JPH0919408A - Living body light measuring device and image forming method in the device - Google Patents

Living body light measuring device and image forming method in the device

Info

Publication number
JPH0919408A
JPH0919408A JP7169820A JP16982095A JPH0919408A JP H0919408 A JPH0919408 A JP H0919408A JP 7169820 A JP7169820 A JP 7169820A JP 16982095 A JP16982095 A JP 16982095A JP H0919408 A JPH0919408 A JP H0919408A
Authority
JP
Japan
Prior art keywords
light
image
measurement
living body
subject
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7169820A
Other languages
Japanese (ja)
Other versions
JP3599426B2 (en
Inventor
Atsushi Maki
敦 牧
Yuichi Yamashita
優一 山下
Yoshitoshi Ito
嘉敏 伊藤
Hideaki Koizumi
英明 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP16982095A priority Critical patent/JP3599426B2/en
Priority to US08/539,871 priority patent/US5803909A/en
Publication of JPH0919408A publication Critical patent/JPH0919408A/en
Priority to US09/149,155 priority patent/US6128517A/en
Priority to US09/203,610 priority patent/US6282438B1/en
Priority to US09/900,144 priority patent/US7286870B2/en
Application granted granted Critical
Publication of JP3599426B2 publication Critical patent/JP3599426B2/en
Priority to US11/037,282 priority patent/US7440794B2/en
Priority to US11/037,338 priority patent/US8050744B2/en
Priority to US11/037,339 priority patent/US7715904B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To form an image of a biodynamic function by measuring it in a short time by using a simple detector. SOLUTION: Light 2a∼2d of plural wavelength whose intensity are modulated by means of different frequencies 1a∼1d are applied from plural irradiation positions on a living body 6 surface, and time change of a living body transmission light intensity on each wavelength and each radiation position re measured (7, 8, 9). Change of concentration of an absorbed body in the living body is determined from the living body transmitting light intensity of plural wavelengths which are measured at each detecting point after completion of measurement or during measurement (11), and an image 13 is formed by setting a measuring point on a perpendicular which passes through an intermediate point between each incident point and each detecting point.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、生体光計測装置及びそ
の装置における画像作成方法、すなわち、生体内部の情
報を光を用いて測定し、測定結果を画像化する生体光計
測装置及び画像作成方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a living body optical measuring device and an image forming method in the living body optical measuring device, that is, a living body optical measuring device and an image forming apparatus for measuring information inside a living body using light and imaging the measurement result. Regarding the method.

【0002】[0002]

【従来の技術】生体内部を簡便かつ生体に害を与えずに
測定する装置もしくは方法が臨床医療で望まれている。
この要望に対し、光を用いた計測は非常に有効である。
その第一の理由は、生体内部の酸素代謝機能は生体中の
特定色素(ヘモグロビン、チトクロームaa3、ミオグロ
ビン等)、すなわち、光吸収体の濃度に対応し、この特
定色素濃度は光(可視から近赤外領域の波長)吸収量から
求められるからである。第二の理由は、光は光ファイバ
によって扱いが簡便であるからである。第三の理由は、
光計測は、安全基準の範囲内での使用により生体に害を
与えないことが挙げられる。
2. Description of the Related Art An apparatus or method for simply measuring the inside of a living body without harming the living body is desired in clinical medicine.
For this demand, measurement using light is very effective.
The first reason is that the oxygen metabolism function inside the living body corresponds to the concentration of a specific dye (hemoglobin, cytochrome aa3, myoglobin, etc.) in the living body, that is, the concentration of the light absorber, and this specific dye concentration is light (from visible to near This is because it is calculated from the absorption amount (wavelength in the infrared region). The second reason is that light is easy to handle with an optical fiber. The third reason is
The optical measurement does not harm the living body when used within the range of safety standards.

