効
果が発生する。
That is, through the change in the refractive index due to the pulse intensity of the laser itself passing through the fiber 4, a self-phase modulation effect is generated in which the phase of the laser itself is changed and further the frequency is changed.

【0013】一方、周波数に広がりがあるレーザパルス
がファイバー4中を伝播する場合、その波長帯が1.3
μmより短い波長を採用すると、正の群速度分散特性を
有するため、周波数(又は波長)に依存した群速度の変
化量が発生し、伝播時間に次の[数4]に示すような広
がりδτが生じる。
On the other hand, when a laser pulse having a frequency spread propagates in the fiber 4, its wavelength band is 1.3.
If a wavelength shorter than μm is adopted, the group velocity dispersion characteristic is positive, so that a variation amount of the group velocity depending on the frequency (or wavelength) occurs, and the spread δτ as shown in the following [Equation 4] is generated. Occurs.

【0014】[0014]

【数4】 (Equation 4)

【0015】従って、パルスの立上がりは長波長側(低
周波数側)にシフトするため中心波長成分の伝播速度よ
り速く、逆に立下がりは短波長側(高周波数側)にシフ
トするため中心波長成分の速度より遅く伝播することに
なる。
Therefore, since the rising edge of the pulse is shifted to the long wavelength side (low frequency side), it is faster than the propagation speed of the central wavelength component, and the falling edge is shifted to the short wavelength side (high frequency side), and is therefore the central wavelength component. Will propagate slower than the speed of.

【0016】ファイバー4伝播後のレーザパルス2−2
のパルス波形及び周波数のスペクトル分布を図3(b)
に示す。周波数幅Δν2 及びパルス幅Δt2 はファイバ
ー4の入射前より広がることになる。
Laser pulse 2-2 after propagation through fiber 4
Fig. 3 (b) shows the pulse waveform and frequency spectrum distribution of
Shown in The frequency width Δν 2 and the pulse width Δt 2 are wider than before the incidence on the fiber 4.

【0017】以上により、パルス幅を更に短くするため
の前準備として、周波数の広がりΔνは拡大されたこと
になる。
As described above, the frequency spread Δν is expanded as a preliminary preparation for further shortening the pulse width.

【0018】次に、この周波数の広がり幅が増加したΔ
ν2 なるレーザパルス2−2をパルス圧縮するために回
折格子対5が用いられる。回折格子対5は負の分散特性
となるよう1組の回折格子5−1,5−2を対向させて
配置する。つまり、回折格子対5に入射したレーザパル
ス2−2のパルスの立上がり部分(低周波数側、長波長
側)の遅延時間を長く、立下がり部分(高周波数側、短
波長側)の遅延時間を短くなるように回折格子対5を構
成することにより、パルス圧縮が可能となる。
Next, the frequency spread width is increased by Δ
The diffraction grating pair 5 is used for pulse-compressing the laser pulse 2-2 of ν 2 . The diffraction grating pair 5 is arranged such that a pair of diffraction gratings 5-1 and 5-2 face each other so as to have a negative dispersion characteristic. That is, the delay time of the rising part (low frequency side, long wavelength side) of the pulse of the laser pulse 2-2 incident on the diffraction grating pair 5 is long, and the delay time of the falling part (high frequency side, short wavelength side) is By configuring the diffraction grating pair 5 to be short, pulse compression becomes possible.

【0019】回折格子対5を出た後のレーザパルス2−
3のパルス波形及び周波数のスペクトル分布を図3
(c)に示す。
Laser pulse 2 after exiting the diffraction grating pair 5
Figure 3 shows the pulse waveform and frequency spectrum distribution of Figure 3.
It is shown in (c).

【0020】[0020]

【発明が解決しようとする課題】上記従来のレーザパル
ス圧縮装置において回折格子対5の分散特性が負となる
ような回折光は−1次光が採用され、その分散量はレー
ザパルスの中心波長が決まれば回折格子のピッチ、回折
格子対への入射角、回折格子間隔により決定される。
In the above-mentioned conventional laser pulse compression apparatus, the -1st-order light is adopted as the diffracted light which makes the dispersion characteristic of the diffraction grating pair 5 negative, and the dispersion amount is the central wavelength of the laser pulse. Is determined by the pitch of the diffraction grating, the angle of incidence on the diffraction grating pair, and the diffraction grating interval.

