JPH092031A - Tire inflation pressure estimation device - Google Patents

Tire inflation pressure estimation device

Info

Publication number
JPH092031A
JPH092031A JP7171477A JP17147795A JPH092031A JP H092031 A JPH092031 A JP H092031A JP 7171477 A JP7171477 A JP 7171477A JP 17147795 A JP17147795 A JP 17147795A JP H092031 A JPH092031 A JP H092031A
Authority
JP
Japan
Prior art keywords
tire
air pressure
tire air
wheel speed
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7171477A
Other languages
Japanese (ja)
Other versions
JP3300572B2 (en
Inventor
Hideki Ohashi
秀樹 大橋
Koji Umeno
孝治 梅野
Toshiharu Naito
俊治 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc, NipponDenso Co Ltd filed Critical Toyota Motor Corp
Priority to JP17147795A priority Critical patent/JP3300572B2/en
Publication of JPH092031A publication Critical patent/JPH092031A/en
Application granted granted Critical
Publication of JP3300572B2 publication Critical patent/JP3300572B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)

Abstract

PURPOSE: To surely estimate the inflation pressure of a tire regardless of wheel speed by estimating the inflation pressure of the tire based on the dynamic load radius of the tire in the case of high wheel speed. CONSTITUTION: A first tire pressure estimation block 18 obtains the spring constant of tires from the vibration content of wheel speed signals supplied from wheel speed sensors 12FL-12RR, and estimates the tire pressure based on them. A second tire pressure estimation block 20 obtains the dynamic load radius of the tire from the wheel speed signal, and estimates the tire pressure. A discrimination block 22 discriminates whether the vehicle speed is high or not. A selection block 24 lets the first tire pressure estimation block 18 to estimate the tire pressure in the case of not high speed running, and lets the second tire pressure estimation block 20 to estimate the tire pressure in the case of high speed running. Hereby, the tire pressure can be surely estimated regardless of the wheel speed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、自動車等のタイヤの空
気圧を推定するタイヤ空気圧推定装置に係り、更に詳細
には車輪速信号に基づきタイヤの空気圧を推定するタイ
ヤ空気圧推定装置に係る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a tire air pressure estimating device for estimating a tire air pressure of an automobile or the like, and more particularly to a tire air pressure estimating device for estimating a tire air pressure based on a wheel speed signal.

【0002】[0002]

【従来の技術】タイヤの空気圧とタイヤのばね定数との
間には一定の関係があり、またタイヤのばね定数とタイ
ヤの共振周波数との間には一定の関係があることを利用
し、車輪速信号の振動成分に基づきタイヤの上下方向又
は前後方向の共振周波数を求め、これよりタイヤの空気
圧を推定するタイヤ空気圧推定装置は従来より種々の構
成のものが提案されており、その一例が例えば特開平5
−133831号公報に記載されている。
2. Description of the Related Art There is a constant relationship between a tire air pressure and a tire spring constant, and a constant relationship between a tire spring constant and a tire resonance frequency is utilized to obtain a wheel. Tire frequency estimation apparatus for obtaining the tire resonance frequency in the up-down direction or the front-rear direction based on the vibration component of the speed signal and estimating the tire air pressure from this has been proposed in various configurations from the past, and one example thereof is JP-A-5
No. 133831.

【0003】かかるタイヤ空気圧推定装置によれば、回
転する車輪にタイヤの内部の圧力を検出するセンサを設
けたり、そのセンサより検出結果を示す信号を無線式に
伝達する手段を要することなくタイヤの空気圧を推定す
ることができる。
According to such a tire air pressure estimating device, a sensor for detecting the pressure inside the tire is provided on a rotating wheel, and a means for wirelessly transmitting a signal indicating the detection result from the sensor is not required. The air pressure can be estimated.

【0004】[0004]

【発明が解決しようとする課題】しかし例えば車速が1
20km/h 以上の場合の如く車輪速が所定値以上になる
とタイヤの振動現象を判別することが困難になるため、
タイヤの共振周波数に基づきタイヤの空気圧を推定する
所謂FFT方式の従来のタイヤ空気圧推定装置や、外乱
トルクの検出結果に基づきタイヤの空気圧を推定する所
謂外乱オブザーバ方式の従来のタイヤ空気圧推定装置に
よってはタイヤの空気圧を推定することができないとい
う問題がある。
However, if the vehicle speed is 1
When the wheel speed exceeds a predetermined value as in the case of 20 km / h or more, it becomes difficult to distinguish the tire vibration phenomenon.
Depending on the so-called FFT type conventional tire air pressure estimating device that estimates the tire air pressure based on the tire resonance frequency, or the so-called disturbance observer type conventional tire air pressure estimating device that estimates the tire air pressure based on the detection result of the disturbance torque, There is a problem that the tire pressure cannot be estimated.

【0005】本発明は、従来のタイヤ空気圧推定装置に
於ける上述の如き問題に鑑みてなされたものであり、本
発明の主要な課題は、車輪速が高いときにはタイヤの動
荷重半径に基づいてタイヤの空気圧を推定することによ
り、車輪速の如何に拘らずタイヤの空気圧を確実に推定
することである。
The present invention has been made in view of the above-mentioned problems in the conventional tire air pressure estimating device, and the main problem of the present invention is based on the dynamic load radius of the tire when the wheel speed is high. By estimating the tire air pressure, it is possible to reliably estimate the tire air pressure regardless of the wheel speed.