【0003】このような光を用いた生体計測の利点を利
用して、可視から近赤外の波長の光を生体に照射し、照
射位置から10−50mm程度離れた位置での反射光か
ら生体内部を測定する装置が、例えば、公開特許公報、
特開昭63−277038号、特開平5−300887
号等に記載されている。また、厚さ100−200mm
程度の生体を透過した光から酸素代謝機能のCT画像を
計測する装置すなわち光CT装置が、例えば公開特許公
報、特開昭60−72542号、特開昭62−2316
25号に記載されている。
Utilizing the advantages of living body measurement using such light, the living body is irradiated with light having a wavelength from visible to near infrared, and the living body is detected from reflected light at a position about 10-50 mm away from the irradiation position. A device for measuring the inside is, for example, an open patent publication,
JP-A-63-277038, JP-A-5-300878
No. etc. Also, thickness 100-200mm
A device for measuring a CT image of oxygen metabolism function from light transmitted through a living body, that is, an optical CT device is disclosed in, for example, Japanese Patent Laid-Open Publication No. 60-72542 and Japanese Patent Publication No. 62-2316.
No. 25.

【0004】[0004]

【発明が解決しようとする課題】生体光計測による臨床
応用としては、例えば頭部を計測対象とする場合、脳の
酸素代謝の活性化状態及び局所的な脳内出血の計測等が
挙げられる。また、脳内の酸素代謝に関連して、運動、
感覚さらには思考に及ぶ高次脳機能等を計測することも
可能である。このような計測においては、非画像よりも
画像として計測し表示することにより、その効果は飛躍
的に増大する。例えば、局所的な酸素代謝の変化部位の
検出等では、画像として計測及び表示することが不可欠
である。
The clinical application by optical measurement of the living body includes, for example, measurement of the activated state of oxygen metabolism in the brain and local intracerebral hemorrhage when the head is a measurement target. Also, in relation to oxygen metabolism in the brain, exercise,
It is also possible to measure higher brain functions such as sensation and thinking. In such measurement, the effect is dramatically increased by measuring and displaying as an image rather than a non-image. For example, it is essential to measure and display as an image when detecting a local oxygen metabolism change site.

【0005】しかし、従来技術には以下に示す問題点が
存在する。まず、前記反射光による計測では画像化のた
めの計測及び表示の方法が提示されていない。そのた
め、局所的に酸素代謝が変化した場合、変化部位の検出
は困難である。また、透過光を用いた光CT装置は、局
所的な変化の検出を画像として検出可能であるが、生体
透過光強度は反射光強度に比べて数桁小さくなり非常に
微弱であり、検出される透過光信号はランダムな雑音成
分に埋もれてしまう。そのため、透過光信号を雑音に対
して充分大きくなるように計測するためには、高価な微
弱光検出器が必要で、かつ、雑音を除去して透過光信号
を抽出するために計測時間すなわち計測の積算回数を増
加させる必要も生じる。その結果、計測時間が長くな
り、被検体へ精神的負担を与えるだけではなく、装置の
稼働効率が低下してしまう。
However, the prior art has the following problems. First, in the measurement using the reflected light, a measurement and display method for imaging is not presented. Therefore, when the oxygen metabolism locally changes, it is difficult to detect the changed part. An optical CT device using transmitted light can detect a local change as an image, but the transmitted light intensity of a living body is several orders of magnitude smaller than the reflected light intensity, which is extremely weak. The transmitted optical signal is buried in random noise components. Therefore, an expensive feeble light detector is required to measure the transmitted light signal to be sufficiently large with respect to noise, and the measurement time, that is, the measurement time, is required to remove the noise and extract the transmitted light signal. It also becomes necessary to increase the number of times of integration. As a result, the measurement time becomes long, which not only imposes a mental burden on the subject, but also reduces the operating efficiency of the device.