【0021】例えば、石英系の単一モードファイバーに
伝播させた波長1064μmのNd:YAGパルスレー
ザのレーザパルスを回折格子対に入射させ最適なパルス
圧縮をさせるための上記パラメータ例は[表1]のよう
になる。
[0021] For example, the above parameter examples for making the laser pulse of the Nd: YAG pulsed laser having a wavelength of 1064 μm propagated in the quartz single mode fiber enter the diffraction grating pair and perform the optimum pulse compression are shown in [Table 1]. become that way.

【0022】[0022]

【表1】 [Table 1]

【0023】回折格子のピッチを更に上げると入射角は
90°に近づき、実用上困難となる。またピッチ180
0本/mmにおいても、回折格子対の間隔は1mであ
り、実用上、大型化が問題となる。
When the pitch of the diffraction grating is further increased, the incident angle approaches 90 °, which is practically difficult. Also pitch 180
Even at 0 lines / mm, the distance between the diffraction grating pairs is 1 m, which poses a problem of practical size increase.

【0024】また、回折格子対5の1回の通過によるパ
ルス圧縮では、パルス波形の空間的な遅延光路によるも
のであるから、円形ビームとしてのレーザパルスを入射
すると、このビームが楕円に変化するが、実用的には円
形ビームで出力するのが望ましい。
Further, in the pulse compression by the single pass of the diffraction grating pair 5, since it is due to the spatial delay optical path of the pulse waveform, when a laser pulse as a circular beam is incident, this beam changes to an ellipse. However, practically, it is desirable to output with a circular beam.

【0025】従って本発明は上記従来技術に鑑み、回折
格子対の回折格子間隔を減少させても最適なパルス圧縮
が可能であり、また円形の入射ビームに対して円形の出
射ビームが得られるレーザパルス圧縮装置を提供するこ
とを課題とする。
Therefore, in view of the above-mentioned prior art, the present invention is capable of optimal pulse compression even if the diffraction grating spacing of a diffraction grating pair is reduced, and a circular emission beam is obtained with respect to a circular incident beam. An object is to provide a pulse compression device.

【0026】[0026]

【課題を解決するための手段】上記課題を解決する本発
明の第1の構成は、レーザパルスを通過させて圧縮する
ための回折格子対を有するレーザパルス圧縮装置におい
て、前記レーザパルスを前記回折格子対内を1往復させ
る手段を備えたことを特徴とする。
A first structure of the present invention for solving the above-mentioned problems is a laser pulse compression apparatus having a diffraction grating pair for passing and compressing a laser pulse, wherein the laser pulse is diffracted. It is characterized in that means for reciprocating once in the lattice pair is provided.

【0027】また第2の構成は、上記第1の構成におい
て、前記の1往復させる手段は、前記回折格子対に対す
る前記レーザパルスの往路下流側に、前記回折格子対内
を通過した前記レーザパルスを反射して再び前記回折格
子対内へと入射せしめるよう配設した反射鏡であること
を特徴とする。
According to a second structure, in the first structure, the means for reciprocating once reciprocates the laser pulse having passed through the diffraction grating pair on the downstream side of the forward direction of the laser pulse with respect to the diffraction grating pair. It is characterized in that the reflecting mirror is arranged so as to reflect the light and make it enter the diffraction grating pair again.

【0028】従って上記構成の本発明によれば、回折格
子対の間隔を短くしてもパルス圧縮の分散量として最適
ではないが反射鏡等によってレーザパルスを回折格子対
内を1往復させることにより、このレーザパルスに対し
て最適なパルス圧縮を行うことができる。また、レーザ
パルスが回折格子対を1回通過後はパルス波形の空間的
な遅延光路の差により円形の入射ビームが歪むが、これ
を再び回折格子対内を通過させることにより(即ち1往
復させることにより)、前記ビームの歪が補正されて再
び円形ビームに戻り、円形の出射ビームが得られる。
Therefore, according to the present invention having the above-described structure, even if the distance between the diffraction grating pairs is shortened, it is not optimum as the dispersion amount of pulse compression, but the laser pulse is reciprocated once in the diffraction grating pair by a reflecting mirror or the like. Optimal pulse compression can be performed for this laser pulse. Also, after the laser pulse has passed through the diffraction grating pair once, the circular incident beam is distorted due to the difference in the spatial delay optical paths of the pulse waveforms, but by passing this again through the diffraction grating pair (that is, one round trip). ), The distortion of the beam is corrected and the beam returns to the circular beam again, and a circular outgoing beam is obtained.