【0006】[0006]

【課題を解決するための手段】上述の主要な課題は、請
求項1の構成、即ち車輪速信号に基づきタイヤの空気圧
を推定するタイヤ空気圧推定装置に於いて、車輪速信号
の振動成分よりタイヤのばね定数を求めこれに基づきタ
イヤの空気圧を推定する第一のタイヤ空気圧推定手段
と、車輪速信号よりタイヤの動荷重半径を求めこれに基
づきタイヤの空気圧を推定する第二のタイヤ空気圧推定
手段と、車速が所定値以上である高速走行時であるか否
かを判別する手段と、高速走行時でないときには前記第
一のタイヤ空気圧推定手段によりタイヤの空気圧を推定
させ、高速走行時であるときには前記第二のタイヤ空気
圧推定手段によりタイヤの空気圧を推定させる選択手段
とを有していることを特徴とするタイヤ空気圧推定装置
によって達成される。
In the tire air pressure estimating device for estimating the tire air pressure on the basis of the wheel speed signal, the main problem described above is the tire pressure sensor based on the vibration component of the wheel speed signal. And a second tire air pressure estimating means for estimating the tire air pressure based on the obtained spring constant and a tire dynamic pressure radius based on the wheel speed signal for estimating the tire dynamic pressure. And a means for determining whether or not the vehicle speed is a high speed traveling at a predetermined value or more, and when the vehicle is not traveling at a high speed, the tire pressure is estimated by the first tire pressure estimating means, and when the vehicle is traveling at a high speed. And a selecting means for estimating the tire air pressure by the second tire air pressure estimating means.

【0007】また本発明によれば、上述の主要な課題を
効果的に達成すべく、請求項1の構成に於いて、前記第
二のタイヤ空気圧推定手段は高速走行時であると判別さ
れる直前のタイヤの動荷重半径Ro に対する現在のタイ
ヤの動荷重半径Rの比R/Ro と高速走行時でないとき
に前記第一のタイヤ空気圧推定手段により推定されたタ
イヤの空気圧Po とに基づいてタイヤの空気圧を演算す
るよう構成される。
According to the present invention, in order to effectively achieve the above-mentioned main problems, in the structure of claim 1, it is determined that the second tire air pressure estimating means is operating at a high speed. A tire based on the ratio R / Ro of the dynamic load radius R of the current tire to the dynamic load radius Ro of the immediately preceding tire and the tire air pressure Po estimated by the first tire air pressure estimating means when not running at high speed. Is configured to calculate the air pressure of.

【0008】[0008]

【作用】上述の請求項1の構成によれば、高速走行時で
ないときには第一のタイヤ空気圧推定手段により車輪速
信号の振動成分よりタイヤのばね定数が求められこれに
基づきタイヤの空気圧が推定され、高速走行時であると
きには第二のタイヤ空気圧推定手段により車輪速信号よ
りタイヤの動荷重半径が求められこれに基づきタイヤの
空気圧が推定されるので、高速走行時でないときには第
一のタイヤ空気圧推定手段によりタイヤの空気圧が正確
に推定され、高速走行時であるときには第二のタイヤ空
気圧推定手段によりタイヤの空気圧が確実に推定され
る。
According to the above-mentioned structure of claim 1, when the vehicle is not traveling at a high speed, the first tire air pressure estimating means obtains the spring constant of the tire from the vibration component of the wheel speed signal, and the air pressure of the tire is estimated based on the spring constant. When the vehicle is traveling at high speed, the tire dynamic pressure radius is obtained from the wheel speed signal by the second tire pressure estimating means, and the tire air pressure is estimated based on this, so the first tire pressure estimation is conducted when not traveling at high speed. The tire pressure is accurately estimated by the means, and the tire pressure is surely estimated by the second tire pressure estimating means when the vehicle is traveling at high speed.

【0009】また上述の請求項2の構成によれば、第二
のタイヤ空気圧推定手段は高速走行時であると判別され
る直前のタイヤの動荷重半径Ro に対する現在のタイヤ
の動荷重半径Rの比R/Ro と高速走行時でないときに
第一のタイヤ空気圧推定手段により推定されたタイヤの
空気圧Po とに基づいてタイヤの空気圧を演算するの
で、例えば標準のタイヤの動荷重半径に対する現在のタ
イヤの動荷重半径の比と標準のタイヤの空気圧とに基づ
いてタイヤの空気圧が演算される場合に比して、高速走
行時であるときのタイヤの空気圧が正確に演算される。
According to the second aspect of the present invention, the second tire air pressure estimating means sets the dynamic load radius R of the current tire with respect to the dynamic load radius Ro of the tire immediately before it is determined that the vehicle is traveling at high speed. Since the tire air pressure is calculated based on the ratio R / Ro and the tire air pressure Po estimated by the first tire air pressure estimating means when the vehicle is not traveling at a high speed, for example, the present tire with respect to the dynamic load radius of the standard tire is calculated. In comparison with the case where the tire air pressure is calculated based on the ratio of the dynamic load radius and the standard tire air pressure, the tire air pressure during high speed traveling is calculated accurately.

【0010】[0010]

【好ましい実施態様】本発明の好ましい実施態様によれ
ば、請求項1の構成に於いて、第二のタイヤ空気圧推定
手段は標準のタイヤの動荷重半径に対する現在のタイヤ
の動荷重半径の比と標準のタイヤの空気圧とに基づいて
タイヤの空気圧を演算するよう構成される。かかる構成
によれば、高速走行時でないときに第一のタイヤ空気圧
推定手段により推定されたタイヤの空気圧Po を記憶し
更新する必要がない。
According to a preferred embodiment of the present invention, in the structure of claim 1, the second tire pressure estimating means is a ratio of the dynamic load radius of the present tire to the dynamic load radius of the standard tire. The tire pressure is configured to be calculated based on the standard tire pressure. With this configuration, it is not necessary to store and update the tire air pressure Po estimated by the first tire air pressure estimating means when the vehicle is not traveling at a high speed.

