JPH09209099A - Production of seamless tube made of alpha plus beta titanium alloy - Google Patents

Production of seamless tube made of alpha plus beta titanium alloy

Info

Publication number
JPH09209099A
JPH09209099A JP2234096A JP2234096A JPH09209099A JP H09209099 A JPH09209099 A JP H09209099A JP 2234096 A JP2234096 A JP 2234096A JP 2234096 A JP2234096 A JP 2234096A JP H09209099 A JPH09209099 A JP H09209099A
Authority
JP
Japan
Prior art keywords
phase
temperature
heat treatment
transformation point
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2234096A
Other languages
Japanese (ja)
Inventor
Hideki Fujii
秀樹 藤井
Satoru Kawakami
哲 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2234096A priority Critical patent/JPH09209099A/en
Publication of JPH09209099A publication Critical patent/JPH09209099A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of producing a seamless tube made of alpha plus beta titanium alloy, minimal in material anisotropy and having excellent mechanical properties. SOLUTION: The seamless tube composed of alpha plus beta titanium alloy is produced on the piercing system. In this method, a solid billet is heated to a temp. not lower than the β-transformation point of the alloy and lower than β-transformation point +400 deg.C) and formed into tube. Then, the tube is heated and held at a temp. not higher than the β-transformation point and not lower than the temp. at which the volume ratio between the alpha and the beta phase of this alloy becomes 1:1 in equilibrium state for >=20min. Subsequently, the tube is subjected to a first heat treatment consisting of cooling at a cooling velocity not lower than air cooling velocity and then to a second heat treatment consisting of holding at a temp. not lower than 550 deg.C and not higher than the temp. at which the volume ratio between the alpha and the beta phase of this alloy becomes 7:3 in equilibrium state for 20min to <2hr.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、α+β型チタン合
金からなるシームレス管の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a seamless pipe made of α + β type titanium alloy.

【0002】[0002]

【従来の技術】チタン合金は、軽量、高強度、高耐食性
を有することから、近年、地熱開発、海底油田・ガス田
開発などの、大深度、高温、高腐食の極限環境に対応し
うる素材として注目されている。特に、航空機等で実績
の高いα+β型チタン合金やこれに少量のPdやRuを
添加し耐食性をさらに高めた高耐食性α+β型チタン合
金は、上記極限環境用素材として有力視されている。上
記の用途では管が主要製品形状であり、チタン合金製管
材の製造方法としては、板を曲げ加工し溶接する方法
(溶接管)、熱間押し出しによる方法(シームレス
管)、プラグミルを使用して穿孔・圧延により造管する
方法(シームレス管)などが考えられる。このうち、プ
ラグミルを使用した穿孔・圧延方式が最も歩留が高く、
また製造効率も高いことから、材料そのものが既に高価
なチタン合金では特に有利な方法である。加えて、特性
の劣化が懸念される溶接部のないシームレス管が製造で
きることも上記極限環境用途としては適している。
2. Description of the Related Art Titanium alloys are lightweight, have high strength, and have high corrosion resistance, so they can be used in the extreme environment of deep depth, high temperature, and high corrosion in recent years, such as geothermal development, submarine oil field and gas field development. Is being watched as. In particular, α + β type titanium alloys, which have a proven track record in aircraft and the like, and highly corrosion resistant α + β type titanium alloys in which a small amount of Pd or Ru is added to the titanium alloys to further enhance the corrosion resistance, are regarded as promising materials for the extreme environment. In the above applications, the pipe is the main product shape, and the titanium alloy pipe material is manufactured by bending and welding the plate (welded pipe), hot extrusion (seamless pipe), and plug mill. A method of making a pipe by piercing / rolling (seamless pipe) can be considered. Of these, the drilling and rolling method using a plug mill has the highest yield,
Further, since the production efficiency is high, this is a particularly advantageous method for a titanium alloy whose material itself is already expensive. In addition, it is also suitable for the above-mentioned extreme environmental use that a seamless pipe having no welded portion, which may cause deterioration of characteristics, can be manufactured.

【0003】この方法でα+β型チタン合金からなるシ
ームレス管を製造する場合、α+β型合金はβ変態点以
下の温度域では著しく変形抵抗が高く、また熱間延性も
乏しいことから、β変態点以上のβ単相域で熱間加工の
大部分を行わなくてはならない。しかし、一般に、この
ようなβ単相域での強加工を行いこの歪みが十分に解放
されないと、β変態点以下の温度で冷却中に析出するα
相の結晶方位がある特定方位を優先的に持つようにな
り、その結果著しい材質異方性を生じるようになる。こ
の異方性は、熱間加工の後段階で素材がα+β二相温度
域にまで冷却され、そこで少量の加工が加わったとして
もほとんど解消せず、依然として強い異方性が残存す
る。
When a seamless tube made of α + β type titanium alloy is produced by this method, the α + β type alloy has a remarkably high deformation resistance in a temperature range below the β transformation point and also has a poor hot ductility. Most of the hot working must be done in the β single-phase region. However, in general, if the strain is not sufficiently released by performing such strong working in the β single-phase region, α that precipitates during cooling at a temperature below the β transformation point
The crystal orientation of the phase preferentially has a specific orientation, and as a result, remarkable material anisotropy occurs. This anisotropy is cooled to the α + β two-phase temperature range in the latter stage of hot working, and even if a small amount of working is added there, it is hardly resolved, and a strong anisotropy still remains.

【0004】このような強い異方性を解消するには、
α+β域で高圧下の加工を行い、しかも圧延方向を90
゜回転させるいわゆるクロス圧延を行う、β単相域の
高温域で熱間加工を終了し、β変態点にまで冷却される
間にβ相中の塑性歪みを排除し、その後β変態点以下で
析出するα相の結晶方位が特定化しないようにする、
熱間加工後の素材を一度β変態点以上の温度にまで加熱
し、新たな塑性歪みのないβ結晶粒を生じさせ、その後
で冷却し、析出するα相の結晶方位が特定化しないよう
にする、などの方法が考えられる。しかし、は、α+
β域での強加工を必要としており、プラグミルによる穿
孔・圧延法には適用できない。また板の場合、クロス圧
延が可能であるが、プラグミルではこれも困難である。
およびは、β相中の歪みが開放されると同時に、β
結晶粒が粗大化するため、冷却後の機械的性質、特に延
性が乏しくなるという欠点があった。
To eliminate such strong anisotropy,
High-pressure processing is performed in the α + β region, and the rolling direction is 90
The so-called cross rolling is carried out by rotating at a temperature of °, the hot working is completed in the high temperature region of the β single phase region, plastic strain in the β phase is eliminated while cooling to the β transformation point, and thereafter at the β transformation point or lower. Prevent the crystallographic orientation of the precipitated α phase from being specified,
The material after hot working is heated once to a temperature above the β transformation point, new β crystal grains without plastic strain are generated, and then cooled, so that the crystal orientation of the precipitated α phase will not be specified. It is possible to do so. However, is α +
It requires strong working in the β region and cannot be applied to the drilling / rolling method using a plug mill. In the case of a plate, cross rolling is possible, but this is also difficult with a plug mill.
And are simultaneously released from the strain in the β phase,
Since the crystal grains are coarsened, there is a drawback that mechanical properties after cooling, particularly ductility becomes poor.

【0005】[0005]

【発明が解決しようとする課題】本発明は、以上のよう
な問題を解決し、材質異方性が少なく、優れた機械的性
質を有する、α+β型チタン合金製シームレス管を製造
する方法を提供することを目的としている。
The present invention solves the above problems and provides a method for producing an α + β type titanium alloy seamless pipe having a small material anisotropy and excellent mechanical properties. The purpose is to do.

