JPH09197045A - Radar device for vehicles - Google Patents

Radar device for vehicles

Info

Publication number
JPH09197045A
JPH09197045A JP8009980A JP998096A JPH09197045A JP H09197045 A JPH09197045 A JP H09197045A JP 8009980 A JP8009980 A JP 8009980A JP 998096 A JP998096 A JP 998096A JP H09197045 A JPH09197045 A JP H09197045A
Authority
JP
Japan
Prior art keywords
light
distance measurement
distance
target
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8009980A
Other languages
Japanese (ja)
Inventor
Tsutomu Shiotani
努 塩谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP8009980A priority Critical patent/JPH09197045A/en
Publication of JPH09197045A publication Critical patent/JPH09197045A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To surely detect the existence of vehicle in the distance without hurting men abiding in the neighborhood by measuring the distance by scanning in which light emission in the direction where a target is detected within a short distance, is terminated, and light emission in the direction no target is detected in a short distance, is increased in power. SOLUTION: A light beam radiated from a light emission part 1 is radiated via a rotational mirror 5, reflected by a vehicle and the like in the front, received with a light reception part 6 and distance value is calculated from the light reception signal with a distance operator part 7. In preliminary scanning distance measurement with a small light emission power, the light emission direction and the measured distance value in that direction are stored in a preserving memory for the emission angle and the measured distance value. Then, in this scanning distance measurement, memory contents are referred to and light emission is controlled to terminated in the direction a target is detected within a short distance and to increase the emission power in the direction where no target is detected in a short distance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、車両の近くに人間
がいるときに、人間に危害を与えないように小さい送光
パワーでスキャン測距を行って人間が存在する方向を記
憶しておき、次に送光パワーを大きくしてスキャン測距
を行う際には、予め記憶してある人間が存在している方
向に対しては光の送出を停止し、それ以外の方向だけに
対して、大きな送光パワーでスキャン測距を行い、近く
に存在する人間に危害を与えることなく、遠方に存在す
る車両の存在を確実に検出できるようにした車両用レー
ダ装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention stores the direction in which a person is present by performing scanning distance measurement with a small light-transmitting power so as not to harm the person when the person is near the vehicle. , Next, when performing the scanning distance measurement by increasing the light transmission power, the light transmission is stopped in the direction in which the human being stored in advance is stored, and only in the other directions. The present invention relates to a radar device for a vehicle, which performs a scan distance measurement with a large light transmission power and can reliably detect the presence of a vehicle in a distant place without damaging a human being in the vicinity.

【0002】[0002]

【従来の技術】従来の車載レーダ装置としては、例え
ば、特開昭62−259111号公報に記載されている
ものがある。
2. Description of the Related Art A conventional vehicle-mounted radar device is disclosed in, for example, Japanese Patent Application Laid-Open No. 62-259111.

【0003】[0003]

【発明が解決しようとする課題】車載レーダ装置にレー
ザレーダを用いる場合、車両などの検知が可能な反射光
パワーを確保するには、距離の遠い車両ほど検知には大
きな送光パワーを必要とするのに対し、人間の目にレー
ザ光があたると失明する危険があるので必要以上に大き
いパワーを送出しないようにする必要がある。このため
上記のごとき従来の装置では、車両の速度が低い場合に
はレーザ光の出力を小さい値に制御することにより、安
全性の確保を図っていた。しかし、上記のような従来の
車載レーダ装置においては、人間が車両の近くに存在し
ているかいないかにかかわらず、車両速度が小さくなっ
た時にはレーザ光の出力を下げていた。このため、レー
ダの検知領域の一部に人間がいる場合には、レーザレー
ダの出力が絞られるため、人間が存在していない領域に
対してまで、レーダの検知性能が制限されてしまうと云
う問題があった。
When a laser radar is used as an on-vehicle radar device, in order to secure reflected light power capable of detecting a vehicle or the like, a vehicle farther away requires a larger light transmission power for detection. On the other hand, if the laser light hits the human eyes, there is a risk of blindness, so it is necessary to prevent the transmission of more power than necessary. Therefore, in the conventional device as described above, the safety is ensured by controlling the output of the laser light to a small value when the vehicle speed is low. However, in the conventional vehicle-mounted radar device as described above, the output of the laser beam is reduced when the vehicle speed becomes low regardless of whether or not a person is present near the vehicle. For this reason, when a human is present in a part of the radar detection area, the output of the laser radar is narrowed down, so that the radar detection performance is limited even to an area where no human is present. There was a problem.