【0011】尚請求項1及び請求項2の何れの構成に於
いても、タイヤの動荷重半径はタイヤの空気圧を推定す
るために求められるものであり、タイヤの動荷重半径の
比が求められればタイヤの空気圧を推定することができ
るので、「タイヤの動荷重半径」は狭義の動荷重半径、
即ち動荷重半径そのもののみならず、狭義の動荷重半径
に対応する値を含む概念である。
In any of the structures of claims 1 and 2, the dynamic load radius of the tire is obtained in order to estimate the tire air pressure, and the ratio of the dynamic load radius of the tire is obtained. For example, since the tire air pressure can be estimated, the "dynamic load radius of the tire" is the dynamic load radius in the narrow sense,
That is, the concept includes not only the dynamic load radius itself but also a value corresponding to the dynamic load radius in a narrow sense.

【0012】[0012]

【実施例】以下に添付の図を参照しつつ、本発明を実施
例について詳細に説明する。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram of an embodiment of the present invention.

【0013】図1は本発明によるタイヤ空気圧推定装置
の第一の実施例を示す概略構成図(A)及びブロック線
図(B)である。
FIG. 1 is a schematic configuration diagram (A) and a block diagram (B) showing a first embodiment of a tire air pressure estimating device according to the present invention.

【0014】図1(A)に於いて、左前輪10FL、右前
輪10FR、左後輪10RL、右後輪10RRにはそれぞれ対
応する車輪の車輪速Vwi(i=FL、FR、RL、RR)を周速
として検出する車輪速センサ12FL、12FR、12RL、
12RRが設けられている。車輪速Vwiを示す信号はタイ
ヤ空気圧推定装置14へ入力され、タイヤ空気圧推定装
置14は車輪速Vwiに基づき後述の如く各輪のタイヤ空
気圧Pi (i=FL、FR、RL、RR)を推定により演算し、
必要に応じて警報装置16へ制御信号を出力することに
より車輌の乗員に警報を発するようになっている。
In FIG. 1A, the wheel speed Vwi (i = FL, FR, RL, RR) of the wheels corresponding to the left front wheel 10FL, the right front wheel 10FR, the left rear wheel 10RL, and the right rear wheel 10RR, respectively. Wheel speed sensors 12FL, 12FR, 12RL,
12RR is provided. A signal indicating the wheel speed Vwi is input to the tire air pressure estimation device 14, and the tire air pressure estimation device 14 estimates the tire air pressure Pi (i = FL, FR, RL, RR) of each wheel based on the wheel speed Vwi as described later. Calculate,
By outputting a control signal to the alarm device 16 as needed, an occupant of the vehicle is alerted.

【0015】図1(B)に示されている如く、タイヤ空
気圧推定装置14は車輪速センサ12FL〜12RRより供
給される車輪速信号の振動成分よりタイヤのばね定数を
求めこれに基づきタイヤの空気圧Pi を推定する第一の
タイヤ空気圧推定ブロック18と、車輪速信号よりタイ
ヤの動荷重半径を求めこれに基づきタイヤの空気圧Pi
を推定する第二のタイヤ空気圧推定ブロック20と、車
速が所定値以上である高速走行時であるか否かを判別す
る判別ブロック22と、高速走行時でないときには第一
のタイヤ空気圧推定18によりタイヤの空気圧を推定さ
せ、高速走行時であるときには第二のタイヤ空気圧推定
ブロック20によりタイヤの空気圧を推定させる選択ブ
ロック24とを有している。
As shown in FIG. 1 (B), the tire air pressure estimating device 14 obtains the tire spring constant from the vibration component of the wheel speed signal supplied from the wheel speed sensors 12FL to 12RR, and based on this, the tire air pressure is calculated. The first tire air pressure estimation block 18 for estimating Pi and the tire dynamic load radius is calculated from the wheel speed signal, and the tire air pressure Pi is calculated based on this.
The second tire pressure estimation block 20 for estimating the tire, the determination block 22 for determining whether or not the vehicle speed is at a high speed traveling at a predetermined value or more, and the tire pressure estimation 18 for the tire when the high speed traveling is not performed. And a selection block 24 for estimating the tire air pressure by the second tire air pressure estimation block 20 when the vehicle is traveling at a high speed.

【0016】尚タイヤ空気圧推定装置14は実際には例
えば中央処理ユニット(CPU)と、リードオンリメモ
リ(ROM)と、ランダムアクセスメモリ(RAM)
と、入出力ポート装置とを有し、これらが双方向性のコ
モンバスにより互いに接続されたマイクロコンピュータ
であってよく、このことは後述の第二の実施例について
も同様である。
The tire pressure estimation device 14 is actually a central processing unit (CPU), a read only memory (ROM), and a random access memory (RAM).
And an input / output port device, which may be connected to each other by a bidirectional common bus, and this is the same in the second embodiment described later.

【0017】この第一の実施例のタイヤ空気圧推定装置
14は図2に示されたルーチンに従って各輪のタイヤ空
気圧Pi を推定により演算する。尚図2に示されたルー
チンは所定時間毎に繰り返し実行される。
The tire air pressure estimating device 14 of the first embodiment calculates the tire air pressure Pi of each wheel by estimation according to the routine shown in FIG. The routine shown in FIG. 2 is repeatedly executed every predetermined time.

