JPH09199937A - Dual reflection mirror paraboloidal antenna system - Google Patents

Dual reflection mirror paraboloidal antenna system

Info

Publication number
JPH09199937A
JPH09199937A JP2627296A JP2627296A JPH09199937A JP H09199937 A JPH09199937 A JP H09199937A JP 2627296 A JP2627296 A JP 2627296A JP 2627296 A JP2627296 A JP 2627296A JP H09199937 A JPH09199937 A JP H09199937A
Authority
JP
Japan
Prior art keywords
reflecting mirror
sub
fidome
main
focal point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2627296A
Other languages
Japanese (ja)
Other versions
JP3376200B2 (en
Inventor
Nobutaka Misawa
宣貴 三沢
Yoshitomo Satou
由智 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP02627296A priority Critical patent/JP3376200B2/en
Publication of JPH09199937A publication Critical patent/JPH09199937A/en
Application granted granted Critical
Publication of JP3376200B2 publication Critical patent/JP3376200B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve sensitivity and durability by devising the shape of a feedome covering a tip of a primary radiator so as to minimize the effect of the feedome. SOLUTION: The antenna system is provided with a main reflection mirror 1, a sub reflection mirror 2 located in the vicinity of the focus of the sub reflecting mirror and a circular waveguide feeder 3 whose tip is located in the vicinity of the focus of the sub reflection mirror 2. The system incorporates the sub reflection mirror 2 and a partial spherical shell structure around the focus of the main reflection mirror 1 is adopted for a part of a nonconductive feedome 10 covering the tip of the feeder 3 to which a reflected wave from at least the main reflection mirror 1 passes.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、複反射鏡型のパラ
ボラアンテナ装置に係り、特に衛星放送や衛星通信受信
用の複反射鏡型パラボラアンテナ装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a double-reflecting mirror type parabolic antenna device, and more particularly to a double-reflecting mirror type parabolic antenna device for receiving satellite broadcasting and satellite communication.

【0002】[0002]

【従来の技術】図4は従来の複反射鏡型パラボラアンテ
ナ装置の全体構成、図5はその一次放射器部分、図6は
一次放射器に主反射鏡からの反射波が入射する様子をそ
れぞれ示し、図7はその様子を拡大して示すものであ
る。これらの図に示すように、従来の複反射型パラボラ
アンテナ装置は、主反射鏡1と、主反射鏡1の焦点fの
近傍に置かれた副反射鏡2と、副反射鏡2の焦点f’の
近傍に開口するように置かれた給電手段としての円形導
波管フィーダ3とを備えている。通常、円形導波管フィ
ーダ3は主反射鏡1側に固定され、副反射鏡2は主反射
鏡1もしくは円形導波管フィーダ3に何らかの方法で固
定され(図4乃至図6ではフィドーム4を介して固
定)、円形導波管フィーダ3の先端開口部分と副反射鏡
2とで一次放射器を構成している。
2. Description of the Related Art FIG. 4 shows the overall structure of a conventional parabolic antenna device having multiple reflectors, FIG. 5 shows the primary radiator portion thereof, and FIG. 6 shows how a reflected wave from a main reflector enters the primary radiator. FIG. 7 is an enlarged view of the situation. As shown in these figures, the conventional double-reflection parabolic antenna device has a main reflecting mirror 1, a sub-reflecting mirror 2 placed near the focus f of the main reflecting mirror 1, and a focus f of the sub reflecting mirror 2. 'A circular waveguide feeder 3 as a power feeding means placed so as to open near. Usually, the circular waveguide feeder 3 is fixed to the main reflecting mirror 1 side, and the sub-reflecting mirror 2 is fixed to the main reflecting mirror 1 or the circular waveguide feeder 3 by some method (in FIG. 4 to FIG. (Fixed through), the tip end opening portion of the circular waveguide feeder 3 and the sub-reflecting mirror 2 constitute a primary radiator.

【0003】[0003]

【発明が解決しようとする課題】ところで、複反射型パ
ラボラアンテナ装置の一次放射器は、以下の条件を満た
す必要がある。
By the way, the primary radiator of the double-reflection parabolic antenna device must satisfy the following conditions.

【0004】(1) 副反射鏡を導波管フィーダに取り付
ける場合、副反射鏡は電磁波的に影響の少ない方法で導
波管フィーダに固定されていなければならない。
(1) When the sub-reflecting mirror is attached to the waveguide feeder, the sub-reflecting mirror must be fixed to the waveguide feeder by a method that has little influence on electromagnetic waves.

【0005】(2) 一般に屋外で使用されることの多い
パラボラアンテナ装置にあっては、一次放射器先端部は
防水構造でなければならない。
(2) In the parabolic antenna device which is often used outdoors, the tip of the primary radiator must have a waterproof structure.