【0006】[0006]

【課題を解決するための手段】本発明の要旨は、以下の
通りである。 (1)α+β型チタン合金からなるシームレス管を、穿
孔・圧延方式にて製造する方法において、中実ビレット
を当該合金のβ変態点以上でβ変態点+400℃未満の
温度に加熱し造管を行い、次いでβ変態点以下で当該合
金のα相とβ相の体積比が平行状態にて1:1となる温
度以上に20分以上加熱保持した後、空冷以上の冷却速
度で冷却する第1の熱処理を行い、次いで550℃以上
で当該合金のα相とβ相の体積比が平行状態で7:3と
なる温度以下に20分以上2時間未満の時間保持する第
2の熱処理を行うことを特徴とするα+β型チタン合金
製シームレス管の製造方法。 (2)α+β型チタン合金が、酸素+窒素を合計で0.
25%重量%以上含有することを特徴とする(1)記載
のα+β型チタン合金製シームレス管の製造方法。
The gist of the present invention is as follows. (1) In the method of manufacturing a seamless pipe made of α + β type titanium alloy by a piercing / rolling method, a solid billet is heated to a temperature not lower than β transformation point of the alloy and lower than β transformation point + 400 ° C. to form a pipe. Then, after heating and holding for 20 minutes or more at a temperature at which the volume ratio of the α phase and the β phase of the alloy is 1: 1 in parallel at the β transformation point or less, cooling is performed at a cooling rate of air cooling or more. And then a second heat treatment at a temperature of 550 ° C. or higher and a temperature ratio of 7: 3 or less in a parallel state of the α phase and β phase of the alloy for 20 minutes or more and less than 2 hours. A method for producing an α + β type titanium alloy seamless tube, characterized by: (2) The α + β type titanium alloy contains oxygen + nitrogen in a total of 0.
25% by weight or more is contained, The manufacturing method of the seamless tube made from an α + β type titanium alloy according to (1).

【0007】[0007]

【発明の実施の形態】α+β型チタン合金とは、室温に
おける平衡状態でα+βの二相を主相とし、β単相温度
域からから焼き入れた場合に、全体あるいは一部がマル
テンサイト変態する種類の合金で、Ti−6Al−4
V、Ti−6Al−6V−2Sn、Ti−6Al−2S
n−4Zr−6Mo、Ti−6Al−1.7Fe−0.
2Si、Ti−5.5Al−1Fe−0.15酸素−
0.05窒素、Ti−5Al−2.5Feなどがこれに
相当する。また、Ti−6Al−4V−0.2%Pdな
ど、PdやRuなどの白金族元素をさらに添加し耐食性
を向上させた合金や侵入型不純物元素量を低減させたT
i−6Al−4V−ELI(Extra-Low Interstitials
)などもα+β型チタン合金に属する。これらα+β
チタン合金は、平衡状態において、FeTi相、ω相、
シリサイド、Ti−Al系規則相、Ti−O系規則相、
Ti−N系規則相、金属間化合物相などを含有するもの
があるが、実質的にはβ変態点以下の温度域ではα+β
の二相を基本としており、β変態点以上ではα相の体積
分率は0で、それ以下の温度では温度の低下とともにα
相の割合が増加し、室温では、合金種によって異なる
が、大体75〜95%のα相と残部β相で構成されてい
る。
BEST MODE FOR CARRYING OUT THE INVENTION An α + β type titanium alloy is a martensitic transformation partly or entirely when quenching from the β single phase temperature range with the α + β two phase as the main phase in an equilibrium state at room temperature. Ti-6Al-4, a type of alloy
V, Ti-6Al-6V-2Sn, Ti-6Al-2S
n-4Zr-6Mo, Ti-6Al-1.7Fe-0.
2Si, Ti-5.5Al-1Fe-0.15 oxygen-
0.05 nitrogen, Ti-5Al-2.5Fe, etc. correspond to this. In addition, alloys such as Ti-6Al-4V-0.2% Pd in which platinum group elements such as Pd and Ru are further added to improve corrosion resistance and T in which the amount of interstitial impurity elements are reduced.
i-6Al-4V-ELI (Extra-Low Interstitials
) Etc. also belong to α + β type titanium alloys. These α + β
In the equilibrium state, titanium alloys have FeTi phase, ω phase,
Silicide, Ti-Al-based ordered phase, Ti-O-based ordered phase,
Some of them contain a Ti-N-based ordered phase, an intermetallic compound phase, etc., but are substantially α + β in the temperature range below the β transformation point.
The volume fraction of the α phase is 0 above the β transformation point, and at temperatures below that, α decreases with decreasing temperature.
The proportion of phases increases, and at room temperature, it is composed of approximately 75 to 95% of α phase and the balance β phase, although it depends on the alloy species.

【0008】さて、このようなα+β型チタン合金製シ
ームレス管を、穿孔・圧延方式によって製造する方法に
おいて、本発明ではまず、中実ビレットを当該合金のβ
変態点以上でβ変態点+400℃未満の温度に加熱し造
管を行うこととした。ここで、造管とは、熱間加工工程
を指しており、穿孔および延伸、磨管、定形、絞り等の
一連の圧延加工工程を指している。
In the method for producing such an α + β type titanium alloy seamless tube by the piercing / rolling method, first of all, according to the present invention, a solid billet is formed of β of the alloy.
It was decided to heat to a temperature not lower than the β transformation point and 400 ° C. above the transformation point to perform pipe forming. Here, the pipe forming refers to a hot working process, and refers to a series of rolling working processes such as drilling and stretching, polishing, shaping and drawing.

【0009】β変態点以上に加熱することとしたのは、
以下の理由による。すなわち、造管工程のうち加工量が
多いのは、初期加工工程である穿孔、延伸の工程であ
り、この工程は熱間変形抵抗が低く熱間延性の高いβ変
態点以上のβ単相域で行う必要があるからである。この
工程では、加工量が多いため加工時に発熱しやすく、急
激な温度変化は起こらないので、ビレットの加熱温度を
β変態点以上にしておけば、大部分あるいは全ての加工
を加工性に優れたβ単相域で行うことができる。延伸以
降の後段階の加工工程は、加工量が小さいので、変形抵
抗が高く熱間延性の乏しいα+β域で行うことも可能で
ある。また、加熱温度をβ変態点+400℃未満の温度
としたのは、これ以上の温度に加熱すると生成した酸化
スケールによるスリップが激しくこれも造管が不可能と
なるからである。
The reason for heating above the β transformation point is that
For the following reasons. That is, the large amount of processing in the pipe forming step is the step of piercing and stretching which is the initial processing step, and this step has a β single phase region above the β transformation point with low hot deformation resistance and high hot ductility. Because it is necessary to do it in. In this process, since the amount of processing is large, heat is easily generated during processing, and a rapid temperature change does not occur. Therefore, if the billet heating temperature is set to β transformation point or higher, most or all of the processing has excellent workability. It can be performed in the β single-phase region. Since the amount of processing is small in the subsequent processing steps after the stretching, it is possible to perform the processing in the α + β region where the deformation resistance is high and the hot ductility is poor. The heating temperature is set to a temperature lower than the β transformation point + 400 ° C., because if it is heated to a temperature higher than this, slippage due to the generated oxide scale becomes severe and pipe forming becomes impossible.