【0029】[0029]

【発明の実施の形態】以下、本発明の実施の形態例を図
面に基づき詳細に説明する。なお、従来と同様の部分に
は同一の符号を付し重複する詳細な説明は省略する。
Embodiments of the present invention will be described below in detail with reference to the drawings. The same parts as those in the related art are denoted by the same reference numerals, and overlapping detailed description will be omitted.

【0030】図1は、本発明の実施の形態例に係るレー
ザパルス圧縮装置の構成図である。同図において、2−
2は単一モードファイバー伝播後のレーザパルス、2−
3は回折格子対を通過後のレーザパルス、5は回折格子
5−1と5−2とを対向させた回折格子対、6は反射
板、7は全反射鏡、2−4は回折格子対を1往復後に反
射板6で取出されたレーザパルスである。
FIG. 1 is a block diagram of a laser pulse compression apparatus according to an embodiment of the present invention. In the figure, 2-
2 is a laser pulse after propagating a single mode fiber, 2
3 is a laser pulse after passing through the diffraction grating pair, 5 is a diffraction grating pair in which the diffraction gratings 5-1 and 5-2 are opposed to each other, 6 is a reflecting plate, 7 is a total reflection mirror, 2-4 is a diffraction grating pair. Is a laser pulse extracted by the reflector 6 after one round trip.

【0031】図1に示すように、本実施の形態例に係る
レーザパルス圧縮装置は、全反射鏡7が、回折格子対5
に対するレーザパルスの往路下流側(回折格子対5の図
中右側)に、回折格子対5を通過したレーザパルスを反
射して再び回折格子対5内へ入射せしめるよう配設さ
れ、また、反射板6が、回折格子対5に対するレーザパ
ルスの往路上流側(回折格子対5の図中左側)に、回折
格子対5を再び通過したレーザパルスを取出し可能に配
設されている。
As shown in FIG. 1, in the laser pulse compression apparatus according to the present embodiment, the total reflection mirror 7 is composed of a diffraction grating pair 5.
Is arranged on the downstream side of the forward direction of the laser pulse (the right side of the diffraction grating pair 5 in the figure) to reflect the laser pulse that has passed through the diffraction grating pair 5 and make it enter the diffraction grating pair 5 again. 6 is disposed on the upstream side of the forward direction of the laser pulse with respect to the diffraction grating pair 5 (on the left side of the diffraction grating pair 5 in the figure) so that the laser pulse that has passed through the diffraction grating pair 5 again can be taken out.

【0032】従って上記構成のレーザパルス圧縮装置で
は、単一モードファイバー伝播後に周波数の広がりΔν
が増加したレーザパルス2−2が、回折格子対5を通過
した後、全反射鏡7で反射される。そして、この全反射
鏡7で反射されたレーザパルス2−3が再び負の分散特
性をもつ回折格子対5を通過することにより、回折格子
間隔が短くても最適なパルス圧縮が行われる。その後、
圧縮されたレーザパルスを取出すためにブリュースター
角で設置された反射板6により、パルス圧縮光学系から
レーザパルス2−4として取出される。
Therefore, in the laser pulse compression apparatus having the above-mentioned structure, the frequency spread Δν is propagated after the propagation of the single mode fiber.
After passing through the diffraction grating pair 5, the laser pulse 2-2 having the increased pulse width is reflected by the total reflection mirror 7. Then, the laser pulse 2-3 reflected by the total reflection mirror 7 again passes through the diffraction grating pair 5 having a negative dispersion characteristic, so that optimum pulse compression is performed even if the diffraction grating interval is short. afterwards,
The laser pulse 2-4 is extracted from the pulse compression optical system by the reflection plate 6 installed at the Brewster's angle for extracting the compressed laser pulse.

【0033】以上にように、本実施の形態例に係るレー
ザパルス圧縮装置によれば、レーザパルスを回折格子対
5内を1往復させることにより、回折格子対5の回折格
子間隔が短くても最適なパルス圧縮を実現することがで
きる。このためレーザパルス圧縮装置のコンパクト化を
図ることができる。
As described above, according to the laser pulse compressor of the present embodiment, the laser pulse is reciprocated once in the diffraction grating pair 5, so that the diffraction grating interval of the diffraction grating pair 5 is short. Optimal pulse compression can be realized. Therefore, the laser pulse compression device can be made compact.