【0006】従って、本発明の目的は以上の課題を解決
し、簡易な検出器を用い、さらに短時間での計測で、生
体機能の状態を画像化する生体計測装置及びその装置を
用いて計測結果を画像化する方法を実現することであ
る。
Therefore, the object of the present invention is to solve the above problems and to measure by using a biometric measuring device and a device for visualizing the state of biological function by using a simple detector and measuring in a shorter time. It is to realize a method of imaging the result.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、本発明の生体計測装置は、被検体に可視から近赤外
領域の波長の光を照射する複数の光照射手段と、上記光
照射手段から照射され、被検体内部で反射された光を検
出する複数の受光手段と、上記受光手段で検出された信
号を複数の受光手段毎にかつ経時的に記憶記憶する記憶
手段と、上記記憶手段に記憶された信号を用いて複数の
計測点の計測対象の信号に変換する演算手段と、上記演
算手段の出力を上記測定位置を表す二次元表示面に強度
信号として表すトポグラフィ画像として表示する画像作
成部を設けた。特に、上記複数の光照射手段のそれぞれ
は波長のことなる複数の光源と、上記複数の光源の光を
互いに異なった周波数で変調する変調器と、変調された
複数の光を照射位置に導く導波手段とからなり、上記複
数の受光手段のそれぞれは上記波長の異なる複数の光源
からの光の強度を分離する分離手段をもつ。
In order to achieve the above object, the bioinstrumentation apparatus of the present invention comprises a plurality of light irradiating means for irradiating a subject with light having a wavelength in the visible to near infrared region, and the above light irradiating means. A plurality of light receiving means for detecting the light emitted from the means and reflected inside the subject; a storage means for storing and storing the signals detected by the light receiving means for each of the plurality of light receiving means over time; Calculating means for converting the signals stored in the means into signals to be measured at a plurality of measuring points; and displaying the output of the calculating means as a topographic image represented as an intensity signal on the two-dimensional display surface representing the measurement position. An image creation unit was provided. In particular, each of the plurality of light irradiation means has a plurality of light sources with different wavelengths, a modulator that modulates the light of the plurality of light sources with different frequencies, and a guide that guides the plurality of modulated lights to the irradiation position. Wave means, and each of the plurality of light receiving means has a separating means for separating the intensity of light from the plurality of light sources having different wavelengths.

【0008】上記生体計測装置を用いて、生体内部の機
能を計測する場合、上記複数の光照射手段の光照射位置
を被検体の測定部に分布して配置し、かつ分布して配置
された光照射位置のそれぞれの周辺部に上記複数の受光
手段の受光部を複数個配置し、上記複数の受光手段で検
出された光信号を上記光の照射位置と検出位置との中点
で、かつ生体表面に対する生体内部への垂線上の任意の
位置を計測点として設定する。上記計測点及び上記計測
点に対応した検出された光信号強度を2次元画像上に表
示する。また、トポグラフィ画像として表示する場合
に、測定されていない位置の信号を上記計測点の補間信
号によって得るようにしてもよい。上記被体が生体であ
る場合、上記照射位置と検出位置との距離は10から5
0mm程度が望ましい。
When the function inside the living body is measured using the living body measuring apparatus, the light irradiating positions of the plurality of light irradiating means are distributed and arranged on the measuring portion of the subject, and they are arranged in a distributed manner. A plurality of light receiving portions of the plurality of light receiving means are arranged in the peripheral portion of each light irradiation position, and an optical signal detected by the plurality of light receiving means is set at a midpoint between the light irradiation position and the detection position, and An arbitrary position on the perpendicular to the inside of the living body with respect to the living body surface is set as a measurement point. The measurement point and the detected optical signal intensity corresponding to the measurement point are displayed on the two-dimensional image. Further, when displaying as a topography image, a signal at a position that is not measured may be obtained by an interpolation signal at the measurement point. When the subject is a living body, the distance between the irradiation position and the detection position is 10 to 5
About 0 mm is desirable.

【0009】[0009]

【作用】本発明は計測の位置の情報は光照射手段の被検
体への光照射位置及び受光手段の位置によってほぼ一義
的に決定されるので、トポグラフィ画像として表示する
ための信号処理が簡単かつ高速に行える。また、受光手
段の位置が光照射位置から10〜50mm程度の近く
で、反射光を利用することになり、100から200m
m程度の生体を透過した光に比べて検出強度が充分に大
きい。そのため、簡易な光検出器で、かつ、短い時間で
の計測が可能となる。
According to the present invention, the information on the measurement position is almost uniquely determined by the light irradiation position of the light irradiation unit on the subject and the position of the light receiving unit, so that the signal processing for displaying as a topographic image is simple and easy. Can be done at high speed. Further, when the position of the light receiving means is about 10 to 50 mm from the light irradiation position, the reflected light is used, and 100 to 200 m
The detection intensity is sufficiently higher than that of light transmitted through a living body of about m. Therefore, it becomes possible to measure with a simple photodetector in a short time.