【0006】そこで、図4及び図5に示した従来の複反
射型パラボラアンテナ装置において、低誘電率の電磁波
を良く透過させる材料を一次放射器先端部のカバーであ
るフィドーム4に用いれば、上記条件(1),(2)をある程
度満足させることができる。しかし、実際にはフィドー
ム4を合成樹脂の成形品で構成するが、現実の合成樹脂
は大気(空気)中の誘電率よりも高い誘電率を持つた
め、フィドームが無い場合に比べて性質の違いが出てく
る。この種のパラボラアンテナ装置において、主反射鏡
より集めた電磁波をその焦点に精度良く集中させること
が特に重要であるが、フィドーム形状に何等の配慮がな
い図5の従来構造の場合、電磁波の通過経路に対して斜
めにフィドーム4の合成樹脂壁面が位置するようにな
り、電磁波はフィドーム4に対し入射時及び通過時に屈
折してしまい、図6及び図7の拡大図のように電磁波の
コースがずれ(図中点線はフィドームの無いときの電磁
波の進路、実線はフィドームによりずれた電磁波の進路
を示す)、その結果焦点がぼやけ感度が低下することに
なる。このような電磁波の屈折に起因するコースのずれ
はフィドーム4の合成樹脂壁の肉厚が厚くなる程、また
合成樹脂の誘電率が高くなる程顕著になる。
Therefore, in the conventional double-reflection parabolic antenna device shown in FIGS. 4 and 5, if a material that transmits a low dielectric constant electromagnetic wave well is used for the fidome 4 which is the cover of the tip of the primary radiator, Conditions (1) and (2) can be satisfied to some extent. However, although the fidome 4 is actually composed of a molded product of synthetic resin, since the actual synthetic resin has a higher dielectric constant than the dielectric constant in the atmosphere (air), the property is different from that in the case without the fidome. Comes out. In this type of parabolic antenna device, it is particularly important to accurately concentrate the electromagnetic waves collected from the main reflecting mirror at its focal point, but in the case of the conventional structure shown in FIG. The synthetic resin wall surface of the fidome 4 is positioned obliquely with respect to the path, and the electromagnetic wave is refracted when entering and passing through the fidome 4, and the course of the electromagnetic wave is as shown in the enlarged views of FIGS. 6 and 7. Deviation (dotted line in the figure indicates the path of the electromagnetic wave when there is no fidom, solid line indicates the path of the electromagnetic wave deviated by the fidome), and as a result, the focus is blurred and the sensitivity decreases. The deviation of the course due to the refraction of the electromagnetic wave becomes more remarkable as the thickness of the synthetic resin wall of the fidome 4 increases and the dielectric constant of the synthetic resin increases.

【0007】なお、実公昭60−22655号におい
て、副反射鏡を合成樹脂製カバーで主反射鏡に固定した
構造が提案されているが、この場合にも合成樹脂製カバ
ーを電磁波が通過する際に屈折による悪影響が発生す
る。
In Japanese Utility Model Publication No. 60-22655, a structure is proposed in which the sub-reflecting mirror is fixed to the main reflecting mirror with a synthetic resin cover. In this case as well, when electromagnetic waves pass through the synthetic resin cover. The adverse effect of refraction occurs.

【0008】本発明は、上記の点に鑑み、一次放射器の
先端部分を覆うフィドームの形状を工夫することで、フ
ィドームの影響を最小限に抑え、フィドームの厚みをあ
る程度厚くしても性能があまり劣化しないので従来装置
に比較して感度の向上を図ると共に、耐久性を増して高
性能、堅牢な複反射鏡型パラボラアンテナ装置を提供す
ることを目的とする。
In view of the above points, the present invention devises the shape of the fidome covering the tip portion of the primary radiator to minimize the influence of the fidome and to improve the performance even if the thickness of the fidome is increased to some extent. An object of the present invention is to provide a parabolic antenna device of the double-reflecting mirror type, which is not deteriorated so much as to improve the sensitivity as compared with the conventional device, and has increased durability, high performance and robustness.

【0009】本発明のその他の目的や新規な特徴は後述
の実施の形態において明らかにする。
Other objects and novel features of the present invention will be clarified in embodiments described later.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、本発明の複反射鏡型パラボラアンテナ装置は、主反
射鏡と、該主反射鏡の焦点近傍に位置する副反射鏡と、
該副反射鏡の焦点近傍に先端部が位置する給電手段とを
有する構成において、前記副反射鏡を内蔵するとともに
前記給電手段の先端部を覆う非導電性フィドームの少な
くとも前記主反射鏡による反射波が通過する部分が、前
記主反射鏡の焦点を中心とした部分球殻状構造となって
いることを特徴としている。
In order to achieve the above object, a parabolic antenna device of a double-reflecting mirror type according to the present invention comprises a main reflecting mirror and a sub-reflecting mirror located near the focal point of the main reflecting mirror.
In a structure having a power feeding means whose tip is located near the focal point of the sub-reflecting mirror, a wave reflected by at least the main reflecting mirror of a non-conductive fidome that contains the sub-reflecting mirror and covers the tip of the power feeding means. Is a partial spherical shell-like structure centered on the focal point of the main reflecting mirror.

【0011】そして、前記部分球殻状構造の内面である
部分球面の曲率半径が、前記副反射鏡の直径の略1/2
となっていることが望ましく、さらに前記主反射鏡の焦
点と前記副反射鏡の焦点との間の距離を前記副反射鏡の
直径の略1/2とすることが望ましい。
The radius of curvature of the partial spherical surface, which is the inner surface of the partial spherical shell-like structure, is approximately 1/2 of the diameter of the sub-reflecting mirror.
It is desirable that the distance between the focal point of the main reflecting mirror and the focal point of the sub-reflecting mirror be approximately 1/2 of the diameter of the sub-reflecting mirror.