【0004】本発明は、上記のような問題の発生を抑制
するために、レーダが検知可能な領域のうち、人間が存
在する可能性のある近距離に対しては予め小さいレーザ
出力で歩行者の存在の有無、存在する方向を検出してお
いてメモリに記憶させ、次に前方車両などを検出するた
めには、前記メモリを活用して、人間がいる方向にはレ
ーザ光を放射せず、近くに人間がいる恐れのない方向に
充分大きい送光パワーでレーザ光を照射して、レーダの
出力低下を出来るだけ抑えることが出来るようにした車
両用レーダ装置を提供することを課題とする。
In order to suppress the occurrence of the above problems, the present invention uses a small laser output in advance for a short distance where a human may be present in a radar detectable area. The presence or absence of a vehicle and the direction in which it is present are stored in a memory and then stored in a memory. Next, in order to detect a vehicle in front of the vehicle, the memory is utilized and laser light is not emitted in the direction in which a person is present. , It is an object of the present invention to provide a vehicle radar device capable of irradiating a laser beam with a sufficiently large light-transmitting power in a direction in which there is no fear of human beings nearby, and suppressing a decrease in radar output as much as possible. .

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に本発明においては、送光手段と、この送光手段が送出
した光が車両等の物標に当たって反射、散乱された光を
受ける受光手段と、送光タイミングと受光タイミングの
差から物標までの距離を算出する手段と、上記送光手段
からの光の放射方向を変えるための反射体と、この反射
体を回動させる反射体駆動手段とを備えた車両用レーダ
装置において、送光方向毎に送光出力を制御する手段
と、送光パワーを小さい値に制御し予め定めた送光範囲
に対するスキャン測距を行い(予備スキャン測距と呼
ぶ)、送光方向とその方向に対する測距値をメモリに記
憶しておき、次のスキャン測距時には上記小さい送光パ
ワーによる予備スキャン測距時のメモリ内容を参照して
近距離範囲内に物標を検出した方向に対する送光を停止
するように制御し、近距離に物標を検出しなかった方向
に対しては送光パワーを大きい値に制御しながらスキャ
ン測距本スキャン測距とよぶ)を行なう手段と、を備
え、上記2種類のスキャン(予備スキャン、本スキャ
ン)測距を交互に行うことによって、たとえ物標が人体
であっても危害を与えないように送光パワーを制御しな
がら測距することにした。
In order to solve the above problems, the present invention provides a light transmitting means and a light receiving means for receiving the light reflected and scattered by the light transmitted by the light transmitting means when it hits a target such as a vehicle. Means, means for calculating the distance to the target from the difference between the light sending timing and the light receiving timing, a reflector for changing the emission direction of the light from the light sending means, and a reflector for rotating the reflector. In a vehicular radar device equipped with a driving means, means for controlling the light output for each light sending direction and scan distance measurement for a predetermined light sending range by controlling the light sending power to a small value (preliminary scan (Distance measurement), the light transmission direction and the distance measurement value in that direction are stored in the memory, and at the time of the next scan distance measurement, refer to the memory contents at the time of preliminary scan distance measurement with the above small light transmission power and perform short distance measurement. Target within range Control so as to stop the light transmission in the direction in which it emitted, and in the direction where the target was not detected at a short distance, while controlling the light transmission power to a large value, the scan distance measurement is called the main scan distance measurement). By performing the distance measurement of the above two types of scans (preliminary scan and main scan) alternately, the light transmission power is controlled so as not to cause harm even if the target is a human body. I decided to measure the distance.

【0006】[0006]

【発明の効果】以上説明したように本発明によれば、予
備スキャンによってレーダの送光部から近距離の範囲内
に歩行者が検知された場合には、本スキャンに際し、歩
行者が存在する方向へは送光を停止することによって、
レーザビームを人体が眼に受けても(送光パワーの小さ
い予備スキャン時だけなので)危険のないようにするこ
とができ、且つ、歩行者が存在しない方向に対しては、
たとえば前方車両に対しては、多少遠方であっても充分
大きい送光パワーでレーザビームを照射しているので正
確な測距値を得ることができると云う効果が得られる。
As described above, according to the present invention, when a pedestrian is detected within a short distance from the light transmitting section of the radar by the preliminary scan, the pedestrian exists during the main scan. By stopping light transmission in the direction,
Even if the human body receives the laser beam on the eyes (because it is only during the preliminary scan with a small light transmission power), it is possible to avoid danger, and in the direction where there are no pedestrians,
For example, a vehicle ahead is irradiated with a laser beam with a sufficiently large light-transmitting power even if it is a little far away, so that an effect that an accurate distance measurement value can be obtained can be obtained.

【0007】[0007]

【発明の実施の形態】図1は本発明の一実施の形態の装
置ブロック図である。図中、1は送光部、2はマイクロ
コンピュータ、3はレーダヘッド部、4はスキャニング
部、5は回動ミラー、6は受光部、7は距離演算部、8
は送光角度および測距値保存メモリである。
1 is a block diagram of an apparatus according to an embodiment of the present invention. In the figure, 1 is a light transmitting unit, 2 is a microcomputer, 3 is a radar head unit, 4 is a scanning unit, 5 is a rotating mirror, 6 is a light receiving unit, 7 is a distance calculation unit, and 8
Is a memory for storing the light transmission angle and the distance measurement value.