【0010】例えば、計測対象(被検体)を頭部とした
場合、照射位置と検出位置の距離が少なくとも30mm
であれば、検出光は皮膚及び頭蓋骨を通過して脳の表面
部、すなわち大脳皮質に到達していることが知られてい
ることが、例えば、パトリック・ダブリュ・マコーミッ
ク(Patrick W. McCormick)他による「赤外光の大脳内浸
透(Intracerebral penetration of infrared ligh
t)」,1992年2月発行のジャーナルオブニューロサ
ージェリ、第76巻、第315−318項(J Neurosur
g. ,76, 315 (1992))により報告されている。また、照
射及び検出位置の中点から生体表面に対する生体内部へ
の垂線上の位置での情報が、このような位置で検出され
た光には最も多く含まれていることが、生体中の光伝播
特性から知られている。この特性として例えば、シェカ
オ・フェン(Shechao Feng)他による「多重散乱媒体中で
の光子移動路分布のモンテカルロシミュレーション(Mon
te Carlosimulationsof photon path distribution in
multiple scattering media)」、1993年エス・ピィ
・アイ・イー発行の会議録第1888巻、ランダム媒体
及び生体組織における光子移動と画像、第78ー89項
(SPIE, Proceedings ofphoton migration and imaging
in random media and tissues, 1888, 78 (1993))によ
り報告されている。
For example, when the measurement target (subject) is the head, the distance between the irradiation position and the detection position is at least 30 mm.
Then, it is known that the detected light passes through the skin and the skull to reach the surface part of the brain, that is, the cerebral cortex, for example, Patrick W. McCormick et al. By Intracerebral penetration of infrared ligh
t) ”, Journal of Neurosurgery, Vol. 76, pp. 315-318, published February 1992 (J Neurosur
g., 76, 315 (1992)). In addition, the information in the position on the normal line from the midpoint of the irradiation and detection position to the inside of the living body relative to the surface of the living body contains the most information in the light detected at such a position. It is known for its propagation characteristics. This property is described, for example, by Shechao Feng et al. In “Monte Carlo Simulation of Photon Transfer Path Distribution in Multiple Scattering Media (Mon.
te Carlosimulationsof photon path distribution in
multiple scattering media) ", Proceedings of Spiai Ie, 1993, Volume 1888, Photon migration and images in random media and biological tissues, paragraphs 78-89.
(SPIE, Proceedings of photon migration and imaging
in random media and tissues, 1888, 78 (1993)).

【0011】本発明の生体光計測装置では、多数位置の
測定を行うには、多数の光照射手段と受光手段を必要と
するが、後述の実施例に示すように、部分的位置の測定
には、効果があり、複数の計測点に対して得られた計測
結果を、各計測点ごとに補間する簡単な演算処理で高速
にトポグラフィ画像が得られる。
In the living body optical measurement system of the present invention, a large number of light irradiating means and a large number of light receiving means are required to measure a large number of positions. Is effective, and a topography image can be obtained at high speed by a simple calculation process of interpolating the measurement results obtained for a plurality of measurement points for each measurement point.

【0012】[0012]

【実施例】以下、本発明の実施例について説明する。図
1は、本発明による生体光計測装置の一実施例の構成を
示す。本実施例は、生体光計測装置を、脳機能に伴う血
液動態変化(酸化及び還元ヘモグロビン濃度の相対変化
量)の計測に適用した例である。脳の特定部位は生体の
特定機能(例えば指等身体の一部を動かす等)の制御に
関連しており、その特定機能を動作することで、脳の特
定部位の血液動態が変化する。上記特定機能が働くよう
な負荷、例えば、指を動かす等を加え、血液動態変化を
計測し、脳の部位を表す2次平面画像に等高線図として
表示することが本実施例の生体光計測装置を用いて行う
ことができる。
Embodiments of the present invention will be described below. FIG. 1 shows the configuration of an embodiment of a biological optical measurement device according to the present invention. The present embodiment is an example in which the biological optical measurement device is applied to the measurement of hemodynamic changes (relative changes in oxygenated and reduced hemoglobin concentrations) associated with brain functions. The specific part of the brain is related to the control of a specific function of the living body (for example, moving a part of the body such as a finger), and by operating the specific function, the hemodynamics of the specific part of the brain are changed. It is possible to add a load that causes the specific function to work, for example, to move a finger, measure hemodynamic changes, and display as a contour map on a secondary plane image representing a region of the brain. Can be done using.