【0010】次に、熱間加工を終了した管を、β変態点
以下で、当該合金のα相とβ相の体積比が1:1となる
温度以上に20分以上の時間加熱保持した後、空冷以上
の冷却速度で冷却する第1の熱処理を行う。これは、α
+β域の高温に加熱することにより、異方性の原因であ
る特定結晶方位に方位集積したα相の多くをβ相に変態
させ、しかもこのβ相中の塑性歪みを解放するための工
程である。ここで、加熱温度をβ変態温度以下で、当該
合金のα相とβ相の体積比が平衡状態にて1:1となる
温度以上としたのは、β変態点を超える温度に加熱する
とβ粒が粗大化し、機械的性質、特に延性が劣化するた
めであり、また、当該合金のα相とβ相の体積比が平衡
状態にて1:1となる温度未満に加熱しても、特定方位
に集積したα相の多くがそのまま残存するため、異方性
の低減効果があまり現れず、本発明の効果が不十分とな
るからである。また、20分以上の時間加熱することを
必要としたのは、20分未満の時間の加熱では、α相か
らβ相への変態が不十分で、平衡状態にはほど遠く、特
定方位に方位集積したα相が十分に消失しないからであ
る。ここで、加熱時間の上限は特に指定しないが、これ
はα+β二相域での加熱中にはα相およびβ相ともに結
晶粒成長速度が遅く、10時間を超えるような長時間保
持を行っても組織に大きな変化はないからである。しか
し、エネルギー的観点から、また大気酸化の場合酸化損
耗の観点から、管のサイズに応じた適切な時間加熱する
ことが望ましい。
Next, after the hot-worked tube is heated and held at a temperature not higher than the β transformation point for at least 20 minutes at a temperature at which the volume ratio of the α phase to the β phase of the alloy is 1: 1. Then, a first heat treatment for cooling at a cooling rate higher than air cooling is performed. This is α
By heating to a high temperature in the + β region, most of the α phases oriented in the specific crystal orientation, which is the cause of the anisotropy, are transformed into the β phase, and in the process for releasing the plastic strain in the β phase. is there. Here, the heating temperature is set to be the β transformation temperature or lower and the temperature at which the volume ratio of the α phase and the β phase of the alloy becomes 1: 1 in the equilibrium state, because the heating temperature is higher than the β transformation point. This is because grains are coarsened and mechanical properties, especially ductility are deteriorated, and even if the alloy is heated below a temperature at which the volume ratio of α phase and β phase is 1: 1 in an equilibrium state, This is because most of the α phase accumulated in the azimuth remains as it is, and the effect of reducing anisotropy does not appear so much, and the effect of the present invention becomes insufficient. Further, heating for 20 minutes or more was required because heating for less than 20 minutes resulted in insufficient transformation from α phase to β phase, which was far from the equilibrium state and azimuthally integrated in a specific orientation. This is because the α phase was not sufficiently eliminated. Here, the upper limit of the heating time is not particularly specified, but this is because the grain growth rate of both the α phase and the β phase is slow during heating in the α + β two-phase region, and the holding time is longer than 10 hours. Because there is no big change in the organization. However, from the viewpoint of energy, and from the viewpoint of oxidative loss in the case of atmospheric oxidation, it is desirable to heat for a suitable time according to the size of the tube.

【0011】さて、この工程では、冷却を空冷以上に限
定したが、その理由は以下の通りである。すなわち、空
冷以上の冷却速度で冷却すると、特定方位に方位集積し
たα相の体積分率はほぼそのまま室温まで凍結され、β
相は、微細なマルテンサイト組織に変態するか、特定方
位に方位集積していないランダムな方位の微細針状α相
が析出するか、あるいは、β相が準安定状態で室温まで
凍結される。これらのどの変化を生じるかは合金成分や
加熱温度(冷却開始温度)によって異なるが、本発明に
関する限りではどのような変化を生じるかは問題ではな
く、特定温度域に加熱することにより、方位集積したα
相を減少させ、冷却中にこれを再び増やさないようにす
ることがポイントとなる。もし空冷よりも遅い冷却速度
で冷却すると、β相は冷却中に上記の組織変化、すなわ
ち、マルテンサイト組織への変態、ランダム方位の微細
針状α相の析出、準安定β相の凍結のいずれの変化も生
ぜず、減少はするものの残存している特定方位に集積し
たα相が冷却中に再び成長し、結局熱処理前の強い異方
性を有する状態に戻ってしまい、熱処理を行った効果が
なくなってしまう。
In this step, the cooling is limited to the air cooling or more, and the reason is as follows. That is, when cooled at a cooling rate higher than air cooling, the volume fraction of the α phase azimuthally integrated in a specific orientation is frozen to room temperature as it is,
The phase transforms into a fine martensitic structure, or a fine acicular α phase having a random orientation in which orientation is not accumulated in a specific orientation is precipitated, or the β phase is frozen to room temperature in a metastable state. Which of these changes occurs depends on the alloy component and the heating temperature (cooling start temperature), but as far as the present invention is concerned, it does not matter what kind of change occurs. Done α
The point is to reduce the phase so that it does not increase again during cooling. If cooled at a slower cooling rate than air cooling, the β phase will undergo any of the above-mentioned structural changes during cooling, namely transformation into a martensitic structure, precipitation of randomly oriented fine acicular α phase, and freezing of metastable β phase. The effect of the heat treatment is that the α phase accumulated in a specific orientation that has remained grows again during cooling and eventually returns to the state with strong anisotropy before heat treatment, although it does not change Disappears.

【0012】さて、上記第1の熱処理に続いて、550
℃以上で当該合金のα相とβ相の体積比が平行状態で
7:3となる温度以下に20分以上2時間未満の時間保
持する第2の熱処理を行う。この第2の熱処理の目的
は、第1の熱処理の最終工程である空冷以上の冷却速度
での冷却により生じた非平衡の不安定組織を安定化する
ことである。この第2の熱処理温度では、平衡状態のα
相の体積分率は、先の第1の熱処理温度におけるα相の
体積分率よりも大きいため、第2の熱処理中にα相の体
積分率は増加する。
Now, following the first heat treatment, 550
A second heat treatment is performed at a temperature of not less than 0 ° C. and not more than 20 minutes and less than 2 hours at a temperature at which the volume ratio of α phase and β phase of the alloy is 7: 3 in a parallel state. The purpose of this second heat treatment is to stabilize the non-equilibrium unstable structure produced by cooling at a cooling rate higher than air cooling, which is the final step of the first heat treatment. At this second heat treatment temperature, the equilibrium α
Since the volume fraction of the phase is larger than the volume fraction of the α phase at the first heat treatment temperature, the volume fraction of the α phase increases during the second heat treatment.

【0013】この増加分は以下に示す組織変化によりも
たらされる。すなわち、第1の熱処理でマルテンサイト
へ変態した組織は、微細な針状のα相とβ相に分解し、
このときのα相の結晶方位はランダムである。また、第
1の熱処理の冷却中に析出したランダムな方位の微細針
状α相は、若干の成長と合金元素の分配を通して安定化
する。さらに、第1の熱処理の冷却で室温まで凍結され
た、準安定β相中には、ランダムな結晶方位の微細な針
状α相が析出する。これらいずれの変化を経由しても、
新たに生成するα相の結晶方位はランダムで、特定結晶
方位に集積していない。したがって、熱間加工直後の管
の有する材質異方性は軽減される。しかも、本発明の工
程を経て最終的に得られる組織は、第1の熱処理で消失
しなかった比較的粗大なα相(一次α相)とその間に生
成した微細な針状α相(二次α相)からなっており、特
に微細な二次α相の効果で、長さ方向と周方向の平均強
度も通常の焼鈍材に比べると同等以上となる。
This increase is brought about by the following tissue changes. That is, the structure transformed into martensite in the first heat treatment is decomposed into fine acicular α-phase and β-phase,
At this time, the crystal orientation of the α phase is random. In addition, the fine acicular α-phase having a random orientation precipitated during the cooling of the first heat treatment is stabilized through some growth and distribution of alloying elements. Further, in the metastable β phase frozen to the room temperature by cooling in the first heat treatment, fine acicular α phase with random crystal orientation is precipitated. Through any of these changes,
The crystal orientation of the newly generated α phase is random and is not integrated in a specific crystal orientation. Therefore, the material anisotropy of the tube immediately after hot working is reduced. Moreover, the structure finally obtained through the process of the present invention has a relatively coarse α-phase (primary α-phase) which has not disappeared in the first heat treatment and a fine needle-like α-phase (secondary α-phase) formed between them (secondary α-phase). The average strength in the length direction and the circumferential direction is equal to or higher than that of a usual annealed material due to the effect of a fine secondary α phase.