【0008】レーザダイオードを備えた送光部1は、マ
イクロコンピュータ2からの送光トリガ信号に従って、
パルス状の送光ビームを放射する。この際、送光部1は
マイクロコンピュータ2からの送光出力制御信号に従っ
て、レーダヘッド部3から近距離の範囲内に存在する歩
行者検出用の低出力Plまたは通常測距用の高出力Ph
のレーザビームを放射する。この低出力レーザパワーの
値Plと、高出力レーザパワーの値Phは、下記のよう
に選定する。JIS C6802 「レーザ製品の放射安
全基準」より単パルスレーザに対する最大許容露光量M
PEsingleと、連続パルスレーザに対する最大許容露光
量MPEtrainの間には、下記(数1)式に示すような
関係式が成り立ち、一般的にMPEsingle>MPEtrai
nの関係が成り立つ。
The light-transmitting section 1 equipped with a laser diode receives a light-transmitting trigger signal from the microcomputer 2,
It emits a pulsed light beam. At this time, the light transmitting unit 1 has a low output Pl for detecting a pedestrian or a high output Ph for normal distance measurement existing within a short distance from the radar head unit 3 in accordance with a light output control signal from the microcomputer 2.
Emits a laser beam. The low output laser power value Pl and the high output laser power value Ph are selected as follows. From JIS C6802 "Radiation safety standard for laser products", the maximum allowable exposure M for single pulse laser
Between PEsingle and the maximum allowable exposure MPEtrain for continuous pulse laser, a relational expression as shown in the following (Equation 1) is established, and generally MPEsingle> MPEtrai
The relationship of n holds.

【0009】[0009]

【数1】 [Equation 1]

【0010】例えば送光パルス送出レート1000H
z、露光時間1000秒では、露光中に予期されるパル
ス数N=106となり、MPEsingle/MPEtrain=約
32となる。
For example, a light transmission pulse transmission rate 1000H
At z and exposure time of 1000 seconds, the number of pulses expected during exposure is N = 10 6 , and MPEsingle / MPEtrain = about 32.

【0011】図2中、(a)は、レーザレーダ等の送光
素子からの距離Dにおける物標に照射される送光パワー
密度Pの関係をグラフ化したものである。一般にレーザ
パワーPと、送光部からの距離D[m]における送光パワ
ー密度Plとの間には、Pl=kl/D2(但し、k
l:定数)の関係がある。高出力値Phは、レーダヘッ
ド開口部における送光パワー密度が、MPEsingleを下
回るように選定する。この高出力値Phの連続パルスレ
ーザに対する最大許容露光量MPEtrainとなる距離Ds
afeを前記関係式に基づく図2中のグラフ(b)の上の
図から求める。
In FIG. 2, (a) is a graph showing the relationship of the light-transmitting power density P with which a target is irradiated at a distance D from a light-transmitting element such as a laser radar. Generally, between the laser power P and the light-transmitting power density Pl at the distance D [m] from the light-transmitting unit, Pl = kl / D 2 (where k
l: constant). The high output value Ph is selected so that the light transmission power density at the opening of the radar head is lower than MPEsingle. The distance Ds that is the maximum allowable exposure amount MPEtrain for the continuous pulse laser of this high output value Ph
afe is obtained from the upper diagram of the graph (b) in FIG. 2 based on the above relational expression.

【0012】送光部より放射された送光ビームは、スキ
ャニング部4において、マイクロコンピュータ2からの
送光角度信号に対応する角度に回動したミラー5により
放射される。レーダヘッド部3から放射されたレーザビ
ームは、前方車両等により反射、散乱され、その一部が
受光部6で受光され光電変換される。距離演算部7は、
受光部6からの電圧パルス信号の、マイクロコンピュー
タ2からの送光トリガ信号に対する遅延時間から、測距
値を算出する。
The light-transmitting beam emitted from the light-transmitting unit is emitted by the mirror 5 rotated in the scanning unit 4 by an angle corresponding to the light-transmitting angle signal from the microcomputer 2. The laser beam emitted from the radar head unit 3 is reflected and scattered by a vehicle in front and the like, and a part thereof is received by the light receiving unit 6 and photoelectrically converted. The distance calculation unit 7
The distance measurement value is calculated from the delay time of the voltage pulse signal from the light receiving unit 6 with respect to the light transmission trigger signal from the microcomputer 2.

【0013】マイクロコンピュータ2は、低出力ビーム
で得られた各送光角度に対する測距値を送光角度および
測距値保存メモリ8に出力し、このメモリ内容に応じて
ビーム出力を高出力または出力停止に制御しながら本ス
キャン測距を行い、本スキャン測距で得られた測距値を
送光角度と共に外部の車間距離を利用する装置に対して
出力する。
The microcomputer 2 outputs the distance measurement value for each light transmission angle obtained with a low output beam to the light transmission angle and distance measurement value storage memory 8 and outputs the beam output to high output or high output according to the contents of this memory. The main-scan distance measurement is performed while controlling the output stop, and the distance measurement value obtained by the main-scan distance measurement is output to the device that uses the inter-vehicle distance outside together with the light transmission angle.