【0012】[0012]

【発明の実施の形態】以下、本発明に係る複反射鏡型パ
ラボラアンテナ装置の実施の形態を図面に従って説明す
る。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of a parabolic reflector type parabolic antenna device according to the present invention will be described below with reference to the drawings.

【0013】図1は本発明に係る実施の形態の複反射鏡
型パラボラアンテナ装置の全体構成、図2はその一次放
射器部分、図3は一次放射器に反射波が入射する様子を
それぞれ示す。これらの図に示すように、複反射型パラ
ボラアンテナ装置は、主反射鏡(パラボラ反射鏡)1
と、主反射鏡1の焦点fの近傍(焦点fよりも僅かに手
前側)に置かれた副反射鏡2と、副反射鏡2の焦点f’
の近傍に開口するように置かれた給電手段としての円形
導波管フィーダ3と、副反射鏡2を内蔵すると共に円形
導波管フィーダ3の先端開口部分を覆う非導電性フィド
ーム10とを備えている。
FIG. 1 shows the overall structure of a parabolic antenna device for a double-reflecting mirror according to an embodiment of the present invention, FIG. 2 shows its primary radiator portion, and FIG. 3 shows how reflected waves are incident on the primary radiator. . As shown in these figures, the double-reflection parabolic antenna device includes a main reflecting mirror (parabolic reflecting mirror) 1
And a sub-reflecting mirror 2 placed near the focus f of the main reflecting mirror 1 (slightly front side of the focus f) and a focus f ′ of the sub-reflecting mirror 2.
A circular waveguide feeder 3 as a feeding means placed so as to open in the vicinity of the circular waveguide feeder 3; and a non-conductive fidome 10 which incorporates the sub-reflecting mirror 2 and covers the tip opening portion of the circular waveguide feeder 3. ing.

【0014】前記主反射鏡1は金属板を成型したり合成
樹脂等の表面をメタライズした凹面鏡であり、例えばカ
セグレンアンテナ装置とする場合には反射面が放物面と
なった放物面反射鏡である。前記副反射鏡2は金属板を
成型したり合成樹脂等の表面をメタライズした凸面鏡で
あり、例えばカセグレンアンテナ装置とする場合には反
射面が双曲面となった双曲面反射鏡である。
The main reflecting mirror 1 is a concave mirror formed by molding a metal plate or metallizing the surface of synthetic resin or the like. For example, in the case of a Cassegrain antenna device, the reflecting surface is a parabolic reflecting mirror. Is. The sub-reflecting mirror 2 is a convex mirror formed by molding a metal plate or metallizing the surface of synthetic resin or the like, and is a hyperboloidal reflecting mirror whose reflecting surface is a hyperboloid in the case of a Cassegrain antenna device.

【0015】前記円形導波管フィーダ3は先端が開口し
ており、その先端部分は電磁波を送出あるいは受ける一
次ホーンを構成している。この円形導波管フィーダ3
は、主反射鏡1の中心部を貫通して副反射鏡2の焦点
f’に至るまで延長したセンターフィード構造であり、
円形導波管フィーダ3の開口3aよりも僅かに内側に焦
点f’が位置することが好ましい。なお、円形導波管フ
ィーダ3は主反射鏡1の背面側に固定されたベース部材
15に固定、支持されている。
The circular waveguide feeder 3 has an open tip, and the tip portion constitutes a primary horn that sends or receives an electromagnetic wave. This circular waveguide feeder 3
Is a center-feed structure that extends through the center of the main reflecting mirror 1 to reach the focal point f ′ of the sub-reflecting mirror 2.
It is preferable that the focal point f ′ is located slightly inside the opening 3 a of the circular waveguide feeder 3. The circular waveguide feeder 3 is fixed and supported by a base member 15 fixed on the back side of the main reflecting mirror 1.

【0016】図2及び図3に示すように、円形導波管フ
ィーダ3の先端部の一次ホーンと副反射鏡2とを有する
一次放射器部分を覆うカバーとして設けられた非導電性
フィドーム10は、耐候性に優れ、しかも低誘電率の電
磁波を良く透過させる合成樹脂で成形されたものであ
る。ここで、フィドーム10は、半球殻状構造の本体部
11と蓋体部12とを水密に組み合わせ接着等で一体化
したものである。
As shown in FIGS. 2 and 3, the non-conductive fidome 10 provided as a cover for covering the primary radiator portion having the primary horn at the tip of the circular waveguide feeder 3 and the sub-reflecting mirror 2. It is made of a synthetic resin that is excellent in weather resistance and that allows transmission of electromagnetic waves having a low dielectric constant. Here, the fidome 10 is formed by integrally combining a main body portion 11 having a hemispherical shell-like structure and a lid body portion 12 in a watertight manner by bonding or the like.

【0017】従来技術の説明で述べたように、フィドー
ム10を構成する合成樹脂は空気中の誘電率よりも大き
な誘電率を持つから、主反射鏡1で反射された反射波に
対するフィドーム10の影響を抑制するためには以下の
条件(a),(b)が望まれる。
As described in the description of the prior art, since the synthetic resin forming the fidome 10 has a dielectric constant larger than that in air, the influence of the fidome 10 on the reflected wave reflected by the main reflecting mirror 1. The following conditions (a) and (b) are desired to suppress this.