【0014】ここで、第2の熱処理の加熱温度を、55
0℃以上で当該合金のα相とβ相の体積比が平行状態で
7:3となる温度以下としたのは、以下の理由による。
すなわち、550℃未満の温度では、マルテンサイトが
分解したり、凍結β相に析出することにより生成する二
次α相が微細すぎて、延性の低下を招く。また、第1の
熱処理の冷却中に微細針状α相が生成していた場合で
も、550℃未満の温度で熱処理をすると、この針状α
相が若干の成長をするのではなく、この針状α相間に存
在するβ相中に極微細二次α相が析出し、延性の低下を
招く。以上のように、いずれの場合にも、550℃未満
の温度で第2の熱処理を行うことは、延性低下を生じ
る。また、当該合金のα相とβ相の体積比が平行状態で
7:3となる温度以上だと、ランダムな方位の二次α相
の量が少なく、異方性の改善効果が小さくなるためであ
る。
Here, the heating temperature of the second heat treatment is 55
The reason why the temperature at which the volume ratio of the α phase to the β phase of the alloy is 7: 3 in the parallel state at 0 ° C. or higher is set to be equal to or lower than the temperature is 0 or less.
That is, at a temperature lower than 550 ° C., martensite is decomposed or secondary α phase generated by precipitation in the frozen β phase is too fine and ductility is reduced. Even if the fine acicular α phase was generated during the cooling of the first heat treatment, when the heat treatment was performed at a temperature of less than 550 ° C., the acicular α
The phase does not grow slightly, but the ultrafine secondary α-phase precipitates in the β-phase existing between the acicular α-phases, leading to a decrease in ductility. As described above, in any case, performing the second heat treatment at a temperature lower than 550 ° C. causes a decrease in ductility. Further, when the volume ratio of the α phase and the β phase of the alloy is 7: 3 or more in a parallel state, the amount of the secondary α phase in the random orientation is small and the effect of improving the anisotropy becomes small. Is.

【0015】また、第2の熱処理の時間を20分以上2
時間未満としたのは、20分未満では元素の拡散が不十
分で、平衡状態に近い十分安定な組織が得られないから
であり、2時間以上の熱処理を行うと、既に形成された
安定組織がさらに極端に安定な組織となるべく変化を生
ずるためである。その変化とは、一次α相が二次α相を
食って成長を始め、α相とβ相の界面やα相間の結晶粒
界の少ない組織を目指そうとする現象であり、このよう
な現象が起こると、特定方位に集積したα相の割合が増
え再び異方性が強くなることに加え、強度の上昇に寄与
してきた二次α相の割合が減少するため、材料の強度も
減少する傾向が現れる。
Further, the time of the second heat treatment is 20 minutes or more 2
The reason why the time is less than 20 minutes is that the diffusion of the elements is insufficient in less than 20 minutes, and a sufficiently stable structure close to the equilibrium state cannot be obtained. When heat treatment is performed for 2 hours or more, the stable structure already formed This is because changes occur as much as possible to become an extremely stable organization. The change is a phenomenon in which the primary α phase begins to erode the secondary α phase and begins to grow, aiming at the interface between the α phase and the β phase and the structure with few crystal grain boundaries between the α phases. When this happens, the proportion of α phase accumulated in a specific orientation increases and the anisotropy becomes stronger again, and the proportion of secondary α phase that has contributed to the increase in strength decreases, so the strength of the material also tends to decrease. Appears.

【0016】以上のように、本発明にて規定された、温
度、時間、冷却速度等の範囲内で、中実ビレットを加
熱、造管し、さらに熱処理を行えば、材質異方性が少な
く、優れた機械的性質を有する、α+β型チタン合金製
シームレス管を製造することができる。なお、冷間矯
正、切削加工等の少量の冷間加工は、第1の熱処理と第
2の熱処理の中間で行うと、第2の熱処理が歪み取り焼
鈍を兼ねるので便利である。
As described above, when the solid billet is heated and formed into a pipe within the range of temperature, time, cooling rate, etc. specified in the present invention, the material anisotropy is reduced. It is possible to manufacture an α + β type titanium alloy seamless tube having excellent mechanical properties. If a small amount of cold working such as cold straightening and cutting is performed between the first heat treatment and the second heat treatment, it is convenient because the second heat treatment also serves as strain relief annealing.

【0017】さて、α+β型チタン合金において、酸素
+窒素を合計で0.25重量%以上含有させることによ
り、本発明の製造法を有利に行うことができる。すなわ
ち、酸素および窒素添加が、β変態点以下の温度におけ
るα相とβ相の体積比の変化を緩やかにする効果があ
り、特に、0.25重量%以上の酸素+窒素を含有させ
ると、第1の熱処理の温度範囲が顕著に拡大し、第1の
熱処理が行いやすくなる。Ti−6Al−4Vの酸素お
よび窒素含有量を高めに設定したTi−6Al−4V−
X[O+N]合金(Xは0.25重量%以上)や酸素お
よび窒素を主要元素として添加したTi−1.5Fe−
0.5%酸素−0.04%窒素などがこれに相当する。
Now, in the α + β type titanium alloy, the production method of the present invention can be advantageously carried out by adding oxygen and nitrogen in a total amount of 0.25% by weight or more. That is, the addition of oxygen and nitrogen has the effect of moderating the change in the volume ratio of the α phase and the β phase at a temperature below the β transformation point, and in particular, when 0.25 wt% or more of oxygen + nitrogen is contained, The temperature range of the first heat treatment remarkably expands, and the first heat treatment becomes easy to perform. Ti-6Al-4V- with the oxygen and nitrogen contents of Ti-6Al-4V set higher
X [O + N] alloy (X is 0.25 wt% or more) and Ti-1.5Fe- with oxygen and nitrogen added as main elements.
This corresponds to 0.5% oxygen-0.04% nitrogen.

【0018】[0018]

【実施例】【Example】

[試験1]真空アーク溶解により、Ti−6Al−4V
(酸素:0.18重量%、窒素:0.03重量%)、T
i−6Al−4V−ELI(酸素:0.10重量%、窒
素:0.02重量%)、Ti−6Al−4V−0.29
[O+N](酸素:0.19重量%、窒素:0.10重
量%)、Ti−6Al−4V−ELI−0.1Pd(酸
素:0.10重量%、窒素:0.02重量%、Pd:
0.10重量%)の4種類の合金を溶解した。上記4種
類の合金の、α相とβ相の体積分率の温度依存性を図1
に、また図1から読みとったβ変態点、α相とβ相の体
積分率が1:1になる温度、α相とβ相の体積分率が
7:3になる温度を表1に示す。ここで、Ti−6Al
−4V−ELIとTi−6Al−4V−ELI−0.1
Pdの間にはほとんど差が検出されず、α相とβ相の体
積分率の温度依存性は両者とも同じであった。
[Test 1] Ti-6Al-4V by vacuum arc melting
(Oxygen: 0.18% by weight, nitrogen: 0.03% by weight), T
i-6Al-4V-ELI (oxygen: 0.10 wt%, nitrogen: 0.02 wt%), Ti-6Al-4V-0.29
[O + N] (oxygen: 0.19 wt%, nitrogen: 0.10 wt%), Ti-6Al-4V-ELI-0.1Pd (oxygen: 0.10 wt%, nitrogen: 0.02 wt%, Pd :
0.10% by weight) of the four alloys were melted. FIG. 1 shows the temperature dependence of the volume fractions of α phase and β phase of the above four kinds of alloys.
Table 1 shows the β transformation point, the temperature at which the volume fraction of α phase and β phase becomes 1: 1 and the temperature at which the volume fraction of α phase and β phase become 7: 3, which are read from FIG. . Here, Ti-6Al
-4V-ELI and Ti-6Al-4V-ELI-0.1
Almost no difference was detected between Pd, and the temperature dependence of the volume fractions of α phase and β phase was the same in both.

【0019】[0019]

【表1】 [Table 1]

【0020】これら鋳塊を分塊圧延によって215mm×
215mmの正方形断面の中実ビレットとし、プラグミル
方式により内径150mm、肉厚20mmに造管し、さらに
50cm長さに切断後熱処理を行った。そして周方向およ
び長さ方向と平行に、評点距離30mm、評点間の直径
6.25mmの丸棒試験片を切り出し引張試験を行った。
ビレットの加熱条件、熱処理条件および引張試験結果は
表2、表3、表4、表5に示す通りである。
These ingots are 215 mm × by slab rolling.
A solid billet having a square cross section of 215 mm was formed into a pipe having an inner diameter of 150 mm and a wall thickness of 20 mm by a plug mill method, and further cut into a length of 50 cm and heat-treated. Then, in parallel with the circumferential direction and the length direction, a round bar test piece having a score distance of 30 mm and a diameter between scores of 6.25 mm was cut out and subjected to a tensile test.
The billet heating conditions, heat treatment conditions, and tensile test results are shown in Tables 2, 3, 4, and 5.