【0013】図に示すように、本実施例は、波長の異な
る複数の光源2a〜2d(光源2aと2c及び光源2b
と2dはそれぞれ可視から近赤外領域の同波長)と、上
記複数の光源2a及び2b(2c及び2c)の光ををそ
れぞれ互いに異なった周波数の発振器1a及び1b(1
c及び1d)で強度変調する変調器と、強度変調された
光をそれぞれ光ファイバー3a及び3b(32c及び3
c)を通して結合する結合器4a(4b)からの光を光
ファイバー5a(5b)を介して被検体である被検者6
の頭皮上の異なる位置に照射する複数の光照射手段と、
上記複数の光照射手段の光照射位置の近くに上記光照射
位置から等距離(ここでは30mmとする)の位置に先
端が位置するように複数の光検出用光ファイバー7a〜
7d及び光検出用光ファイバー7a〜7dのそれぞれに
設けられた光検出器8a〜8fからなる複数の受光手段
とが設けられてる。6本の光検出用光ファイバー7a〜
7fで、生体通過光を光ファイバーに集光し、それぞれ
光検出器8a〜8fで生体通過光が光電変換される。上
記受光手段は被検体内部で反射された光を検出し電気信
号に変換すもので、光検出器8としては光電子増倍管や
フォトダイオードに代表される光電変換素子を用いる。
As shown in the figure, in this embodiment, a plurality of light sources 2a to 2d (light sources 2a and 2c and light source 2b) having different wavelengths are used.
And 2d are the same wavelengths in the visible to near-infrared region) and the light from the plurality of light sources 2a and 2b (2c and 2c) are respectively generated by oscillators 1a and 1b (1
c and 1d), and the optical fibers 3a and 3b (32c and 3b) for the intensity-modulated light, respectively.
The light from the coupler 4a (4b) that is coupled through c) is passed through the optical fiber 5a (5b) and the subject 6 is the subject.
A plurality of light irradiation means for irradiating different positions on the scalp of
The plurality of light detecting optical fibers 7a to 7a to 7a to 7n so that the tips are located at positions equidistant (here, 30 mm) from the light irradiation positions near the light irradiation positions of the plurality of light irradiation means.
7d and a plurality of light receiving means composed of photodetectors 8a to 8f provided on each of the optical fibers for light detection 7a to 7d. 6 optical fibers for light detection 7a-
At 7f, the living body passing light is condensed on an optical fiber, and the living body passing light is photoelectrically converted by the photodetectors 8a to 8f, respectively. The light receiving means detects the light reflected inside the subject and converts it into an electric signal, and a photomultiplier tube or a photoelectric conversion element represented by a photodiode is used as the photodetector 8.

【0014】光検出器8a〜8fで光電変換された生体
通過光強度を表わす電気信号(以下、生体通過光強度信
号とする)は、それぞれロックインアンプ9a〜9hに
入力される。ここで、光検出器8c及び8dは、光ファ
イバー5a及び5bの両方から等距離にある光検出光フ
ァイバー7c及び7dで集光される生体通過光強度を検
出しているため、光検出器8c及び8dからの信号を2
系統に分離し、ロックインアンプ9cと9e及び9dと
9fに入力する。ロックインアンプ9a〜9dには発振
器1a及び1b、そして、ロックインアンプ9e〜9h
には発振器1c及び1dからの強度変調周波数が参照周
波数として入力されている。従って、ロックインアンプ
9a〜9dからは光源1a及び1bに対する生体通過光
強度信号が分離されて出力され、ロックインアンプ9e
〜9hからは光源1c及び1dに対する生体通過光強度
信号が分離されて出力される。
The electric signals (hereinafter referred to as living body passing light intensity signals) representing the living body passing light intensity photoelectrically converted by the photodetectors 8a to 8f are input to lock-in amplifiers 9a to 9h, respectively. Here, since the photodetectors 8c and 8d detect the in-vivo light intensity collected by the photodetection optical fibers 7c and 7d equidistant from both the optical fibers 5a and 5b, the photodetectors 8c and 8d are detected. Signal from 2
The system is separated and input to the lock-in amplifiers 9c and 9e and 9d and 9f. The lock-in amplifiers 9a to 9d include oscillators 1a and 1b, and lock-in amplifiers 9e to 9h.
The intensity modulation frequencies from the oscillators 1c and 1d are input as reference frequencies. Therefore, the living body passing light intensity signals for the light sources 1a and 1b are separated and output from the lock-in amplifiers 9a to 9d.
From ~ 9h, living body passing light intensity signals for the light sources 1c and 1d are separated and output.