【0014】図3および図4に、送光パワーおよび測距
動作を制御するマイクロコンピュータの処理手順のフロ
ーチャートを示す。図3は、低出力で予備スキャン測距
を行い、送光部から近距離に存在する歩行者等の物標を
検出する(S1〜S9)フローチャートを示す。図4
は、予備スキャンに引き続いて、高出力による本スキャ
ン測距を行い、測距値を出力する(S10〜S21)フ
ローチャートを示す。上記のような予備スキャンと本ス
キャンを交互に繰り返し行う。
3 and 4 are flowcharts of the processing procedure of the microcomputer for controlling the light transmission power and the distance measuring operation. FIG. 3 shows a flowchart for performing a preliminary scan distance measurement at a low output and detecting a target such as a pedestrian present at a short distance from the light transmitting unit (S1 to S9). FIG.
Shows a flow chart of performing main scan distance measurement with high output following the preliminary scan and outputting the distance measurement value (S10 to S21). The preliminary scan and the main scan as described above are alternately repeated.

【0015】次に、各ステップの内容を処理順序に従っ
て説明する。まず、図3においては、送光部に、送光出
力を低出力にする制御信号を出力する(S1)。スキャ
ンステップカウンタNに1を代入する(S2)。送光角
度および測距値保存メモリからメモリ番号Nに対応する
送光角度を読み出し送光角度変数θNに代入する(S
3)。スキャニング部へ送光角度θNに回動する制御信
号を出力する(S4)。送光部に送光トリガ信号を出力
する(S5)。以上の処理により、前方送光角度θN
に、低出力レーダビームが放射される。距離演算部が算
出した物標に対する測距値Dを読み取る(S6)。距離
演算部から読み取った測距値Dを、メモリ番号Nに対応
する測距値記憶位置に保存する(S7)。スキャンステ
ップカウンタNを1増やす(S8)。Nが終了値(本実
施の形態ではN=92)となり、所定の全スキャン角度
に対する測距動作が終了するまで繰り返し、予備スキャ
ン測距を終了したら、本スキャン測距を開始する(S
9)。スキャンステップカウンタNに1を代入する(S
10)。
Next, the contents of each step will be described according to the processing order. First, in FIG. 3, a control signal for lowering the light transmission output is output to the light transmitting unit (S1). 1 is assigned to the scan step counter N (S2). The light transmission angle corresponding to the memory number N is read out from the light transmission angle and distance measurement value storage memory and is substituted into the light transmission angle variable θN (S
3). A control signal for rotating the light sending angle θN is output to the scanning unit (S4). A light sending trigger signal is output to the light sending unit (S5). By the above processing, the forward light transmission angle θN
Then, a low power radar beam is emitted. The distance measurement value D for the target calculated by the distance calculation unit is read (S6). The distance measurement value D read from the distance calculation unit is stored in the distance measurement value storage position corresponding to the memory number N (S7). The scan step counter N is incremented by 1 (S8). N is an end value (N = 92 in the present embodiment), and is repeated until the distance measurement operation for all predetermined scan angles is completed, and when the preliminary scan distance measurement is completed, the main scan distance measurement is started (S
9). Substitute 1 for the scan step counter N (S
10).

【0016】次に、図4においては、送光角度および測
距値保存メモリからスキャンステップカウンタNに対応
する送光角度および予備スキャン測距で得た測距値を読
み出し、送光角度変数θN、および測距値変数DNにそ
れぞれ代入する(S11)。DNが所定の高出力ビーム
に対するMPE値を超える距離Dsafe以下となる場合
は、送光出力を停止する制御信号を送光部に出力する。
DNがDsafeより大きい場合もしくは、物標が検出され
ない場合は、送光出力を高出力に制御する信号を送光部
に出力する(S12,S13,S14)。スキャニング
部へ送光角度θNに回動する制御信号を出力する(S1
5)。送光部に送光トリガ信号を出力する(S16)。
距離演算部が算出した物標に対する測距値Dを読み取る
(S17)。読み取った測距値D、及び送光角度θNを
外部の装置に対して出力する(S18)。スキャンステ
ップカウンタNを1増やす(S19)。Nが終了値(本
実施の形態ではN=92)となり、所定の全スキャン角
度に対する測距動作が終了するまで繰り返す(S2
0)。この本スキャン測距が終了したら、続いて予備ス
キャンを行い、これを交互に繰り返す。
Next, in FIG. 4, the light sending angle corresponding to the scan step counter N and the distance measurement value obtained by the preliminary scan distance measurement are read from the light sending angle and distance measurement value storage memory, and the light sending angle variable θN is read. , And the distance measurement value variable DN (S11). When DN is equal to or less than the distance Dsafe that exceeds the MPE value for a predetermined high-power beam, a control signal for stopping the light-transmitting output is output to the light-transmitting unit.
When DN is larger than Dsafe or when the target is not detected, a signal for controlling the light transmission output to a high output is output to the light transmission unit (S12, S13, S14). A control signal for rotating the light sending angle θN is output to the scanning unit (S1).
5). A light sending trigger signal is output to the light sending unit (S16).
The distance measurement value D for the target calculated by the distance calculation unit is read (S17). The read distance measurement value D and the light transmission angle θN are output to an external device (S18). The scan step counter N is incremented by 1 (S19). N is an end value (N = 92 in the present embodiment), and repeats until the distance measurement operation for all predetermined scan angles is completed (S2).
0). When this main scan distance measurement is completed, a preliminary scan is subsequently performed, and this is repeated alternately.