【0018】まずステップ10に於いては車輪速Vwiを
示す信号の読込みが行われ、ステップ20に於いては四
輪の車輪速Vwiの平均値として平均車輪速Va が演算さ
れ、ステップ30に於いては平均車輪速Va が例えば車
速120km/h に対応する基準値Vac(正の定数)以上
であるか否かの判別、即ち高速走行時であるか否かの判
別が行われ、肯定判別が行われたときにはステップ50
へ進み、否定判別が行われたときにはステップ40へ進
む。
First, in step 10, a signal indicating the wheel speed Vwi is read, in step 20, the average wheel speed Va is calculated as the average value of the wheel speeds Vwi of the four wheels, and in step 30. Then, it is determined whether or not the average wheel speed Va is, for example, a reference value Vac (a positive constant) corresponding to the vehicle speed of 120 km / h, that is, whether or not the vehicle is traveling at high speed, and a positive determination is made. Step 50 when done
If the determination is negative, the process proceeds to step 40.

【0019】ステップ40に於いては外乱オブザーバ方
式又はFFT方式により各輪の車輪速信号の振動成分よ
り各タイヤのばね定数が求められ、これに基づき各タイ
ヤの空気圧Pi が推定により演算され、ステップ50に
於いてはPni(i=FL、FR、RL、RR)を標準の一定のタ
イヤ空気圧として下記の数1に従って各タイヤの空気圧
Pi が推定により演算される。
In step 40, the spring constant of each tire is obtained from the vibration component of the wheel speed signal of each wheel by the disturbance observer method or the FFT method, and the air pressure Pi of each tire is estimated and calculated based on this. At 50, Pni (i = FL, FR, RL, RR) is used as a standard constant tire pressure, and the tire pressure Pi of each tire is calculated by estimation according to the following equation 1.

【数1】Pi =(Va /Vwi)*Pni## EQU1 ## Pi = (Va / Vwi) * Pni

【0020】尚一般に外乱オブザーバ方式によるタイヤ
空気圧の推定に於いては、外乱オブザーバにより車輪速
信号より推定外乱が求められ、推定外乱よりタイヤのば
ね定数が求められ、これに基づきタイヤの空気圧が推定
され、またFFT方式によるタイヤ空気圧の推定に於い
ては、車輪速信号より車輪速の振動成分を示す信号が抽
出されると共に該信号に対し周波数解析が行われること
により、タイヤの共振周波数が演算され、共振周波数に
基づきタイヤのばね定数が求められタイヤの空気圧が演
算されるが、外乱オブザーバ方式及びFFT方式による
タイヤ空気圧の推定要領は当技術分野に於いてよく知ら
れており、また従来より種々のものが提案されているの
で、これらについての詳細な説明を省略する。
Generally, in the estimation of tire air pressure by the disturbance observer method, the estimated disturbance is obtained from the wheel speed signal by the disturbance observer, the spring constant of the tire is obtained from the estimated disturbance, and the tire air pressure is estimated based on this. Further, in the tire pressure estimation by the FFT method, the signal indicating the vibration component of the wheel speed is extracted from the wheel speed signal and the frequency analysis is performed on the signal to calculate the resonance frequency of the tire. The tire spring constant is calculated based on the resonance frequency to calculate the tire air pressure. The procedure for estimating the tire air pressure by the disturbance observer method and the FFT method is well known in the art, and Since various types have been proposed, detailed description thereof will be omitted.

【0021】ステップ60に於いてはタイヤの空気圧P
i が基準値Pci(正の定数)未満であるか否かの判別が
行われ、否定判別が行われときにはステップ10へ戻
り、肯定判別が行われたときにはステップ70に於いて
警報装置16を作動させる制御信号が出力され、車輌の
乗員に対しタイヤの空気圧が異常である旨の警報が発せ
られる。尚ステップ60は各タイヤの空気圧Pi につい
て行われ、少なくとも一つの空気圧について肯定判別が
行われたときにはステップ70が実行される。
In step 60, the tire air pressure P
It is determined whether i is less than the reference value Pci (a positive constant). If a negative determination is made, the process returns to step 10. If an affirmative determination is made, the alarm device 16 is activated in step 70. A control signal to cause the vehicle occupant is output, and an occupant of the vehicle is alerted that the tire pressure is abnormal. Incidentally, step 60 is executed for the air pressure Pi of each tire, and step 70 is executed when a positive determination is made for at least one air pressure.

【0022】かくしてこの実施例に於いて、高速走行時
ではないときにはステップ30に於いて否定判別が行わ
れ、ステップ40に於いて車輪速Vwiに基づき各輪のタ
イヤの空気圧Pi が外乱オブザーバ方式又はFFT方式
によって演算されることにより正確に推定され、高速走
行時であるときにはステップ30に於いて肯定判別が行
われ、ステップ50に於いてタイヤの動荷重半径の比に
等しい比Va /Vwi及び標準のタイヤの空気圧Pniに基
づき数1に従って各輪のタイヤの空気圧Pi が確実に推
定される。
Thus, in this embodiment, when the vehicle is not traveling at a high speed, a negative determination is made in step 30, and in step 40, the tire air pressure Pi of each wheel is based on the wheel speed Vwi as a disturbance observer system or It is accurately estimated by being calculated by the FFT method. When the vehicle is traveling at a high speed, a positive determination is made in step 30, and in step 50, the ratio Va / Vwi equal to the ratio of the dynamic load radius of the tire and the standard Based on the tire air pressure Pni, the tire air pressure Pi of each wheel is reliably estimated according to the equation (1).