【0018】(a) フィドーム10の合成樹脂壁の厚み
をできるだけ薄くする。
(A) The thickness of the synthetic resin wall of the fidome 10 is made as thin as possible.

【0019】(b) フィドーム10による電磁波の屈折
の影響をできるだけ無くす。
(B) The influence of refraction of electromagnetic waves by the fidome 10 is eliminated as much as possible.

【0020】前記条件(a)はフィドーム10の強度的、
構造的な問題があり、肉厚はあまり薄くすることができ
ず、フィドーム10を構成する合成樹脂壁の肉厚を具体
的には1mm以下にすることは難しい。
The condition (a) is the strength of the fidome 10,
Since there is a structural problem, the wall thickness cannot be made very thin, and it is difficult to specifically set the wall thickness of the synthetic resin wall forming the fidome 10 to 1 mm or less.

【0021】そこで、本発明者は条件(b)に着目し、フ
ィドーム10に対し入射する電磁波(主反射鏡1による
反射波)が常に垂直に入射するようにフィドーム10の
形状を工夫している。すなわち、フィドーム10の本体
部11を、主反射鏡1で反射された電磁波が全て垂直に
フィドーム壁面に入射するように、主反射鏡1の焦点f
を中心とする半球殻状構造としている。このようにする
ことで、図3の拡大図に示す如く、フィドーム11の本
体部11の反射波が通過する部分においては全て反射波
がフィドーム壁面に垂直に入射することになり、空気中
とフィドーム10の合成樹脂間の誘電率の差に起因する
屈折の影響を受けなくすることができる。なお、本体部
11の中心部は前記円形導波管フィーダ3の先端部外周
に嵌合、固着された円筒部11aとなっている。
Therefore, the present inventor pays attention to the condition (b) and devises the shape of the fidome 10 so that the electromagnetic wave (reflection wave by the main reflecting mirror 1) incident on the fidome 10 always enters vertically. . That is, the focus f of the main reflecting mirror 1 is set so that all the electromagnetic waves reflected by the main reflecting mirror 1 enter the main body 11 of the fidome 10 vertically to the wall surface of the fidome.
It has a hemispherical shell-like structure centered at. By doing so, as shown in the enlarged view of FIG. 3, all the reflected waves are perpendicularly incident on the wall surface of the fidome in the portion where the reflected waves of the main body portion 11 of the fidome 11 pass, and thus, in the air and the fidome. It is possible to eliminate the influence of refraction due to the difference in dielectric constant between the ten synthetic resins. The central portion of the main body portion 11 is a cylindrical portion 11a fitted and fixed to the outer periphery of the tip end portion of the circular waveguide feeder 3.

【0022】前記フィドーム10がフィドーム本来の役
割を果たすためには、副反射鏡2と円形導波管フィーダ
3先端部とがフィドーム10の中に納まらなければなら
ない。このとき、フィドーム10が最もコンパクトにな
る寸法は、図2のように、本体部11が有する半球殻状
構造の内面である半球面の曲率半径Rが副反射鏡2の直
径(副反射鏡2の外周円の直径)Dの略1/2となって
いるときである。なお、副反射鏡2の外周円の中心と主
反射鏡1の焦点fの位置とは完全に一致していない場合
があり(図2では外周円の中心よりも後方位置に焦点f
が位置している)、前記曲率半径RがD/2に完全一致
するとは限らない。いずれにしても、主反射鏡1の中心
軸と副反射鏡2の中心軸とを一致させ、本体部11の内
面の半球面に前記副反射鏡2が内接するように(換言す
れば副反射鏡2に本体部11の内面の半球面が外接する
ように)設定すればよい。D/2に比較して必要以上に
大きな曲率半径Rの本体部を持つフィドームとすると、
主反射鏡1に対しフィドームの存在がブロッキングの原
因となるので好ましくない。
In order for the fidome 10 to play its original role, the sub-reflecting mirror 2 and the tip of the circular waveguide feeder 3 must be housed in the fidome 10. At this time, the size of the fidome 10 that is the most compact is that, as shown in FIG. It is about 1/2 of the diameter D of the outer circumference circle. In some cases, the center of the outer circle of the sub-reflecting mirror 2 and the position of the focal point f of the main reflecting mirror 1 do not completely coincide with each other (in FIG. 2, the focal point f is located behind the center of the outer circumferential circle.
Is located), and the radius of curvature R does not always match D / 2. In any case, the central axis of the main reflecting mirror 1 and the central axis of the sub-reflecting mirror 2 are made to coincide with each other so that the sub-reflecting mirror 2 is inscribed in the hemispherical surface of the inner surface of the main body 11 (in other words, the sub-reflecting mirror). It may be set so that the hemispherical surface of the inner surface of the main body 11 contacts the mirror 2). Assuming that the fidome has a main body with a curvature radius R that is larger than necessary compared to D / 2,
The presence of the fidome with respect to the main reflecting mirror 1 causes blocking, which is not preferable.