【0021】[0021]

【表2】 [Table 2]

【0022】[0022]

【表3】 [Table 3]

【0023】[0023]

【表4】 [Table 4]

【0024】[0024]

【表5】 [Table 5]

【0025】表2は、Ti−6Al−4Vに対して行っ
た試験の条件とその結果である。試験番号1は、β変態
点直上にビレットを加熱し、造管し、通常の焼鈍を行っ
た従来例である。長さ方向の引張特性は10%以上の高
い伸びを有しているものの、引張強さは950MPa以
下の低い値であり、一方で周方向の引張特性は引張強さ
は1000MPa以上の高い値であるが、伸びが8%未
満の低い値になっており、長さ方向と周方向で強い異方
性が生じている。周方向と長さ方向の引張強さの差は1
00MPa以上にもなっている。
Table 2 shows the conditions and results of the tests conducted on Ti-6Al-4V. Test number 1 is a conventional example in which a billet was heated immediately above the β transformation point, pipe-formed, and ordinary annealing was performed. The tensile properties in the length direction have a high elongation of 10% or more, but the tensile strength is a low value of 950 MPa or less, while the tensile properties in the circumferential direction are a tensile strength of a high value of 1000 MPa or more. However, the elongation is a low value of less than 8%, and strong anisotropy occurs in the length direction and the circumferential direction. The difference in tensile strength between the circumferential and longitudinal directions is 1
It is over 00 MPa.

【0026】これに対し、本発明の実施例である試験番
号2、4、5、8、9、11、13では、長さ方向と周
方向の引張強度の差がいずれも70MPa以下に軽減さ
れている。また、長さ方向の引張特性は、いずれも95
0MPa以上の高い引張強さと10%以上の伸び値を有
しており、周方向の引張特性も、1000MPa以上の
高い引張強さと8%以上の高い伸び値を有しており、材
質異方性が小さくなっていることに加え、高い強度と延
性が得られている。
On the other hand, in Test Nos. 2, 4, 5, 8, 9, 11, and 13 which are examples of the present invention, the difference between the tensile strengths in the length direction and the circumferential direction was reduced to 70 MPa or less. ing. In addition, the tensile properties in the length direction are all 95
It has a high tensile strength of 0 MPa or more and an elongation value of 10% or more, and the tensile properties in the circumferential direction also have a high tensile strength of 1000 MPa or more and a high elongation value of 8% or more. In addition to being small, high strength and ductility are obtained.

【0027】一方、比較例である試験番号3は、ビレッ
トの加熱温度が本発明における下限値であるβ変態点未
満であったため、α相が析出し変形抵抗が高くなり熱間
加工ができなかった。また、試験番号6では、ビレット
の加熱温度が本発明における上限値を超えたため、酸化
スケールによるスリップが激しくこれも造管が不可能で
あった。
On the other hand, in the test No. 3 which is a comparative example, the heating temperature of the billet was less than the β transformation point which is the lower limit value in the present invention, so the α phase was precipitated and the deformation resistance became high, and hot working could not be performed. It was Further, in Test No. 6, since the billet heating temperature exceeded the upper limit value in the present invention, slippage due to the oxide scale was severe and pipe forming was also impossible.

【0028】試験番号7は第1の熱処理の加熱温度が本
発明の上限値であるβ変態点を超えたため、異方性は解
消しているが、β粒が粗大化し機械的性質、特に延性が
劣化した。また、試験番号10、12、14は長さ方向
と周方向の引張強さの差がいずれも90MPa以上あり
強い異方性を有しており、また長さ方向の強度が950
MPa以下、周方向の伸びが8%以下の低い値となって
いる。この理由は、試験番号10では第1の熱処理の加
熱温度が本発明の下限値未満であったためであり、試験
番号12では、第1の熱処理の保持時間が本発明の下限
値より短かったためであり、試験番号14では第1の熱
処理後の冷却速度が本発明で規定された空冷以上ではな
く、炉冷であったためである。
In Test No. 7, since the heating temperature of the first heat treatment exceeded the β transformation point, which is the upper limit of the present invention, the anisotropy was resolved, but the β grains became coarse and the mechanical properties, especially ductility, were increased. Has deteriorated. Further, in Test Nos. 10, 12, and 14, the difference in tensile strength between the length direction and the circumferential direction is 90 MPa or more, which has strong anisotropy, and the strength in the length direction is 950.
It has a low value of not more than MPa and an elongation in the circumferential direction of not more than 8%. The reason for this is that in Test No. 10, the heating temperature of the first heat treatment was less than the lower limit of the present invention, and in Test No. 12, the holding time of the first heat treatment was shorter than the lower limit of the present invention. This is because, in Test No. 14, the cooling rate after the first heat treatment was not the air cooling specified by the present invention but the furnace cooling.

【0029】表3は、Ti−6Al−4V−ELIに対
して行った試験の条件とその結果である。試験番号15
は、β変態点以上にビレットを加熱し、造管し、通常の
焼鈍を行った従来例である。長さ方向の引張特性は12
%以上の高い伸びを有しているものの引張強さは900
MPa以下の低い値であり、一方で周方向の引張特性
は、引張強さは950MPa以上の高い値であるが伸び
が10%未満の低い値になっており、長さ方向と周方向
で強い異方性が生じている。周方向と長さ方向の引張強
さの差は100MPa以上にもなっている。
Table 3 shows the conditions and results of the tests conducted on Ti-6Al-4V-ELI. Exam number 15
Is a conventional example in which a billet was heated to a β transformation point or higher, pipe-formed, and ordinary annealing was performed. Tensile property in the length direction is 12
Although it has a high elongation of more than 100%, the tensile strength is 900
The tensile strength in the circumferential direction is a high value of 950 MPa or more, but the elongation is a low value of less than 10%, and it is strong in the length direction and the circumferential direction. Anisotropy is occurring. The difference in tensile strength between the circumferential direction and the longitudinal direction is 100 MPa or more.

【0030】これに対し、本発明の実施例である試験番
号17、18では、長さ方向と周方向の引張強度の差が
いずれも60MPa以下に軽減されている。また、長さ
方向の引張特性は、いずれも900MPa以上の高い引
張強さと12%以上の高い伸び値を有しており、周方向
の引張特性も950MPa以上の高い引張強さと10%
以上の高い伸び値を有しており、材質異方性が小さくな
っていることに加え、高い強度と延性が得られている。
On the other hand, in Test Nos. 17 and 18 which are examples of the present invention, the difference between the tensile strengths in the length direction and the circumferential direction is reduced to 60 MPa or less. In addition, the tensile properties in the length direction each have a high tensile strength of 900 MPa or more and a high elongation value of 12% or more, and the tensile properties in the circumferential direction also have a high tensile strength of 950 MPa or more and 10%.
It has the above-mentioned high elongation value, and the material anisotropy is small, and high strength and ductility are obtained.

【0031】一方、試験番号16は第1の熱処理の加熱
温度が本発明の上限値であるβ変態点を超えたため、異
方性は解消しているが、β粒が粗大化し機械的性質、特
に延性が劣化した。また、試験番号19は長さ方向と周
方向の引張強さの差が100MPaあり強い異方性を有
しており、また長さ方向の強度が900MPa以下、周
方向の伸びが10%以下の低い値となっている。この理
由は、第1の熱処理の加熱温度が本発明の下限値未満で
あったためである。
On the other hand, in Test No. 16, since the heating temperature of the first heat treatment exceeded the β transformation point which is the upper limit of the present invention, the anisotropy was resolved, but the β grains became coarse and the mechanical properties, Especially the ductility deteriorated. Further, Test No. 19 has a strong anisotropy with a difference in tensile strength between the longitudinal direction and the circumferential direction of 100 MPa and has a strong anisotropy of 900 MPa or less and an elongation of 10% or less in the circumferential direction. It is a low value. The reason for this is that the heating temperature of the first heat treatment was less than the lower limit of the present invention.