【0023】図3は本発明によるタイヤ空気圧推定装置
の第二の実施例を示す概略構成図(A)及びブロック線
図(B)、図4は第二の実施例のタイヤ空気圧演算ルー
チンを示すフローチャートである。尚図3に於いて、図
1に示された部分に対応する部分には図1に於いて付さ
れた符号と同一の符号が付されており、図4に於いて、
図2に示されたステップに対応するステップには図2に
於いて付されたステップ番号と同一のステップ番号が付
されている。
FIG. 3 is a schematic configuration diagram (A) and a block diagram (B) showing a second embodiment of the tire air pressure estimating apparatus according to the present invention, and FIG. 4 shows a tire air pressure calculation routine of the second embodiment. It is a flowchart. Incidentally, in FIG. 3, the portions corresponding to the portions shown in FIG. 1 are denoted by the same reference numerals as those given in FIG. 1, and in FIG.
Steps corresponding to the steps shown in FIG. 2 have the same step numbers as the step numbers given in FIG.

【0024】この実施例に於いては、第一のタイヤ空気
圧推定18は高速走行時でないときに車輪速信号の振動
成分よりタイヤのばね定数を求めこれに基づきタイヤの
空気圧Pi を推定すると共に、車輪速信号よりタイヤの
動荷重半径Roiを演算し、第二のタイヤ空気圧推定ブロ
ック20は高速走行時であるときに車輪速信号よりタイ
ヤの動荷重半径Ri を演算すると共に、高速走行時であ
ると判別される直前のタイヤの動荷重半径Roiに対する
現在のタイヤの動荷重半径Ri の比Ri /Roiと高速走
行時でないときに第一のタイヤ空気圧推定ブロックによ
り推定されたタイヤの空気圧Poiとに基づいてタイヤの
空気圧Pi を演算する。
In this embodiment, the first tire pressure estimation 18 determines the tire spring constant from the vibration component of the wheel speed signal when the vehicle is not traveling at high speed, and estimates the tire pressure Pi based on the spring constant. The tire dynamic load radius Roi is calculated from the wheel speed signal, and the second tire pressure estimation block 20 calculates the tire dynamic load radius Ri from the wheel speed signal when the vehicle is running at high speed, and is also running at high speed. The ratio Ri / Roi of the dynamic load radius Ri of the present tire to the dynamic load radius Roi of the tire immediately before being determined as and the tire air pressure Poi estimated by the first tire air pressure estimation block when not traveling at high speed. Based on this, the tire air pressure Pi is calculated.

【0025】またこの実施例のタイヤ空気圧演算ルーチ
ンのステップ40に於いては、外乱オブザーバ方式又は
FFT方式により各タイヤの空気圧Pi が推定により演
算されると共に、空気圧Pi がRAMの如き記憶手段に
記憶され、ステップ40の次に実行されるステップ42
に於いては車輪速Vwiに基づき下記の数2に従ってタイ
ヤの動荷重半径Roiが演算され記憶手段に記憶される。
In step 40 of the tire air pressure calculation routine of this embodiment, the air pressure Pi of each tire is estimated and calculated by the disturbance observer method or the FFT method, and the air pressure Pi is stored in a storage means such as a RAM. And step 42 executed after step 40
In this case, the dynamic load radius Roi of the tire is calculated according to the following equation 2 based on the wheel speed Vwi and stored in the storage means.

【数2】Roi=Vwi/2π[Equation 2] Roi = Vwi / 2π

【0026】またステップ30に於いて肯定判別、即ち
高車速時である旨の判別が行われたときにはステップ4
4に於いて上述のステップ40に於いて演算され記憶さ
れたタイヤの空気圧Pi がPoiに書き換えられ、ステッ
プ46に於いて上記数2と同様の式に従って現在のタイ
ヤの動荷重半径Ri が演算され、ステップ50に於いて
下記の数3に従って各タイヤの空気圧Pi が推定により
演算される。
If a positive determination is made in step 30, that is, it is determined that the vehicle speed is high, step 4 is executed.
In step 4, the tire air pressure Pi calculated and stored in step 40 described above is rewritten to Poi, and in step 46, the current tire dynamic load radius Ri is calculated according to the same formula as in the above equation 2. In step 50, the air pressure Pi of each tire is calculated by estimation according to the following equation (3).

【数3】Pi =(Ri /Roi)*Poi## EQU3 ## Pi = (Ri / Roi) * Poi

【0027】従ってこの実施例に於いては、高速走行時
ではないときには第一の実施例の場合と同様ステップ3
0に於いて否定判別が行われ、ステップ40に於いて車
輪速Vwiに基づき各輪のタイヤの空気圧Pi が外乱オブ
ザーバ方式又はFFT方式によって演算されることによ
り正確に推定されるが、高速走行時であるときにはステ
ップ30に於いて肯定判別が行われ、ステップ50に於
いてタイヤの動荷重半径の比Ri /Roi及び高速走行時
ではないときにステップ40に於いて演算された最後の
タイヤの空気圧Poiに基づき数3に従って各輪のタイヤ
の空気圧Pi が確実に推定される。
Therefore, in this embodiment, when the vehicle is not traveling at a high speed, the same step 3 as in the first embodiment is performed.
A negative determination is made at 0, and at step 40, the tire air pressure Pi of each wheel is accurately estimated based on the wheel speed Vwi by the disturbance observer method or the FFT method. If yes, an affirmative determination is made in step 30, the tire dynamic load radius ratio Ri / Roi in step 50, and the last tire air pressure calculated in step 40 when not running at high speed. Based on Poi, the tire air pressure Pi of each wheel is reliably estimated according to equation (3).