【0017】図5に送光角度および測距値保存メモリの
記憶領域を図解したものを示す。各行が、メモリ番号、
送光角度、測距値の1組のデータセットに対応してい
る。送光角度は、メモリ番号に対して所定の値に固定さ
れているので、ROM等の不揮発性のメモリを使用す
る。測距値は、予備スキャン測距毎に変更されるので、
変更可能なRAM等のメモリを用いる。
FIG. 5 illustrates a storage area of the light transmission angle and distance measurement value storage memory. Each line is a memory number,
It corresponds to one data set of the light transmission angle and the distance measurement value. Since the light transmission angle is fixed to a predetermined value for the memory number, a non-volatile memory such as a ROM is used. Since the distance measurement value is changed for each preliminary scan distance measurement,
A memory such as a changeable RAM is used.

【0018】図6は、レーザレーダ部近傍に歩行者がい
た場合と、いない場合の本スキャン測距時の出力制御の
様子を概念的に示した図である。図中、3はレーダヘッ
ド部、10は自車両、11は前方車両、12は歩行者、
13は安全領域境界、14は本スキャン測距の送光ビー
ムである。図6(a)は、安全領域境界13より近距離
のMPE(最大許容露光量)値を超える範囲に歩行者が
いない場合を示しており、予備スキャン測距時に所定距
離内に物標が検出されないため、所定の検知領域内の全
送光角度に対して高出力ビームにより測距が行われるこ
とを示している。図6(b)は予備スキャン測距時に安
全領域境界より近距離のMPE値を超える範囲に物標
(この場合は歩行者)が検出されたため、歩行者が予備
スキャンで検知された角度に対しては送光を停止し、そ
れ以外の角度(この例では前方に車両が存在する方向)
に対しては高出力ビームにより測距が行われることを示
している。
FIG. 6 is a diagram conceptually showing a state of output control at the time of main scan distance measurement with and without a pedestrian near the laser radar section. In the figure, 3 is a radar head unit, 10 is a host vehicle, 11 is a forward vehicle, 12 is a pedestrian,
Reference numeral 13 is a safe area boundary, and 14 is a light-transmitting beam for main scan distance measurement. FIG. 6A shows a case where there is no pedestrian in a range exceeding the MPE (maximum permissible exposure amount) value in a short distance from the safety area boundary 13, and a target is detected within a predetermined distance during preliminary scan distance measurement. Since this is not done, it indicates that the distance measurement is performed by the high-power beam for all the light transmission angles within the predetermined detection area. In FIG. 6B, the target (a pedestrian in this case) is detected in a range exceeding the MPE value at a short distance from the safety area boundary during the preliminary scan distance measurement. The light transmission is stopped for other angles (in this example, the direction in which the vehicle is ahead)
Indicates that distance measurement is performed with a high-power beam.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施の形態を示す装置ブロック図で
ある。
FIG. 1 is a device block diagram showing an embodiment of the present invention.

【図2】(a)は横軸に送光素子からの距離をとり、縦
軸に送光パワー密度をとって、JISに定められた単パ
ルスの場合と連続パルスの場合に対する最大許容露光値
や物標検知に必要な送光パワーを示す図で、(b)の上
の図は、横軸に送光素子からの距離を、縦軸に送光パワ
ー密度Pをとり、下の図は横軸に物標までの距離を、縦
軸に物標検知に必要な送光パワーをとって、歩行者にと
って限界的な安全な距離Dsafeを説明する図である。
[FIG. 2] (a) shows the maximum allowable exposure value for a single pulse and a continuous pulse specified in JIS, with the horizontal axis indicating the distance from the light-transmitting element and the vertical axis indicating the light-transmitting power density. In the figure above (b), the horizontal axis shows the distance from the light-sending element, and the vertical axis shows the light-sending power density P. FIG. 6 is a diagram for explaining a safe distance Dsafe that is marginal to a pedestrian, in which the horizontal axis represents the distance to the target and the vertical axis represents the light transmission power required for target detection.