【0032】表4は、Ti−6Al−4V−0.29
[O+N]に対して行った試験の条件とその結果であ
る。試験番号20は、β変態点以上にビレットを加熱
し、造管し、通常の焼鈍を行った比較例である。長さ方
向の引張特性は9%以上の高い伸びを有しているものの
引張強さは1050MPa以下で高濃度の酸素、窒素を
含有している割には低い値であり、一方で周方向の引張
特性は、引張強さ1100MPa以上の高い値であるが
伸びが7%未満の低い値となっており、長さ方向と周方
向で強い異方性が生じている。周方向と長さ方向の引張
強さの差は100MPa以上にもなっている。
Table 4 shows Ti-6Al-4V-0.29.
It is a condition of the test conducted on [O + N] and its result. Test number 20 is a comparative example in which the billet was heated to a β transformation point or higher, pipe-formed, and ordinary annealing was performed. The tensile property in the length direction has a high elongation of 9% or more, but the tensile strength is 1050 MPa or less, which is low relative to the high concentration of oxygen and nitrogen, while the tensile strength in the circumferential direction is low. The tensile properties have a high tensile strength of 1100 MPa or more, but a low elongation value of less than 7%, and strong anisotropy occurs in the length direction and the circumferential direction. The difference in tensile strength between the circumferential direction and the longitudinal direction is 100 MPa or more.

【0033】これに対し、本発明の実施例である試験番
号22、23、24では、長さ方向と周方向の引張強度
の差がいずれも60MPa以下に軽減されている。ま
た、長さ方向の引張特性は、いずれも1050MPa以
上の高い引張強さと9%以上の高い伸び値を有してお
り、周方向の引張り特性も1100MPa以上の高い引
張強さと8%以上の高い伸び値を有しており、材質異方
性が小さくなっていることに加え、高い強度と延性が得
られている。
On the other hand, in Test Nos. 22, 23, and 24, which are examples of the present invention, the difference in tensile strength between the length direction and the circumferential direction is reduced to 60 MPa or less. Further, the tensile properties in the length direction each have a high tensile strength of 1050 MPa or more and a high elongation value of 9% or more, and the tensile properties in the circumferential direction are also a high tensile strength of 1100 MPa or more and a high 8% or more. It has an elongation value, has a small material anisotropy, and has high strength and ductility.

【0034】一方、試験番号21は第1の熱処理の加熱
温度が本発明の上限値であるβ変態点を超えたため、異
方性は解消しているが、β粒が粗大化し機械的性質、特
に延性が劣化した。また、試験番号25は長さ方向と周
方向の引張強さの差が100MPaあり強い異方性を有
しており、また長さ方向の強度が1050MPa以下、
周方向の伸びが8%以下の低い値となっている。この理
由は、第1の熱処理の加熱温度が本発明の下限値未満で
あったためである。
On the other hand, in Test No. 21, since the heating temperature of the first heat treatment exceeded the β transformation point which is the upper limit value of the present invention, the anisotropy was resolved, but the β grains became coarse and the mechanical properties, Especially the ductility deteriorated. Further, Test No. 25 has a strong anisotropy with a difference in tensile strength between the lengthwise direction and the circumferential direction of 100 MPa, and has a strength in the lengthwise direction of 1050 MPa or less,
The elongation in the circumferential direction is as low as 8% or less. The reason for this is that the heating temperature of the first heat treatment was less than the lower limit of the present invention.

【0035】さて、表1に示したように、酸素+窒素の
総量は、Ti−6Al−4Vでは0.21重量%、Ti
−6Al−4V−ELIでは0.12重量%、Ti−6
Al−4V−0.29[O+N]では0.29重量%で
ある。また図1および表1に示したように本発明の第1
の熱処理の温度範囲はTi−6Al−4Vでは925〜
990℃間の65℃、Ti−6Al−4V−ELIでは
910〜970℃間の60℃、Ti−6Al−4V−
0.29[O+N]では935〜1040℃間の105
℃であり、0.25重量%以上の酸素+窒素を含むTi
−6Al−4V−0.29[O+N]では第1の熱処理
温度範囲が明らかに拡大しており、実際この広い温度範
囲において本発明の効果が現れることが、試験番号2
2、23、24に示されている。
As shown in Table 1, the total amount of oxygen and nitrogen is 0.21% by weight for Ti-6Al-4V,
-6Al-4V-ELI 0.12 wt%, Ti-6
The amount of Al-4V-0.29 [O + N] is 0.29% by weight. Further, as shown in FIG. 1 and Table 1, the first aspect of the present invention
The temperature range of the heat treatment of Ti-6Al-4V is 925-925.
65 ° C. between 990 ° C., 60 ° C. between 910 and 970 ° C. for Ti-6Al-4V-ELI, Ti-6Al-4V-
In the case of 0.29 [O + N], 105 between 935 and 1040 ° C
℃, and Ti containing 0.25 wt% or more of oxygen + nitrogen
In -6Al-4V-0.29 [O + N], the first heat treatment temperature range is clearly widened, and in fact, the effect of the present invention appears in this wide temperature range.
2, 23, 24.

【0036】表5は、Ti−6Al−4V−0.1Pd
に対して行った試験の条件とその結果である。試験番号
26は、β変態点以上にビレットを加熱し、造管し、焼
鈍を行った従来例である。長さ方向の引張特性は12%
以上の高い伸びを有しているものの引張強さは900M
Pa以下で低い値であり、一方で周方向の引張特性は、
引張強さは950MPa以上の高い値であるが伸びが1
0%未満の低い値になっており、長さ方向と周方向で強
い異方性が生じている。周方向と長さ方向の引張強さの
差は100MPa以上にもなっている。
Table 5 shows Ti-6Al-4V-0.1Pd.
It is the conditions and the results of the test conducted on. Test No. 26 is a conventional example in which the billet was heated to a β transformation point or higher, pipe-formed, and annealed. 12% tensile property in the length direction
Although it has the above high elongation, the tensile strength is 900M.
It is a low value below Pa, while the tensile properties in the circumferential direction are
Tensile strength is as high as 950 MPa or more, but elongation is 1
It is a low value of less than 0%, and strong anisotropy occurs in the length direction and the circumferential direction. The difference in tensile strength between the circumferential direction and the longitudinal direction is 100 MPa or more.

【0037】これに対し、本発明の実施例である試験番
号28、29、30、31、34、35では、長さ方向
と周方向の引張強度の差がいずれも50MPa以下に軽
減されている。また、長さ方向の引張特性は、いずれも
900MPa以上の高い引張強さと12%以上の高い伸
び値を有しており、周方向の引張特性も950MPa以
上の高い引張特性と10%以上の高い伸び値を有してお
り、材質異方性が小さくなっていることに加え、高い強
度と延性が得られている。
On the other hand, in the test numbers 28, 29, 30, 31, 34, and 35, which are the examples of the present invention, the difference in tensile strength between the length direction and the circumferential direction is reduced to 50 MPa or less. . In addition, the tensile properties in the longitudinal direction each have a high tensile strength of 900 MPa or more and a high elongation value of 12% or more, and the tensile properties in the circumferential direction are also high tensile properties of 950 MPa or more and high 10% or more. It has an elongation value, has a small material anisotropy, and has high strength and ductility.