【0023】また、副反射鏡2の焦点f’の位置は円形
導波管フィーダ3の開口3a近傍であって、その開口よ
りも円形導波管フィーダ3の内部に僅かに入った位置が
好ましく、副反射鏡2から反射した電磁波が副反射鏡2
の焦点f’に集まる際に、フィドーム10の内壁面で遮
られることの無いようにする必要がある。このため、主
反射鏡1の焦点fと副反射鏡2の焦点f’との間の距離
Lを副反射鏡2の直径Dの略1/2としている(前記曲
率半径Rに略一致させている。)。このようにすれば、
焦点f’は本体部11内面の半球面の延長面上にほぼ位
置することになり、焦点f’を円形導波管フィーダ3の
開口近傍とするとともに副反射鏡2による反射波がフィ
ドーム内面で遮られないように設定できる。
The position of the focal point f'of the sub-reflecting mirror 2 is in the vicinity of the opening 3a of the circular waveguide feeder 3, and preferably at a position slightly inside the circular waveguide feeder 3 rather than the opening. , The electromagnetic wave reflected from the sub-reflector 2
It is necessary not to be blocked by the inner wall surface of the fidome 10 when it is focused on the focal point f ′. For this reason, the distance L between the focal point f of the main reflecting mirror 1 and the focal point f'of the sub reflecting mirror 2 is set to approximately 1/2 of the diameter D of the sub reflecting mirror 2 (substantially matched with the radius of curvature R). .). If you do this,
The focal point f'is almost located on the extension surface of the hemispherical surface of the inner surface of the main body portion 11, and the focal point f'is located near the opening of the circular waveguide feeder 3 and the reflected wave by the sub-reflecting mirror 2 is on the inner surface of the fidome. You can set it so that it is not blocked.

【0024】この実施の形態による複反射鏡型パラボラ
アンテナ装置の全体的な動作を受信の場合で説明する。
The overall operation of the double-reflecting mirror parabolic antenna device according to this embodiment will be described in the case of reception.

【0025】放送衛星や通信衛星等からの到来電磁波
は、主反射鏡1でその焦点fに向けて反射されるが、フ
ィドーム10の主反射鏡1に対面する本体部11が焦点
fを中心とする半球殻状構造であるため、主反射鏡1に
よる反射波はフィドーム10の壁面に垂直に入射するた
め、屈折せずに焦点fに集束する向きに進行する。そし
て、副反射鏡2でその焦点f’に向けて反射され、円形
導波管フィーダ3の開口内に反射波が集束することにな
る。その際、本体部11が有する半球殻状構造内面の半
球面の曲率半径Rを副反射鏡2の直径(副反射鏡2の外
周円の直径)Dの略1/2に設定するとともに、主反射
鏡1の焦点fと副反射鏡2の焦点f’との間の距離Lを
前記直径Dの略1/2とすることで、フィドーム10に
起因する主反射鏡1に対するブロッキングを最小限と
し、かつ副反射鏡2による反射波がフィドーム10内面
で遮られることなく円形導波管フィーダ3の開口3aに
到達するようにできる。
Electromagnetic waves coming from broadcasting satellites and communication satellites are reflected by the main reflecting mirror 1 toward the focal point f thereof, but the main body 11 of the fidome 10 facing the main reflecting mirror 1 is centered around the focal point f. Since it has a hemispherical shell-like structure, the reflected wave from the main reflecting mirror 1 is incident perpendicularly on the wall surface of the fidome 10, and therefore travels in a direction in which it is focused on the focal point f without being refracted. Then, it is reflected by the sub-reflecting mirror 2 toward its focal point f ′, and the reflected wave is focused in the opening of the circular waveguide feeder 3. At that time, the radius of curvature R of the hemispherical surface of the inner surface of the hemispherical shell-like structure of the main body portion 11 is set to about 1/2 of the diameter of the sub-reflecting mirror 2 (the diameter of the outer circumferential circle of the sub-reflecting mirror 2) and By setting the distance L between the focal point f of the reflecting mirror 1 and the focal point f ′ of the sub-reflecting mirror 2 to be approximately ½ of the diameter D, the blocking of the main reflecting mirror 1 due to the fidome 10 is minimized. Moreover, the reflected wave from the sub-reflecting mirror 2 can reach the opening 3a of the circular waveguide feeder 3 without being blocked by the inner surface of the fidome 10.

【0026】なお、フィドーム10の材質としては、フ
ッ素樹脂(テフロン)、アクリル、ポリカーボネイト等
の低誘電率で耐候性の優れた合成樹脂を選定することが
できる。また、フィドーム10の内面に副反射鏡位置決
めのための小突起等を形成してもよい。
As the material of the fidome 10, a synthetic resin having a low dielectric constant and excellent weather resistance, such as fluororesin (Teflon), acrylic, or polycarbonate, can be selected. Further, a small protrusion or the like for positioning the sub-reflecting mirror may be formed on the inner surface of the fidome 10.

【0027】この実施の形態によれば、次の通りの効果
を得ることができる。
According to this embodiment, the following effects can be obtained.