【図3】低出力で予備スキャン測距を行う場合に近距離
に存在する歩行者等の物標を検出する際のフローチャー
トを示す図である。
FIG. 3 is a diagram showing a flowchart for detecting a target such as a pedestrian present at a short distance when performing preliminary scan ranging with low output.

【図4】予備スキャンに引き続いて高出力による本スキ
ャン測距を行って測距値を出力する際のフローチャート
を示す図である。
FIG. 4 is a diagram showing a flowchart for outputting a distance measurement value by performing high scan main scan distance measurement following a preliminary scan.

【図5】送光角度および測距値保存メモリの記憶領域を
図解した図である。
FIG. 5 is a diagram illustrating a storage area of a light transmission angle and distance measurement value storage memory.

【図6】(a)はレーザレーダ部近傍に歩行者がいない
場合の、(b)はレーザレーダ部近傍に歩行者がいた場
合の、本スキャン測距の出力制御の様子を概念的に示し
た図である。
6A and 6B conceptually show output control of the main scanning distance measurement when there are no pedestrians near the laser radar unit and in FIG. 6B when there are pedestrians near the laser radar unit. It is a figure.

【符号の説明】[Explanation of symbols]

1…送光部 2…マイクロコ
ンピュータ 3…レーダヘッド部 4…スキャニン
グ部 5…回動ミラー 6…受光部 7…距離演算部 8…送光角度お
よび測距値保存メモリ 10…自車両 11…前方車両 12…歩行者 13…安全領域
境界 14…本スキャン測距の送光ビーム
DESCRIPTION OF SYMBOLS 1 ... Light sending part 2 ... Microcomputer 3 ... Radar head part 4 ... Scanning part 5 ... Rotating mirror 6 ... Light receiving part 7 ... Distance calculation part 8 ... Light sending angle and distance measurement value storage memory 10 ... Own vehicle 11 ... Forward Vehicle 12 ... Pedestrian 13 ... Safety area boundary 14 ... Light beam for main scan distance measurement

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】送光手段と、送光手段が送出した光が車両
等の物標に当たって反射、散乱された光を受ける受光手
段と、送光タイミングと受光タイミングの差から物標ま
での距離を算出する手段と、上記送光手段からの光の放
射方向を変えるための反射体と、反射体を回動させる反
射体駆動手段とを備えた車両用レーダ装置において、送
光方向毎に送光出力を制御する手段と、 送光パワーを小さい値に制御して予め定めた送光範囲に
対するスキャン測距を行い、送光方向とその方向に対す
る測距値をメモリに記憶しておき、次のスキャン測距時
に、上記小さい送光パワーによるスキャン測距時のメモ
リ内容を参照して、近距離範囲内に物標を検出した方向
に対する送光を停止するように制御し、近距離に物標を
検出しなかった方向に対しては送光パワーを大きい値に
制御するスキャン測距を行う手段と、 を備え、上記2種類のスキャン測距を交互に行うことに
よって、検出した物標が人体であっても、それに危害を
与えないように制御することを特徴とする車両用レーダ
装置。
1. A light transmitting means, a light receiving means for receiving the light reflected by the light emitted by the light transmitting means when hitting a target such as a vehicle and scattered, and a distance from the difference between the light transmitting timing and the light receiving timing to the target. In a vehicle radar device including a means for calculating, a reflector for changing the emission direction of the light from the light transmitting means, and a reflector driving means for rotating the reflector. A means for controlling the light output, and controlling the light transmission power to a small value to perform scan distance measurement for a predetermined light transmission range, store the light transmission direction and the distance measurement value for that direction in memory, and then At the time of the scan distance measurement of, the memory content at the time of the scan distance measurement with the small light transmission power is referred to, and control is performed to stop the light transmission in the direction in which the target is detected within the short range, If the target is not detected, it will be sent. A means for performing scan distance measurement for controlling the optical power to a large value is provided, and by performing the above two types of scan distance measurement alternately, even if the detected target is a human body, it does not harm it. A radar device for a vehicle, characterized in that
JP8009980A 1996-01-24 1996-01-24 Radar device for vehicles Pending JPH09197045A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8009980A JPH09197045A (en) 1996-01-24 1996-01-24 Radar device for vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8009980A JPH09197045A (en) 1996-01-24 1996-01-24 Radar device for vehicles

Publications (1)

Publication Number Publication Date
JPH09197045A true JPH09197045A (en) 1997-07-31

Family

ID=11735057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8009980A Pending JPH09197045A (en) 1996-01-24 1996-01-24 Radar device for vehicles

Country Status (1)