【0034】また、レーザパルスが回折格子対5を1回
通過後はパルス波形の空間的な遅延光路の差により円形
の入射ビームが歪むが、これを再び回折格子対5を通過
させることにより(即ち1往復させることにより)、前
記ビームの歪が補正されて再び円形ビームに戻り、円形
の出射ビームが得られる。
After the laser pulse has passed through the diffraction grating pair 5 once, the circular incident beam is distorted due to the difference in the spatial delay optical paths of the pulse waveforms. That is, by making one round trip), the distortion of the beam is corrected and the beam returns to the circular beam again, and a circular outgoing beam is obtained.

【0035】[0035]

【発明の効果】以上発明の実施の形態と共に具体的に説
明したように本発明によれば、レーザパルスが回折格子
対内を1往復するよう構成することにより、回折格子対
の回折格子間隔が短くても最適なパルス圧縮が実現でき
るため、レーザパルス圧縮装置のコンパクト化を図るこ
とができ、効率の良いパルス圧縮が可能であり、円形の
入射ビームに対して円形の出射ビームが得られる。
As described above in detail with the embodiments of the invention, according to the present invention, the laser pulse is configured to make one round trip in the diffraction grating pair, so that the diffraction grating interval of the diffraction grating pair is short. However, since optimum pulse compression can be realized, the laser pulse compression device can be made compact, efficient pulse compression is possible, and a circular output beam can be obtained with respect to a circular input beam.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態例に係るレーザパルス圧縮
装置の構成図である。
FIG. 1 is a configuration diagram of a laser pulse compression device according to an embodiment of the present invention.

【図2】従来のパルス圧縮装置を有する設備の全体構成
図である。
FIG. 2 is an overall configuration diagram of equipment having a conventional pulse compression device.

【図3】(a)は単一モードファイバー入射前のパルス
波形(上段 時間tの軸、下段周波数νの軸)、(b)
は単一モードファイバー伝播後のパルス波形(上段時間
tの軸、下段 周波数νの軸)、(c)は回折格子対通
過後のパルス波形(上段 時間tの軸、下段 周波数ν
の軸)である。
FIG. 3 (a) is a pulse waveform before entering a single mode fiber (upper time t axis, lower frequency ν axis), (b)
Is the pulse waveform after the propagation of the single mode fiber (upper time t axis, lower frequency ν axis), (c) is the pulse waveform after passing through the diffraction grating pair (upper time t axis, lower frequency ν)
Axis).

【符号の説明】[Explanation of symbols]

2−2 単一モードファイバー伝播後のレーザパルス 2−3 回折格子対通過後のレーザパルス 2−4 パルス圧縮光学系から取出されたレーザパルス 5 回折格子対 5−1,5−2 回折格子 6 反射板 7 全反射鏡 2-2 Laser pulse after propagating single mode fiber 2-3 Laser pulse after passing through diffraction grating pair 2-4 Pulse laser pulse taken out from compression optical system 5 Diffraction grating pair 5-1 and 5-2 Diffraction grating 6 Reflector 7 Total reflection mirror

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 レーザパルスを通過させて圧縮するため
の回折格子対を有するレーザパルス圧縮装置において、 前記レーザパルスを前記回折格子対内を1往復させる手
段を備えたことを特徴とするレーザパルス圧縮装置。
1. A laser pulse compression apparatus having a diffraction grating pair for allowing a laser pulse to pass therethrough for compression, comprising means for reciprocating the laser pulse once in the diffraction grating pair. apparatus.
【請求項2】 請求項1に記載するレーザパルス圧縮装
置において、 前記の1往復させる手段は、前記回折格子対に対する前
記レーザパルスの往路下流側に、前記回折格子対内を通
過した前記レーザパルスを反射して再び前記回折格子対
内へと入射せしめるよう配設した反射鏡であることを特
徴とするレーザパルス圧縮装置。
2. The laser pulse compression device according to claim 1, wherein the means for reciprocating once reciprocates the laser pulse having passed through the diffraction grating pair on the downstream side of the forward direction of the laser pulse with respect to the diffraction grating pair. A laser pulse compression device, characterized in that the laser pulse compression device is a reflecting mirror arranged so as to reflect the light and make it enter the diffraction grating pair again.
JP1965096A 1996-02-06 1996-02-06 Laser pulse compressor Withdrawn JPH09211504A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1965096A JPH09211504A (en) 1996-02-06 1996-02-06 Laser pulse compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1965096A JPH09211504A (en) 1996-02-06 1996-02-06 Laser pulse compressor

Publications (1)

Publication Number Publication Date
JPH09211504A true JPH09211504A (en) 1997-08-15