【0028】(1) 副反射鏡2を内蔵するとともに給電
手段としての円形導波管フィーダ3の先端部を覆う非導
電性フィドーム10の主反射鏡1による反射波が通過す
る本体部11が、主反射鏡1の焦点fを中心とした半球
殻状構造となっているので、主反射鏡1による反射波は
フィドーム10の壁面に垂直に入射し、屈折せずに焦点
fに集束する向きに進行する。従って、従来のパラボラ
アンテナ装置で問題となったフィドーム通過時の屈折に
起因する感度の低下を防止することができ、従来のパラ
ボラアンテナ装置に比較して感度の向上を図ることがで
きる。
(1) The main body 11 through which the reflected wave from the main reflecting mirror 1 of the non-conductive fidome 10 which contains the sub-reflecting mirror 2 and covers the tip of the circular waveguide feeder 3 as the power feeding means is Since it has a hemispherical shell-like structure with the focal point f of the main reflecting mirror 1 at the center, the reflected wave from the main reflecting mirror 1 is incident perpendicularly on the wall surface of the fidome 10 and is focused in the focal point f without being refracted. proceed. Therefore, it is possible to prevent a decrease in sensitivity due to refraction when passing through the fidome, which is a problem in the conventional parabolic antenna device, and it is possible to improve the sensitivity as compared with the conventional parabolic antenna device.

【0029】(2) フィドーム本体部11の半球殻状構
造の内面である半球面の曲率半径Rが副反射鏡2の直径
(副反射鏡2の外周円の直径)Dの略1/2となってお
り、前記半球殻状構造の内面に副反射鏡2が内接して支
持、固定されているため、フィドーム10の形状を必要
最小限とすることができ、フィドーム10に起因する主
反射鏡1に対するブロッキングを少なくすることができ
る。さらに、主反射鏡1の焦点fと副反射鏡2の焦点
f’との間の距離を副反射鏡2の直径Dの略1/2とす
ることで副反射鏡2による反射波がフィドーム内面で遮
られずに円形導波管フィーダ3の開口に到達できる。従
って、これらの点でも感度の向上が可能である。
(2) The radius of curvature R of the hemispherical surface, which is the inner surface of the hemispherical shell-like structure of the fidome main body 11, is approximately 1/2 of the diameter of the sub-reflecting mirror 2 (the diameter of the outer circumferential circle of the sub-reflecting mirror 2). Since the sub-reflecting mirror 2 is inscribed and supported and fixed on the inner surface of the hemispherical shell-like structure, the shape of the fidome 10 can be minimized, and the main reflecting mirror caused by the fidome 10 is formed. Blocking for 1 can be reduced. Further, by setting the distance between the focal point f of the main reflecting mirror 1 and the focal point f'of the sub reflecting mirror 2 to be approximately 1/2 of the diameter D of the sub reflecting mirror 2, the reflected wave by the sub reflecting mirror 2 is Can reach the opening of the circular waveguide feeder 3 without being blocked by. Therefore, also in these points, the sensitivity can be improved.

【0030】(3) 給電手段として円形導波管フィーダ
3を用いているため、原理上、水平偏波、垂直偏波、円
偏波の電磁波のいずれも送受信可能である。
(3) Since the circular waveguide feeder 3 is used as the power feeding means, in principle, any of horizontally polarized wave, vertically polarized wave and circularly polarized electromagnetic wave can be transmitted and received.

【0031】(4) フィドーム10の材質の選定にあた
っては、高周波損失(tanδ)に配慮しなければならな
い点を除き、誘電体や材質の厚さの選択の幅が広がるた
め、設計の自由度が増し、フィドーム10を耐久性に優
れた堅牢な構造とすることも可能となる。
(4) When selecting the material of the fidome 10, there is a wide range of choices for the thickness of the dielectric and the material, except that high frequency loss (tan δ) must be taken into consideration, so that there is freedom in design. Furthermore, it becomes possible to make the fidome 10 a durable structure and a robust structure.

【0032】なお、上記実施の形態ではフィドーム10
が半球殻状構造の本体部11と蓋体部12との組み合わ
せであったが、フィドームの主反射鏡に対面する本体部
は必ずしも半球殻状構造である必要はなく、前記主反射
鏡による反射波が通過する部分のみが部分的に球殻状と
なっていれば良い。すなわち、少なくとも前記主反射鏡
による反射波が通過する部分が、前記主反射鏡の焦点を
中心とした部分球殻状構造となっていれば足りる。
In the above embodiment, the fidome 10 is used.
Was a combination of the main body portion 11 and the lid body portion 12 having a hemispherical shell structure, but the main body portion facing the main reflecting mirror of the fidome does not necessarily have the hemispherical shell structure, and the reflection by the main reflecting mirror is not necessary. It suffices if only the portion through which the wave passes has a spherical shell shape. That is, it is sufficient if at least the portion through which the reflected wave from the main reflecting mirror passes has a partial spherical shell-like structure with the focal point of the main reflecting mirror as the center.

【0033】また、上記実施の形態で給電手段として用
いた円形導波管フィーダ3は、その先端部分が円錐状に
広がった形状の一次ホーンとすることもできる。
Further, the circular waveguide feeder 3 used as the power feeding means in the above-mentioned embodiment may be a primary horn in which the tip portion thereof is conically widened.

【0034】さらに、円形導波管フィーダ3はベース部
材15を介し主反射鏡1に固定されている場合を示した
が、直接主反射鏡1に固定する構造であってもよい。
Further, although the circular waveguide feeder 3 is shown as being fixed to the main reflecting mirror 1 via the base member 15, it may be directly fixed to the main reflecting mirror 1.