【0038】一方、試験番号27では、第2の熱処理に
おける加熱温度が本発明の上限値を超えたため、異方性
の軽減効果が小さく、また長さ方向の強度が900MP
a以下の低い値となり、周方向の伸びも10%未満の低
い値となった。また、試験番号32では、第2の熱処理
の加熱温度が低すぎたため、長さ方向、周方向ともに延
性が低下し(10%未満の伸び値)、試験番号33で
は、第2の熱処理の保持時間が短すぎたため、組織が安
定化されず延性が劣化した。また、試験番号36では本
発明における上限値を超えて、第2の熱処理を行ったた
め、周方向と長さ方向の引張強さの差が80MPa以上
の大きな値になり、しかも長さ方向の強度が900MP
a以下、周方向の伸びが10%以下の低い値になった。
On the other hand, in Test No. 27, since the heating temperature in the second heat treatment exceeded the upper limit of the present invention, the effect of reducing anisotropy was small, and the strength in the length direction was 900 MPa.
The value was as low as a or less, and the elongation in the circumferential direction was also as low as less than 10%. Further, in the test number 32, the heating temperature of the second heat treatment was too low, so the ductility decreased in both the length direction and the circumferential direction (elongation value of less than 10%), and in the test number 33, the second heat treatment was maintained. Since the time was too short, the structure was not stabilized and the ductility deteriorated. In Test No. 36, the second heat treatment was performed in excess of the upper limit of the present invention, so that the difference in tensile strength between the circumferential direction and the length direction was a large value of 80 MPa or more, and the strength in the length direction was large. Is 900MP
The elongation was a or less, and the elongation in the circumferential direction was as low as 10% or less.

【0039】[試験2]真空アーク溶接後分塊圧延によ
って、215mm×215mmの正方形断面のTi−1.5
重量%Fe−0.5重量%酸素−0.04重量%窒素合
金(以下Ti−1.5Fe−0.5[O]−0.04
[N]と記す)の中実ビレットを作製し、プラグミル方
式により内径150mm、肉厚20mmに造管し、さらに5
0cm長さに切断後熱処理を行った。本合金のα相とβ相
の体積分率の温度依存性は図2に示す通りであり、β変
態点は965℃、α相とβ相の体積比が1:1になる温
度は820℃、α相とβ相の体積比が7:3になる温度
は755℃である。この合金では酸素+窒素が0.25
重量%をはるかに超える0.54重量%添加されてお
り、そのため、第1の熱処理の加熱温度範囲は820〜
965℃間の145℃となっており、試験1で示した例
よりもさらに広くなっている。この管から周方向および
長さ方向と平行に、評点距離30mm、評点間の直径6.
25mmの丸棒試験片を切り出し引張試験を行った。ビレ
ットの加熱条件、熱処理条件および引張試験結果は表6
に示す通りである。
[Test 2] Ti-1.5 having a square cross section of 215 mm × 215 mm was obtained by lump rolling after vacuum arc welding.
Wt% Fe-0.5 wt% oxygen-0.04 wt% nitrogen alloy (hereinafter Ti-1.5Fe-0.5 [O] -0.04
([N]), a solid billet is produced, and a plug mill method is used to form an inner diameter of 150 mm and a wall thickness of 20 mm.
After cutting to a length of 0 cm, heat treatment was performed. The temperature dependence of the volume fraction of α phase and β phase of this alloy is as shown in FIG. 2, the β transformation point is 965 ° C., and the temperature at which the volume ratio of α phase and β phase is 1: 1 is 820 ° C. The temperature at which the volume ratio of the α phase to the β phase becomes 7: 3 is 755 ° C. Oxygen + nitrogen is 0.25 in this alloy
0.54% by weight, which is much higher than the weight%, is added. Therefore, the heating temperature range of the first heat treatment is 820 to 20%.
It is 145 ° C. between 965 ° C., which is wider than the example shown in the test 1. Distance from this tube parallel to the circumferential and length directions, scoring distance 30 mm, diameter between grading 6.
A 25 mm round bar test piece was cut out and subjected to a tensile test. Table 6 shows the billet heating conditions, heat treatment conditions, and tensile test results.
As shown in FIG.

【0040】[0040]

【表6】 [Table 6]

【0041】表6において、試験番号37は、β変態点
以上にビレットを加熱し、造管し、焼鈍を行った比較例
である。長さ方向の引張特性は15%以上の高い伸びを
有しているものの、引張強さは950MPa以下の低い
値であり、一方で周方向の引張特性は、引張強さは10
00MPa以上の高い値であるが、伸びが10%未満の
低い値になっており、長さ方向と周方向で強い異方性が
生じている。周方向と長さ方向の引張強さの差は100
MPa以上にもなっている。
In Table 6, Test No. 37 is a comparative example in which the billet was heated to a β transformation point or higher, piped, and annealed. The tensile property in the length direction has a high elongation of 15% or more, but the tensile strength is a low value of 950 MPa or less, while the tensile property in the circumferential direction is 10% or less.
Although it is a high value of 00 MPa or more, the elongation is a low value of less than 10%, and strong anisotropy occurs in the length direction and the circumferential direction. The difference in tensile strength between the circumferential and longitudinal directions is 100
It is higher than MPa.

【0042】これに対し、本発明の実施例である試験番
号38、40、42、43、45、47、51、53、
54では、長さ方向と周方向の引張強度の差がいずれも
70MPa以下に軽減されている。また、長さ方向のの
引張特性は、いずれも950MPa以上の高い引張強さ
と15%以上の高い伸び値を有しており、周方向の引張
特性も1000MPa以上の高い引張強さと10%以上
の高い伸び値を有しており、材質異方性が小さくなって
いることに加え、高い強度と延性が得られている。
On the other hand, test numbers 38, 40, 42, 43, 45, 47, 51, 53, which are examples of the present invention,
In No. 54, the difference in tensile strength between the length direction and the circumferential direction is reduced to 70 MPa or less. In addition, the tensile properties in the length direction each have a high tensile strength of 950 MPa or more and a high elongation value of 15% or more, and the tensile properties in the circumferential direction also have a high tensile strength of 1000 MPa or more and 10% or more. It has a high elongation value, has a small material anisotropy, and has high strength and ductility.

【0043】一方、比較例である試験番号39は、ビレ
ットの加熱温度が本発明における下限値であるβ変態点
未満であったため、α相が析出し変形抵抗が高くなり、
熱間加工ができなかった。
On the other hand, in Test No. 39, which is a comparative example, the heating temperature of the billet was less than the β transformation point, which is the lower limit of the present invention, so the α phase was precipitated and the deformation resistance increased,
Hot working could not be done.

【0044】試験番号41は第1の熱処理の加熱温度が
本発明の上限値であるβ変態点を超えたため、異方性は
解消しているが、β粒が粗大化し機械的性質、特に延性
が劣化した。また、試験番号44、46、48は長さ方
向と周方向の引張強さの差がいずれも90MPa以上あ
り強い異方性を有しており、また長さ方向の強度が95
0MPa以下、周方向の伸びが10%以下の低い値とな
っている。この理由は、試験番号44では第1の熱処理
の加熱温度が本発明の下限値未満であったためであり、
試験番号46では第1の熱処理の保持時間が本発明の下
限値より短かったためであり、試験番号48では第1の
熱処理後の冷却速度が本発明で規定された空冷以上では
なく、炉冷であったためである。
In Test No. 41, since the heating temperature of the first heat treatment exceeded the β transformation point, which is the upper limit of the present invention, the anisotropy was resolved, but the β grains became coarse and the mechanical properties, especially ductility were increased. Has deteriorated. Further, in Test Nos. 44, 46, and 48, the difference in tensile strength between the longitudinal direction and the circumferential direction is 90 MPa or more, which has strong anisotropy, and the strength in the longitudinal direction is 95.
It has a low value of 0 MPa or less and a circumferential elongation of 10% or less. The reason for this is that in Test No. 44, the heating temperature of the first heat treatment was less than the lower limit value of the present invention,
This is because the holding time of the first heat treatment was shorter than the lower limit value of the present invention in Test No. 46, and the cooling rate after the first heat treatment in Test No. 48 was not equal to or higher than the air cooling specified in the present invention, Because it was there.