【0028】尚図示の第一及び第二の実施例に於いて
は、ステップ30に於いて四輪の平均車輪速Va が基準
値Vac以上であるか否かの判別により高車速時であるか
否かの判別が行われるようになっているが、高車速時で
あるか否かの判別は例えば車速センサにより検出される
車速に基づき行われてもよい。
In the illustrated first and second embodiments, whether the vehicle speed is high is determined by determining in step 30 whether the average wheel speed Va of the four wheels is equal to or higher than the reference value Vac. The determination as to whether or not the vehicle is at a high vehicle speed may be made based on the vehicle speed detected by the vehicle speed sensor, for example.

【0029】またステップ30に於ける判別は各車輪速
について実行され、これに対応してステップ30〜70
の各ルーチンが例えば左前輪、右前輪、左後輪、右後輪
の順に時系列的に実行されるよう構成されてもよい。
The determination in step 30 is executed for each wheel speed, and corresponding to this, steps 30-70 are executed.
Each of the routines may be configured to be executed in time series in the order of the left front wheel, the right front wheel, the left rear wheel, and the right rear wheel.

【0030】また図示の第一及び第二の実施例に於いて
は、ステップ40及び50は高速走行時であるか否かに
より択一的に実行されるようになっているが、高速走行
時であるか否かに拘らずステップ40及び50が実行さ
れ、高速走行時ではないときにはステップ40により演
算された空気圧をタイヤ空気圧とし、高速走行時である
ときにはステップ50により演算された空気圧をタイヤ
空気圧とするよう構成されてもよい。
In the illustrated first and second embodiments, steps 40 and 50 are selectively executed depending on whether or not the vehicle is traveling at high speed. Steps 40 and 50 are executed irrespective of whether the vehicle is running at high speed, the tire pressure is the air pressure calculated at Step 40 when not running at high speed, and the tire pressure calculated at Step 50 is running when running at high speed. May be configured.

【0031】また図示の第二の実施例に於いては、タイ
ヤの動荷重半径は数2に従って演算されるようになって
いるが、Vを車速としNi を各輪の回転数としてV/
(2πNi )により演算されてもよく、また動荷重半径
に対応する値としてV/Ni により演算されてもよい。
In the second embodiment shown in the figure, the dynamic load radius of the tire is calculated in accordance with equation 2, but V is the vehicle speed and Ni is the rotation speed of each wheel, and V /
It may be calculated by (2πNi) or may be calculated by V / Ni as a value corresponding to the dynamic load radius.

【0032】更にタイヤの空気圧とタイヤの動荷重半径
の比との間の関係は基準となるタイヤの空気圧によって
変化するので、より一層正確にタイヤの空気圧を推定す
るためには、上記数1及び数3がそれぞれ下記の数4及
び数5に変更されることが好ましい。尚数4及び数5に
於いて、K1及びK2はPniにより定まる定数であり、
K3及びK4はPoiにより定まる定数である。
Further, the relationship between the tire air pressure and the ratio of the tire dynamic load radius changes depending on the reference tire air pressure. Therefore, in order to estimate the tire air pressure more accurately, It is preferable that the expression 3 is changed to the following expression 4 and expression 5, respectively. In the equations 4 and 5, K1 and K2 are constants determined by Pni,
K3 and K4 are constants determined by Poi.

【0033】[0033]

【数4】Pi =K1*(Va /Vwi)+K2[Equation 4] Pi = K1 * (Va / Vwi) + K2

【数5】Pi =K3*(Ri /Roi)+K4## EQU5 ## Pi = K3 * (Ri / Roi) + K4

【0034】以上に於いては本発明を特定の実施例につ
いて詳細に説明したが、本発明は上述の実施例に限定さ
れるものではなく、本発明の範囲内にて他の種々の実施
例が可能であることは当業者にとって明らかであろう。
Although the present invention has been described above in detail with reference to specific embodiments, the present invention is not limited to the above-described embodiments, and various other embodiments within the scope of the present invention. It will be apparent to those skilled in the art that

【0035】例えば図示の第一及び第二の実施例に於い
ては、ステップ40に於いてタイヤの空気圧Pi が外乱
オブザーバ方式又はFFT方式により演算されるように
なっているが、このステップに於けるタイヤの空気圧の
演算は車輪速信号の振動成分よりタイヤのばね定数が求
められこれに基づきタイヤの空気圧が演算される限り任
意の態様にて演算されてよい。
For example, in the illustrated first and second embodiments, in step 40, the tire air pressure Pi is calculated by the disturbance observer method or the FFT method. In this step, The calculation of the tire air pressure may be performed in any manner as long as the tire spring constant is obtained from the vibration component of the wheel speed signal and the tire air pressure is calculated based on this.

【0036】[0036]

【発明の効果】以上の説明より明らかである如く、本発
明の請求項1の構成によれば、高速走行時でないときに
は第一のタイヤ空気圧推定手段によりタイヤの空気圧を
正確に推定し、高速走行時であるときには第二のタイヤ
空気圧推定手段によりタイヤの空気圧を確実に推定する
ことができ、これにより車輪速の如何に拘らずタイヤの
空気圧を推定することができる。
As is apparent from the above description, according to the configuration of claim 1 of the present invention, the tire air pressure is accurately estimated by the first tire air pressure estimating means when the vehicle is not traveling at high speed, and the vehicle is traveling at high speed. When it is time, the tire pressure can be reliably estimated by the second tire pressure estimation means, and thus the tire pressure can be estimated regardless of the wheel speed.