【0035】以上本発明の実施の形態について説明して
きたが、本発明はこれに限定されることなく請求項の記
載の範囲内において各種の変形、変更が可能なことは当
業者には自明であろう。
Although the embodiments of the present invention have been described above, it is obvious to those skilled in the art that the present invention is not limited to the embodiments and various modifications and changes can be made within the scope of the claims. There will be.

【0036】[0036]

【発明の効果】以上説明したように、本発明の複反射鏡
型パラボラアンテナ装置によれば、主反射鏡と、該主反
射鏡の焦点近傍に位置する副反射鏡と、該副反射鏡の焦
点近傍に先端部が位置する給電手段とを有する構成にお
いて、前記副反射鏡を内蔵するとともに前記給電手段の
先端部を覆う非導電性フィドームの少なくとも前記主反
射鏡による反射波が通過する部分を、前記主反射鏡の焦
点を中心とした部分球殻状構造としたので、前記フィド
ームの影響を最小限に抑制することができる。すなわ
ち、前記主反射鏡で反射された電磁波が前記フィドーム
の壁面に垂直に入射し、かつ通過するようにしたので、
前記フィドームと空気中の誘電率の相違に起因する電磁
波の屈折による影響を解消し、前記フィドームの存在に
よる感度低下を防止することができる。この結果、従来
装置に比較して感度の向上を図り得る。
As described above, according to the parabolic reflector antenna device of the present invention, the main reflecting mirror, the sub-reflecting mirror located near the focal point of the main reflecting mirror, and the sub-reflecting mirror. In a configuration having a power feeding means having a tip portion located near the focal point, a portion of the non-conductive fidome that contains the sub-reflecting mirror and covers the tip portion of the power feeding means passes through at least a reflected wave by the main reflecting mirror. Since the partial spherical shell-like structure centering on the focus of the main reflecting mirror is used, the influence of the fidome can be suppressed to a minimum. That is, since the electromagnetic wave reflected by the main reflecting mirror is made incident vertically on the wall surface of the fidome and passes through,
It is possible to eliminate the influence of the refraction of electromagnetic waves caused by the difference in dielectric constant between the fidome and the air, and prevent the sensitivity from decreasing due to the presence of the fidome. As a result, the sensitivity can be improved as compared with the conventional device.

【0037】さらに、フィドームの材質は、高周波損失
(tanδ)に配慮しなければならない点を除き、誘電体
や材質の厚みの選択の幅が広がるため、設計の自由度が
大きくなる利点があり、耐久性に優れた堅牢なフィドー
ム構造とすることもできる。
Furthermore, the material of the fidome has the advantage that the degree of freedom in design is increased because the range of choices for the thickness of the dielectric and the material is widened, except that high frequency loss (tan δ) must be taken into consideration. It can also be a robust fidome structure with excellent durability.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る複反射鏡型パラボラアンテナ装置
の実施の形態の全体構成を示す側断面図である。
FIG. 1 is a side sectional view showing an overall configuration of an embodiment of a double-reflection mirror type parabolic antenna device according to the present invention.

【図2】本発明に係る実施の形態の一次放射器部分を示
す拡大側断面図である。
FIG. 2 is an enlarged side sectional view showing a primary radiator portion of an embodiment according to the present invention.

【図3】本発明に係る実施の形態において主反射鏡によ
る反射波がフィドームを通過する様子を示す部分拡大断
面図である。
FIG. 3 is a partially enlarged cross-sectional view showing how a reflected wave from a main reflecting mirror passes through a fidome in the embodiment according to the present invention.

【図4】従来の複反射鏡型パラボラアンテナ装置の全体
構成を示す側断面図である。
FIG. 4 is a side sectional view showing an overall configuration of a conventional double-reflection mirror type parabolic antenna device.

【図5】従来の複反射鏡型パラボラアンテナ装置の一次
放射器部分を示す拡大側断面図である。
FIG. 5 is an enlarged side sectional view showing a primary radiator portion of a conventional double-reflecting mirror parabolic antenna device.

【図6】従来の複反射鏡型パラボラアンテナ装置におけ
る主反射鏡による反射波がフィドームを通過する様子を
示す拡大断面図である。
FIG. 6 is an enlarged cross-sectional view showing how a reflected wave by a main reflecting mirror in a conventional double-reflecting mirror type parabolic antenna device passes through a fidome.

【図7】図6の構成において電磁波がフィドームを通過
する際に屈折する様子を示す部分拡大断面図である。
7 is a partially enlarged cross-sectional view showing how an electromagnetic wave is refracted when passing through a fidome in the configuration of FIG.