Country Link
JP (1) JPH09197045A (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002181937A (en) * 2000-12-12 2002-06-26 Denso Corp Distance measuring apparatus
JP2002539434A (en) * 1999-03-11 2002-11-19 フオルクスワーゲン・アクチエンゲゼルシヤフト Apparatus having at least one laser sensor and method for operating the laser sensor
JP2006258457A (en) * 2005-03-15 2006-09-28 Omron Corp Laser scanning apparatus
JP2006276647A (en) * 2005-03-30 2006-10-12 Sanyo Electric Co Ltd Portable terminal
JP2011017666A (en) * 2009-07-10 2011-01-27 Nippon Signal Co Ltd:The Optical range finder
WO2011033971A1 (en) * 2009-09-15 2011-03-24 本田技研工業株式会社 Distance measuring apparatus, distance measuring method, and program
JP2012198209A (en) * 2011-03-22 2012-10-18 Exelis Inc Method and device for controlling laser transmission with enhanced safety
KR20180046332A (en) * 2016-10-25 2018-05-08 전자부품연구원 Optical transmitting and receiving device and method
US20180341009A1 (en) * 2016-06-23 2018-11-29 Apple Inc. Multi-range time of flight sensing
KR20190049871A (en) * 2016-09-20 2019-05-09 이노비즈 테크놀로지스 엘티디 LIDAR system and method
KR20190071998A (en) * 2017-12-15 2019-06-25 에이테크솔루션(주) Lidar apparatus for vehicle
WO2019186741A1 (en) * 2018-03-28 2019-10-03 日本電気株式会社 Distance measurement sensor, control device, control method, and non-temporary computer-readable medium with program stored therein
US10620300B2 (en) 2015-08-20 2020-04-14 Apple Inc. SPAD array with gated histogram construction
JP2020529583A (en) * 2017-06-30 2020-10-08 エイ・キューブド・バイ・エアバス・エル・エル・シー Systems and methods for adjusting the range of lidar sensors on an aircraft
US10830879B2 (en) 2017-06-29 2020-11-10 Apple Inc. Time-of-flight depth mapping with parallax compensation
US10955234B2 (en) 2019-02-11 2021-03-23 Apple Inc. Calibration of depth sensing using a sparse array of pulsed beams
US10955552B2 (en) 2017-09-27 2021-03-23 Apple Inc. Waveform design for a LiDAR system with closely-spaced pulses
CN112977393A (en) * 2021-04-22 2021-06-18 周宇 Automatic driving anti-collision avoiding device and method thereof
EP3839551A1 (en) * 2019-12-16 2021-06-23 Hexagon Technology Center GmbH Object specific measuring with an opto-electronic measuring device
JP2022506031A (en) * 2018-11-02 2022-01-17 ウェイモ エルエルシー Methods and systems for retroreflector mapping
US11500094B2 (en) 2019-06-10 2022-11-15 Apple Inc. Selection of pulse repetition intervals for sensing time of flight
US11555900B1 (en) 2019-07-17 2023-01-17 Apple Inc. LiDAR system with enhanced area coverage
US11681028B2 (en) 2021-07-18 2023-06-20 Apple Inc. Close-range measurement of time of flight using parallax shift
US11733359B2 (en) 2019-12-03 2023-08-22 Apple Inc. Configurable array of single-photon detectors
US11852727B2 (en) 2017-12-18 2023-12-26 Apple Inc. Time-of-flight sensing using an addressable array of emitters
US11877056B2 (en) 2019-11-29 2024-01-16 Fujifilm Corporation Information processing apparatus, information processing method, and program
WO2024090040A1 (en) * 2022-10-28 2024-05-02 ソニーグループ株式会社 Information processing device, information processing method, and program