【0045】また、試験番号49では第2の熱処理にお
ける加熱温度が本発明の上限値を超えたため、異方性解
消効果が小さく、また長さ方向の強度が950MPa以
下の低い値となり、周方向の伸びも10%未満の低い値
となった。また、試験番号55では、第2の熱処理の加
熱温度が低すぎたため、長さ方向、周方向ともに延性が
劣化し、長さ方向では15%未満、周方向では10%未
満の値しか得られなかった。試験番号50では第2の熱
処理の保持時間が短すぎたため、組織の安定化がされず
延性が低下した。また試験番号52では本発明における
上限値を超えて第2の熱処理を行ったため、周方向と長
さ方向の引張強さの差が70MPa以上の大きな値にな
り、しかも長さ方向の強度が950MPa以下、周方向
の伸びが10%以下の低い値となった。
In Test No. 49, the heating temperature in the second heat treatment exceeded the upper limit of the present invention, so the effect of eliminating anisotropy was small, and the strength in the longitudinal direction was a low value of 950 MPa or less, and The elongation was also as low as less than 10%. Further, in the test number 55, since the heating temperature of the second heat treatment was too low, the ductility was deteriorated in both the length direction and the circumferential direction, and values of less than 15% in the length direction and less than 10% in the circumferential direction were obtained. There wasn't. In Test No. 50, the holding time of the second heat treatment was too short, so the structure was not stabilized and the ductility decreased. In Test No. 52, the second heat treatment was performed in excess of the upper limit of the present invention, so that the difference in tensile strength between the circumferential direction and the length direction was a large value of 70 MPa or more, and the strength in the length direction was 950 MPa. Hereinafter, the elongation in the circumferential direction was a low value of 10% or less.

【0046】[0046]

【発明の効果】以上説明したように、本発明により材質
異方性が少なく、優れた機械的性質を有するα+β型チ
タン合金製シームレス管を製造することができる。
As described above, according to the present invention, an α + β type titanium alloy seamless tube having a small material anisotropy and excellent mechanical properties can be manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】Ti−6Al−4V、Ti−6Al−4V−E
LI、Ti−6Al−4V−0.29[O+N]、Ti
−6Al−4V−ELI−0.1Pdの平行状態におけ
るβ相およびα相の体積分率の温度依存性を示す図であ
る。ここで、Ti−6Al−4V−ELIとTi−6A
l−4V−ELI−0.1Pdには顕著な差が認められ
なかったので、両者は同一曲線で示されている。
FIG. 1 Ti-6Al-4V, Ti-6Al-4V-E
LI, Ti-6Al-4V-0.29 [O + N], Ti
It is a figure which shows the temperature dependence of the volume fraction of (beta) phase and (alpha) phase in the parallel state of -6Al-4V-ELI-0.1Pd. Here, Ti-6Al-4V-ELI and Ti-6A
No significant difference was observed for l-4V-ELI-0.1Pd, so both are shown in the same curve.

【図2】Ti−1.5Fe−0.5[O]−0.04
[N]の平行状態におけるβ相およびα相の体積分率の
温度依存性を示す図である。
FIG. 2 Ti-1.5Fe-0.5 [O] -0.04
It is a figure which shows the temperature dependence of the volume fraction of (beta) phase and (alpha) phase in the parallel state of [N].

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 α+β型チタン合金からなるシームレス
管を、穿孔・圧延方式にて製造する方法において、中実
ビレットを当該合金のβ変態点以上でβ変態点+400
℃未満の温度に加熱し造管を行い、次いでβ変態点以下
で当該合金のα相とβ相の体積比が平行状態にて1:1
となる温度以上に20分以上加熱保持した後、空冷以上
の冷却速度で冷却する第1の熱処理を行い、次いで55
0℃以上で当該合金のα相とβ相の体積比が平行状態で
7:3となる温度以下に20分以上2時間未満の時間保
持する第2の熱処理を行うことを特徴とするα+β型チ
タン合金製シームレス管の製造方法。
1. A method for producing a seamless tube made of an α + β type titanium alloy by a piercing / rolling method, wherein a solid billet has a β transformation point of +400 or more at a β transformation point of the alloy or more.
The pipe is heated to a temperature below ℃, and then the volume ratio of the α phase and β phase of the alloy is 1: 1 at the β transformation point or lower.
After heating for 20 minutes or more at a temperature higher than or equal to the above temperature, a first heat treatment of cooling at a cooling rate of air cooling or more is performed, and then 55
An α + β type characterized by performing a second heat treatment of holding the temperature at 20 ° C. or higher for less than 2 hours at a temperature of 0 ° C. or higher and at a temperature at which the volume ratio of α phase and β phase of the alloy is 7: 3 in a parallel state. Titanium alloy seamless tube manufacturing method.
【請求項2】 α+β型チタン合金が、酸素+窒素を合
計で0.25%重量%以上含有することを特徴とする請
求項1記載のα+β型チタン合金製シームレス管の製造
方法。
2. The method for producing an α + β type titanium alloy seamless tube according to claim 1, wherein the α + β type titanium alloy contains 0.25% by weight or more of oxygen + nitrogen in total.
JP2234096A 1996-02-08 1996-02-08 Production of seamless tube made of alpha plus beta titanium alloy Withdrawn JPH09209099A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2234096A JPH09209099A (en) 1996-02-08 1996-02-08 Production of seamless tube made of alpha plus beta titanium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2234096A JPH09209099A (en) 1996-02-08 1996-02-08 Production of seamless tube made of alpha plus beta titanium alloy

Publications (1)

Publication Number Publication Date
JPH09209099A true JPH09209099A (en) 1997-08-12

Family

ID=12079973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2234096A Withdrawn JPH09209099A (en) 1996-02-08 1996-02-08 Production of seamless tube made of alpha plus beta titanium alloy

Country Status (1)

Country Link
JP (1) JPH09209099A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7438849B2 (en) 2002-09-20 2008-10-21 Kabushiki Kaisha Toyota Chuo Kenkyusho Titanium alloy and process for producing the same
CN103668028A (en) * 2013-12-27 2014-03-26 张斌 Preparation method of titanium and titanium alloy seamless tube blank

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7438849B2 (en) 2002-09-20 2008-10-21 Kabushiki Kaisha Toyota Chuo Kenkyusho Titanium alloy and process for producing the same
CN103668028A (en) * 2013-12-27 2014-03-26 张斌 Preparation method of titanium and titanium alloy seamless tube blank

Similar Documents

Publication Publication Date Title
US5141566A (en) Process for manufacturing corrosion-resistant seamless titanium alloy tubes and pipes
US3686041A (en) Method of producing titanium alloys having an ultrafine grain size and product produced thereby
US4581077A (en) Method of manufacturing rolled titanium alloy sheets
JPH0686638B2 (en) High-strength Ti alloy material with excellent workability and method for producing the same
EP0487803A1 (en) Titanium alpha-beta alloy fabricated material and process for preparation
WO2008060637A2 (en) Methods of beta processing titanium alloys
JPH0823053B2 (en) High-strength titanium alloy with excellent workability, method for producing the alloy material, and superplastic forming method
Klopp et al. Mechanical properties of dilute tungsten-rhenium alloys
JP3310155B2 (en) Manufacturing method of seamless pipe of α + β type titanium alloy with excellent fracture toughness
JP6432328B2 (en) High strength titanium plate and manufacturing method thereof
JP3252596B2 (en) Method for producing high strength and high toughness titanium alloy
JPH03193850A (en) Production of titanium and titanium alloy having fine acicular structure
JPH0692630B2 (en) Method for producing seamless pipe made of pure titanium or titanium alloy
JP2932918B2 (en) Manufacturing method of α + β type titanium alloy extruded material
US20090159162A1 (en) Methods for improving mechanical properties of a beta processed titanium alloy article
JPH09209099A (en) Production of seamless tube made of alpha plus beta titanium alloy
JPS63230858A (en) Manufacture of titanium-alloy sheet for superplastic working
JPH09228013A (en) Manufacture of seamless steel tube made of alpha+beta type titanium
US4507156A (en) Creep resistant dispersion strengthened metals
JP2017057473A (en) α+β TYPE TITANIUM ALLOY SHEET AND MANUFACTURING METHOD THEREFOR
JPH07150316A (en) Manufacture of (alpha+beta) type ti alloy forged material
JPH0663076B2 (en) Method for producing titanium alloy material having equiaxed fine grain (α + β) two-phase structure
JP3065782B2 (en) Hydrogen treatment method for titanium alloy
JPH03130351A (en) Production of titanium and titanium alloy having fine and equiaxial structure
JP3036396B2 (en) Method for producing near β type titanium alloy

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030506