【符号の説明】[Explanation of symbols]

1 主反射鏡 2 副反射鏡 3 円形導波管フィーダ 4,10 フィドーム 11 本体部 12 蓋体部 1 Main Reflecting Mirror 2 Sub-Reflecting Mirror 3 Circular Waveguide Feeder 4, 10 Fidome 11 Main Body 12 Lid Body

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 主反射鏡と、該主反射鏡の焦点近傍に位
置する副反射鏡と、該副反射鏡の焦点近傍に先端部が位
置する給電手段とを有する複反射鏡型パラボラアンテナ
装置において、前記副反射鏡を内蔵するとともに前記給
電手段の先端部を覆う非導電性フィドームの少なくとも
前記主反射鏡による反射波が通過する部分が、前記主反
射鏡の焦点を中心とした部分球殻状構造となっているこ
とを特徴とする複反射鏡型パラボラアンテナ装置。
1. A multi-reflecting mirror parabolic antenna device having a main reflecting mirror, a sub-reflecting mirror located near the focal point of the main reflecting mirror, and a power feeding means having a tip end located near the focal point of the sub-reflecting mirror. In, in the non-conducting fidome that covers the tip of the power feeding means, at least a portion through which a reflected wave from the main reflecting mirror passes is a partial spherical shell whose center is the focal point of the main reflecting mirror. A parabolic antenna device having a multi-reflecting mirror, which is characterized in that it has a shape-like structure.
【請求項2】 前記部分球殻状構造の内面である部分球
面の曲率半径が前記副反射鏡の直径の略1/2となって
いる請求項1記載の複反射鏡型パラボラアンテナ装置。
2. The parabolic antenna device of a double-reflecting mirror type according to claim 1, wherein a radius of curvature of a partial spherical surface which is an inner surface of the partial spherical shell-like structure is approximately 1/2 of a diameter of the sub-reflecting mirror.
【請求項3】 前記主反射鏡の焦点と前記副反射鏡の焦
点との間の距離を前記副反射鏡の直径の略1/2とした
請求項1又は2記載の複反射鏡型パラボラアンテナ装
置。
3. The parabolic antenna of double-reflecting mirror type according to claim 1 or 2, wherein the distance between the focal point of the main reflecting mirror and the focal point of the sub-reflecting mirror is approximately 1/2 of the diameter of the sub-reflecting mirror. apparatus.
JP02627296A 1996-01-22 1996-01-22 Double reflector parabolic antenna device Expired - Fee Related JP3376200B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02627296A JP3376200B2 (en) 1996-01-22 1996-01-22 Double reflector parabolic antenna device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02627296A JP3376200B2 (en) 1996-01-22 1996-01-22 Double reflector parabolic antenna device

Publications (2)

Publication Number Publication Date
JPH09199937A true JPH09199937A (en) 1997-07-31
JP3376200B2 JP3376200B2 (en) 2003-02-10

Family

ID=12188659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02627296A Expired - Fee Related JP3376200B2 (en) 1996-01-22 1996-01-22 Double reflector parabolic antenna device

Country Status (1)

Country Link
JP (1) JP3376200B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003065506A1 (en) * 2002-01-28 2003-08-07 The Boeing Company Reflector antenna having low-dielectric support tube for sub-reflectors and feeds
WO2012042958A1 (en) * 2010-09-29 2012-04-05 日本電気株式会社 Antenna provided with dropout prevention means

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003065506A1 (en) * 2002-01-28 2003-08-07 The Boeing Company Reflector antenna having low-dielectric support tube for sub-reflectors and feeds
US6862000B2 (en) 2002-01-28 2005-03-01 The Boeing Company Reflector antenna having low-dielectric support tube for sub-reflectors and feeds
WO2012042958A1 (en) * 2010-09-29 2012-04-05 日本電気株式会社 Antenna provided with dropout prevention means
JP2012074932A (en) * 2010-09-29 2012-04-12 Nec Corp Antenna
CN103098305A (en) * 2010-09-29 2013-05-08 日本电气株式会社 Antenna provided with dropout prevention means
US9331395B2 (en) 2010-09-29 2016-05-03 Nec Corporation Antenna provided with fall-out preventing arrangement

Also Published As

Publication number Publication date
JP3376200B2 (en) 2003-02-10

Similar Documents

Publication Publication Date Title
US6522305B2 (en) Microwave antennas
KR102191808B1 (en) Reflector arrangement for attachment to a wireless communications terminal
US7075492B1 (en) High performance reflector antenna system and feed structure
EP0859427B1 (en) Dual-reflector microwave antenna
US6697027B2 (en) High gain, low side lobe dual reflector microwave antenna
US4673945A (en) Backfire antenna feeding
US4876554A (en) Pillbox antenna and antenna assembly
US20080094298A1 (en) Antenna with Shaped Asymmetric Main Reflector and Subreflector with Asymmetric Waveguide Feed
US5426443A (en) Dielectric-supported reflector system
US4168504A (en) Multimode dual frequency antenna feed horn
JPH09321533A (en) Lens antenna
US5546097A (en) Shaped dual reflector antenna system for generating a plurality of beam coverages
SE515493C2 (en) Sub reflector, feeder and reflector antenna including such a sub reflector.
JPH0936634A (en) Feedome, primary radiator and antenna for microwave
JPH08330842A (en) Helical primary radiator and converter
US5844527A (en) Radar antenna
GB1600163A (en) Antenna structures
JP3376200B2 (en) Double reflector parabolic antenna device
US6225957B1 (en) Antenna apparatus
JPS60501138A (en) antenna structure
EP0452077A1 (en) Antenna arrangements
US20030184486A1 (en) Waveguide back-fire reflector antenna feed
US4319250A (en) Offset dual-reflector aerial having tapered reflector segments in main reflector
JPH1065438A (en) Double reflector type small aperture parabolic antenna system
JP2006115063A (en) Primary radiator and designing method for primary radiator

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021022

LAPS Cancellation because of no payment of annual fees