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002539434A (en) * 1999-03-11 2002-11-19 フオルクスワーゲン・アクチエンゲゼルシヤフト Apparatus having at least one laser sensor and method for operating the laser sensor
US6710859B2 (en) 2000-12-12 2004-03-23 Denso Corporation Distance measurement apparatus
JP2002181937A (en) * 2000-12-12 2002-06-26 Denso Corp Distance measuring apparatus
JP2006258457A (en) * 2005-03-15 2006-09-28 Omron Corp Laser scanning apparatus
JP2006276647A (en) * 2005-03-30 2006-10-12 Sanyo Electric Co Ltd Portable terminal
JP2011017666A (en) * 2009-07-10 2011-01-27 Nippon Signal Co Ltd:The Optical range finder
WO2011033971A1 (en) * 2009-09-15 2011-03-24 本田技研工業株式会社 Distance measuring apparatus, distance measuring method, and program
JP2011064498A (en) * 2009-09-15 2011-03-31 Honda Motor Co Ltd Range finder, ranging method, and program therefor
US8768010B2 (en) 2009-09-15 2014-07-01 Honda Motor Co., Ltd. Distance measuring apparatus, distance measuring method, and program
JP2012198209A (en) * 2011-03-22 2012-10-18 Exelis Inc Method and device for controlling laser transmission with enhanced safety
US10620300B2 (en) 2015-08-20 2020-04-14 Apple Inc. SPAD array with gated histogram construction
US11415679B2 (en) 2015-08-20 2022-08-16 Apple Inc. SPAD array with gated histogram construction
US10795001B2 (en) 2016-06-23 2020-10-06 Apple Inc. Imaging system with synchronized scan and sensing
US20180341009A1 (en) * 2016-06-23 2018-11-29 Apple Inc. Multi-range time of flight sensing
KR20220163509A (en) * 2016-09-20 2022-12-09 이노비즈 테크놀로지스 엘티디 Lidar systems and methods
KR20220159493A (en) * 2016-09-20 2022-12-02 이노비즈 테크놀로지스 엘티디 Lidar systems and methods
JP2019535014A (en) * 2016-09-20 2019-12-05 イノヴィズ テクノロジーズ リミテッド LIDAR system and method
KR20190049871A (en) * 2016-09-20 2019-05-09 이노비즈 테크놀로지스 엘티디 LIDAR system and method
JP2020126065A (en) * 2016-09-20 2020-08-20 イノヴィズ テクノロジーズ リミテッド LIDAR system and method
KR20180046332A (en) * 2016-10-25 2018-05-08 전자부품연구원 Optical transmitting and receiving device and method
US10830879B2 (en) 2017-06-29 2020-11-10 Apple Inc. Time-of-flight depth mapping with parallax compensation
JP2020529583A (en) * 2017-06-30 2020-10-08 エイ・キューブド・バイ・エアバス・エル・エル・シー Systems and methods for adjusting the range of lidar sensors on an aircraft
US10955552B2 (en) 2017-09-27 2021-03-23 Apple Inc. Waveform design for a LiDAR system with closely-spaced pulses
KR20190071998A (en) * 2017-12-15 2019-06-25 에이테크솔루션(주) Lidar apparatus for vehicle
US11852727B2 (en) 2017-12-18 2023-12-26 Apple Inc. Time-of-flight sensing using an addressable array of emitters
WO2019186741A1 (en) * 2018-03-28 2019-10-03 日本電気株式会社 Distance measurement sensor, control device, control method, and non-temporary computer-readable medium with program stored therein
JP2022506031A (en) * 2018-11-02 2022-01-17 ウェイモ エルエルシー Methods and systems for retroreflector mapping
US10955234B2 (en) 2019-02-11 2021-03-23 Apple Inc. Calibration of depth sensing using a sparse array of pulsed beams
US11500094B2 (en) 2019-06-10 2022-11-15 Apple Inc. Selection of pulse repetition intervals for sensing time of flight
US11555900B1 (en) 2019-07-17 2023-01-17 Apple Inc. LiDAR system with enhanced area coverage
US11877056B2 (en) 2019-11-29 2024-01-16 Fujifilm Corporation Information processing apparatus, information processing method, and program
US11733359B2 (en) 2019-12-03 2023-08-22 Apple Inc. Configurable array of single-photon detectors
EP3839551A1 (en) * 2019-12-16 2021-06-23 Hexagon Technology Center GmbH Object specific measuring with an opto-electronic measuring device
CN112977393A (en) * 2021-04-22 2021-06-18 周宇 Automatic driving anti-collision avoiding device and method thereof
CN112977393B (en) * 2021-04-22 2024-01-12 周宇 Automatic driving anti-collision avoiding device and method thereof
US11681028B2 (en) 2021-07-18 2023-06-20 Apple Inc. Close-range measurement of time of flight using parallax shift
WO2024090040A1 (en) * 2022-10-28 2024-05-02 ソニーグループ株式会社 Information processing device, information processing method, and program

Similar Documents

Publication Publication Date Title
JPH09197045A (en) Radar device for vehicles
US6819407B2 (en) Distance measuring apparatus
US6580385B1 (en) Object detection system
US6856919B1 (en) Device with at least one laser sensor and method of operating a laser sensor
JP3185547B2 (en) Distance measuring device
EP3035086A2 (en) Quick vehicle check system and method adopting multi-dose regional scanning
JP2000075030A (en) Scanning laser radar
JP3757937B2 (en) Distance measuring device
US6498647B1 (en) Device for measuring visual range
US20210263156A1 (en) Camera system, vehicle and sensor system
JP3070277B2 (en) Preceding vehicle detection device
JP2001255371A (en) Distance measuring device for motor vehicle
JP4284652B2 (en) Radar equipment
JP2000009841A (en) Object detecting apparatus
JP3641912B2 (en) Inter-vehicle distance alarm device
JP2576638B2 (en) Leading vehicle recognition device
JPH06289138A (en) Obstacle detecting device
JPH07174851A (en) Distance measuring device for vehicle
JP2000028720A (en) Distance measuring device
JPH10239432A (en) Distance measuring device
JP4281456B2 (en) Leading vehicle detection device
JP4221663B2 (en) Radar equipment
JPH06148319A (en) Preceding vehicle detector
KR20160000126A (en) Automotive collision avoidance sensor
JPH0784046A (en) Distance measuring apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051004