【0037】また上述の請求項2の構成によれば、第二
のタイヤ空気圧推定手段は高速走行時であると判別され
る直前のタイヤの動荷重半径Ro に対する現在のタイヤ
の動荷重半径Rの比R/Ro と高速走行時でないときに
第一のタイヤ空気圧推定手段により推定されたタイヤの
空気圧Po とに基づいてタイヤの空気圧を演算するの
で、例えば標準のタイヤの動荷重半径に対する現在のタ
イヤの動荷重半径の比と標準のタイヤの空気圧とに基づ
いてタイヤの空気圧が演算される場合に比して、高速走
行時であるときのタイヤの空気圧をが正確に演算するこ
とができる。
According to the second aspect of the present invention, the second tire air pressure estimating means sets the current dynamic load radius R of the tire with respect to the dynamic load radius Ro of the tire immediately before it is determined that the vehicle is traveling at high speed. Since the tire air pressure is calculated based on the ratio R / Ro and the tire air pressure Po estimated by the first tire air pressure estimating means when the vehicle is not traveling at a high speed, for example, the present tire with respect to the dynamic load radius of the standard tire is calculated. In comparison with the case where the tire air pressure is calculated based on the ratio of the dynamic load radius and the standard tire air pressure, the tire air pressure during high speed traveling can be calculated accurately.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明によるタイヤ空気圧推定装置の第一の実
施例を示す概略構成図(A)及びブロック線図(B)で
ある。
FIG. 1 is a schematic configuration diagram (A) and a block diagram (B) showing a first embodiment of a tire air pressure estimating device according to the present invention.

【図2】第一の実施例のタイヤ空気圧演算ルーチンを示
すフローチャートである。
FIG. 2 is a flowchart showing a tire air pressure calculation routine of the first embodiment.

【図3】本発明によるタイヤ空気圧推定装置の第二の実
施例を示す概略構成図(A)及びブロック線図(B)で
ある。
FIG. 3 is a schematic configuration diagram (A) and a block diagram (B) showing a second embodiment of the tire air pressure estimating device according to the present invention.

【図4】第二の実施例のタイヤ空気圧演算ルーチンを示
すフローチャートである。
FIG. 4 is a flowchart showing a tire air pressure calculation routine of a second embodiment.

【符号の説明】[Explanation of symbols]

12FL〜12RR…車輪速センサ 14…タイヤ空気圧演算装置 16…警報装置 18…第一のタイヤ空気圧推定ブロック 20…第二のタイヤ空気圧推定ブロック 22…判別ブロック 24…選択ブロック 12FL-12RR ... Wheel speed sensor 14 ... Tire pressure calculation device 16 ... Warning device 18 ... First tire pressure estimation block 20 ... Second tire pressure estimation block 22 ... Judgment block 24 ... Selection block

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大橋 秀樹 愛知県豊田市トヨタ町1番地トヨタ自動車 株式会社内 (72)発明者 梅野 孝治 愛知県愛知郡長久手町大字長湫字横道41番 地の1株式会社豊田中央研究所内 (72)発明者 内藤 俊治 愛知県刈谷市昭和町1丁目1番地日本電装 株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hideki Ohashi 1st Toyota-cho, Toyota-shi, Aichi Toyota Motor Corporation (72) Inventor Koji Umeno 1-share, 41st side road, Nagakute-cho, Aichi-gun, Aichi-gun Toyota Central Research Institute (72) Inventor Shunji Naito 1-1, Showa-cho, Kariya city, Aichi Nihondenso Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】車輪速信号に基づきタイヤの空気圧を推定
するタイヤ空気圧推定装置に於いて、車輪速信号の振動
成分よりタイヤのばね定数を求めこれに基づきタイヤの
空気圧を推定する第一のタイヤ空気圧推定手段と、車輪
速信号よりタイヤの動荷重半径を求めこれに基づきタイ
ヤの空気圧を推定する第二のタイヤ空気圧推定手段と、
車速が所定値以上である高速走行時であるか否かを判別
する手段と、高速走行時でないときには前記第一のタイ
ヤ空気圧推定手段によりタイヤの空気圧を推定させ、高
速走行時であるときには前記第二のタイヤ空気圧推定手
段によりタイヤの空気圧を推定させる選択手段とを有し
ていることを特徴とするタイヤ空気圧推定装置。
1. A tire air pressure estimating device for estimating a tire air pressure based on a wheel speed signal, wherein a tire spring constant is obtained from a vibration component of a wheel speed signal and the tire air pressure is estimated based on the spring constant. Air pressure estimating means, a second tire air pressure estimating means for estimating the tire air pressure based on the dynamic load radius of the tire obtained from the wheel speed signal,
A means for determining whether or not the vehicle speed is at a high speed traveling at a predetermined value or more, and the tire pressure is estimated by the first tire air pressure estimating means when the vehicle is not traveling at a high speed, and when the vehicle is traveling at a high speed, A tire air pressure estimating device, comprising: a selecting means for estimating a tire air pressure by a second tire air pressure estimating means.
【請求項2】請求項1のタイヤ空気圧推定装置に於い
て、前記第二のタイヤ空気圧推定手段は高速走行時であ
ると判別される直前のタイヤの動荷重半径Ro に対する
現在のタイヤの動荷重半径Rの比R/Ro と高速走行時
でないときに前記第一のタイヤ空気圧推定手段により推
定されたタイヤの空気圧Po とに基づいてタイヤの空気
圧を演算するよう構成されていることを特徴とするタイ
ヤ空気圧推定装置。
2. The tire air pressure estimating device according to claim 1, wherein the second tire air pressure estimating means is the dynamic load radius Ro of the present tire immediately before the dynamic load radius Ro of the tire immediately before it is determined that the vehicle is traveling at a high speed. The tire air pressure is calculated based on the ratio R / Ro of the radius R and the tire air pressure Po estimated by the first tire air pressure estimating means when the vehicle is not traveling at a high speed. Tire pressure estimation device.
JP17147795A 1995-06-14 1995-06-14 Tire pressure estimation device Expired - Lifetime JP3300572B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17147795A JP3300572B2 (en) 1995-06-14 1995-06-14 Tire pressure estimation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17147795A JP3300572B2 (en) 1995-06-14 1995-06-14 Tire pressure estimation device