Family

ID=12005127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1965096A Withdrawn JPH09211504A (en) 1996-02-06 1996-02-06 Laser pulse compressor

Country Status (1)

Country Link
JP (1) JPH09211504A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007334225A (en) * 2006-06-19 2007-12-27 Mitsubishi Electric Corp Optical pulse width conversion apparatus and optical pulse width conversion method
CN103365029A (en) * 2013-07-15 2013-10-23 上海激光等离子体研究所 Foldable objective image stitching grating pulse compressor and stitching status diagnosis system
WO2014118925A1 (en) 2013-01-31 2014-08-07 株式会社島津製作所 Diffraction grating for laser pulse compression and laser device
CN105186280A (en) * 2015-09-22 2015-12-23 湖北捷讯光电有限公司 Femtosecond laser pulse compression module
WO2016051518A1 (en) * 2014-09-30 2016-04-07 ギガフォトン株式会社 Light source system, beam transmission system, and exposure device
JP2020533627A (en) * 2017-09-07 2020-11-19 ローレンス・リバモア・ナショナル・セキュリティ・エルエルシーLawrence Livermore National Security, LLC Symmetrical out-of-plane diffraction grating and method
CN117374700A (en) * 2023-12-08 2024-01-09 安徽中科光栅科技有限公司 Ultrafast laser pulse compression device and method based on grating line spacing change

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007334225A (en) * 2006-06-19 2007-12-27 Mitsubishi Electric Corp Optical pulse width conversion apparatus and optical pulse width conversion method
WO2014118925A1 (en) 2013-01-31 2014-08-07 株式会社島津製作所 Diffraction grating for laser pulse compression and laser device
US9948053B2 (en) 2013-01-31 2018-04-17 Shimadzu Corporation Diffraction grating for laser pulse compression and laser device
CN103365029A (en) * 2013-07-15 2013-10-23 上海激光等离子体研究所 Foldable objective image stitching grating pulse compressor and stitching status diagnosis system
WO2016051518A1 (en) * 2014-09-30 2016-04-07 ギガフォトン株式会社 Light source system, beam transmission system, and exposure device
CN105186280A (en) * 2015-09-22 2015-12-23 湖北捷讯光电有限公司 Femtosecond laser pulse compression module
JP2020533627A (en) * 2017-09-07 2020-11-19 ローレンス・リバモア・ナショナル・セキュリティ・エルエルシーLawrence Livermore National Security, LLC Symmetrical out-of-plane diffraction grating and method
CN117374700A (en) * 2023-12-08 2024-01-09 安徽中科光栅科技有限公司 Ultrafast laser pulse compression device and method based on grating line spacing change
CN117374700B (en) * 2023-12-08 2024-03-12 安徽中科光栅科技有限公司 Ultrafast laser pulse compression device and method based on grating line spacing change

Similar Documents

Publication Publication Date Title
US4746193A (en) Apparatus for stabilization of high speed optical pulses
US4685107A (en) Dispersion compensated fiber Raman oscillator
US6195484B1 (en) Method and apparatus for arbitrary spectral shaping of an optical pulse
US3459466A (en) Optical beam peak power amplifier and buncher
US3549239A (en) Optical signal processor
EP1554619B1 (en) Compensating for chromatic dispersion in optical fibers
EP0411942B1 (en) Parametric pulsed laser system
US8798108B2 (en) Device for generating a short duration laser pulse
JPH09211504A (en) Laser pulse compressor
JPS62502818A (en) Coherent radiation generation method and device
JPH01233416A (en) Light pulse compressor
US4039851A (en) Time dispersion tuned raman oscillator
JP2000505209A (en) Device having optical logic and optical switch function
JP3994737B2 (en) Optical device
CN111650178B (en) Optical fiber cascade spectrum compression device and method based on wave front shaping
JP2001060734A (en) Ultrashort pulse wide band light wave generating method and device therefor
CN109755847B (en) Method for generating ultrashort laser pulse train
JPS59192232A (en) Optical deflector of waveguide type
US6826327B1 (en) Tunable narrow band optical filter
KR100928242B1 (en) All-optical pulsed fiber laser module
US7253933B1 (en) Apparatus and method for the temporal profiling of short laser pulses with thick Bragg gratings
JP2001506741A (en) Optical fiber spectrometer with high spectral resolution
JPH05196887A (en) Light pulse compression device
SU701323A1 (en) Planar acousto-optical line of adjustable signal delay
KR100725025B1 (en) Compensating for chromatic dispersion in optical fibers

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030506