Publications (2)

Publication Number Publication Date
JPH092031A true JPH092031A (en) 1997-01-07
JP3300572B2 JP3300572B2 (en) 2002-07-08

Family

ID=15923838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17147795A Expired - Lifetime JP3300572B2 (en) 1995-06-14 1995-06-14 Tire pressure estimation device

Country Status (1)

Country Link
JP (1) JP3300572B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6711508B2 (en) 2000-11-27 2004-03-23 Aisin Seiki Kabushiki Kaisha Method and apparatus for estimating tire air pressure
US7263458B2 (en) * 2003-07-07 2007-08-28 Nira Dynamics Ab Tire pressure estimation
JP2008110742A (en) * 2005-12-16 2008-05-15 Sumitomo Rubber Ind Ltd Apparatus, method and program for alarming decrease in tire air-pressure
US20110231113A1 (en) * 2003-07-04 2011-09-22 Pirelli Pneumatici S.P.A. Method and system for determining a tyre load during the running of a motor vehicle
US9850885B2 (en) 2011-12-13 2017-12-26 Yanmar Co., Ltd. Engine overload prevention using a speed differential operated relief valve

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101704631B1 (en) * 2015-06-30 2017-02-08 현대오트론 주식회사 Apparatus and method for monitoring tire pressure considering heterogeneous tire and abnormal tire

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06230923A (en) * 1993-02-01 1994-08-19 Toshiba Corp Screen display device
JPH06297923A (en) * 1993-04-15 1994-10-25 Nippondenso Co Ltd Tire pneumatic pressure detecting device
JPH06320923A (en) * 1993-05-13 1994-11-22 Mitsubishi Motors Corp Detecting method for tire inflation pressure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06230923A (en) * 1993-02-01 1994-08-19 Toshiba Corp Screen display device
JPH06297923A (en) * 1993-04-15 1994-10-25 Nippondenso Co Ltd Tire pneumatic pressure detecting device
JPH06320923A (en) * 1993-05-13 1994-11-22 Mitsubishi Motors Corp Detecting method for tire inflation pressure

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6711508B2 (en) 2000-11-27 2004-03-23 Aisin Seiki Kabushiki Kaisha Method and apparatus for estimating tire air pressure
US20110231113A1 (en) * 2003-07-04 2011-09-22 Pirelli Pneumatici S.P.A. Method and system for determining a tyre load during the running of a motor vehicle
US8874386B2 (en) * 2003-07-04 2014-10-28 Pirelli Pneumatici S.P.A. Method and system for determining a tyre load during the running of a motor vehicle
US7263458B2 (en) * 2003-07-07 2007-08-28 Nira Dynamics Ab Tire pressure estimation
JP2008110742A (en) * 2005-12-16 2008-05-15 Sumitomo Rubber Ind Ltd Apparatus, method and program for alarming decrease in tire air-pressure
US9850885B2 (en) 2011-12-13 2017-12-26 Yanmar Co., Ltd. Engine overload prevention using a speed differential operated relief valve

Also Published As

Publication number Publication date
JP3300572B2 (en) 2002-07-08

Similar Documents

Publication Publication Date Title
EP1167086B1 (en) Method for alarming decrease in tyre air pressure and apparatus used therefor
US5604307A (en) Tire pressure drop alarm device sensing partial travel on irregular road surface
EP1798077A2 (en) Apparatus, method and program for alarming decrease in tire air-pressure
EP1145875B1 (en) Apparatus and method for alarming decrease in tyre air pressure
EP1527909A2 (en) Method and device for detecting decompression of tires, and program for judging decompression of tires
EP0970823A2 (en) Apparatus for identifying tyres and method thereof
JPH092031A (en) Tire inflation pressure estimation device
US20020021212A1 (en) Apparatus and method for alarming decrease in tire air-pressure
JP2003267012A (en) Detecting method of decrease of tire air pressure, its device, and program of determining tire decompression
JP3328552B2 (en) Vehicle tire pressure estimation device
US20030128110A1 (en) Method of detection of limited slip differential device, method and apparatus for detecting decrease in tire air-pressure employing the method of detection, and program for judging decompression of tire
JP2003326927A (en) Detecting method and device for tire pneumatic pressure drop and program to determine tire pressure reduction
JP2004203214A (en) Method and device for detecting drop of pneumatic pressure of tire and program for determining pressure drop of tire
JP3328533B2 (en) Tire pressure abnormality judgment device
JP3167278B2 (en) Method and apparatus for detecting decrease in tire air pressure
JP3019608B2 (en) Shake reduction device for vehicles
JP3303660B2 (en) Tire pressure determination device
JP3574541B2 (en) Tire pressure abnormality judgment device
JP3095095B2 (en) Tire abnormal wear detection device
CN100478198C (en) Apparatus and method for alarming abnormality in tire air-pressure
JP3328534B2 (en) Tire pressure abnormality judgment device
JP3626076B2 (en) Tire pressure drop alarm device and method
JP3627967B2 (en) Vehicle behavior detection device and tire abnormality detection device
JP3605006B2 (en) Tire pressure drop warning device and method
JP3396522B2 (en) Tire pressure drop determination method and tire pressure drop detection device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090419

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090419

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100419

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100419

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110419

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120419

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120419

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130419

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130419

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140419

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term