【0015】ロックインアンプ9e〜9hの出力である
分離された各波長毎の通過光強度信号をアナログ−デジ
タル変換器10でアナログ−デジタル変換した後に、計
算機11の内部又は計算機11の外部にある記憶装置1
2に格納する。計測中あるいは終了後、計算機11は上
記記憶装置に記憶された通過光強度信号を使用して、各
検出点の検出信号から求められる酸化及び還元ヘモグロ
ビン濃度の相対変化量を演算し、複数の計測点mの経時
情報として記憶装置12に格納する。上記演算について
は後で詳しく説明する。表示制御部30は上記記憶手段
12に記憶された信をCRT等の表示装置13の表示信
号に変換し、表示装置13に表示する。上記表示信号は
測定位置を被検体の表示平面の座標に変換し、その座標
位置の強度信号(酸化又は還元ヘモグロビン濃度の相対
変化量)等高線表示する信号とする。
The separated transmitted light intensity signals for each wavelength, which are the outputs of the lock-in amplifiers 9e to 9h, are analog-digital converted by the analog-digital converter 10, and then are inside the computer 11 or outside the computer 11. Storage device 1
2 is stored. During or after the measurement, the calculator 11 uses the transmitted light intensity signal stored in the storage device to calculate the relative change amount of the oxyhemoglobin concentration and the reduced hemoglobin concentration obtained from the detection signal at each detection point, and the plurality of measurements are performed. It is stored in the storage device 12 as temporal information of the point m. The above calculation will be described later in detail. The display control unit 30 converts the signal stored in the storage unit 12 into a display signal of a display device 13 such as a CRT and displays it on the display device 13. The display signal is a signal for converting the measurement position into coordinates on the display plane of the subject and displaying the intensity signal (relative change amount of oxidative or reduced hemoglobin concentration) of the coordinate position by contour lines.

【0016】本実施例による生体光計測装置を用いるこ
とで、生体中の酸化及び還元ヘモグロビン濃度の相対変
化量を簡易かつ高速に計測することができる。光入射点
(光照射位置)及び光検出点を増やす構成は、光源の強
度変調周波数及び光源及び光検出器及びロックインアン
プを増やせば良いので拡張は容易である。本生体光計測
装置を用いると、分光及び光照射位置は強度変調周波数
で分離することが可能であるため、光照射位置を増加し
た場合でも、各光照射位置での照射光の波長数が計測さ
れる吸収体数と同数あれば良く、特に光照射位置毎に照
射光の波長を換える必要はない。従って、用いる照射光
の波長数が少なく、波長によって異なる散乱の影響によ
る誤差を小さくすることができる。
By using the living body light measuring apparatus according to this embodiment, the relative change amount of the oxidative and reduced hemoglobin concentrations in the living body can be measured easily and at high speed. The configuration for increasing the number of light incident points (light irradiation positions) and the number of light detection points can be easily expanded because it is sufficient to increase the intensity modulation frequency of the light source, the light source, the light detector, and the lock-in amplifier. With this biological light measurement device, the spectral and light irradiation positions can be separated by the intensity modulation frequency, so even if the light irradiation positions are increased, the number of wavelengths of irradiation light at each light irradiation position can be measured. It suffices that the number is the same as the number of absorbers to be used, and it is not particularly necessary to change the wavelength of irradiation light for each light irradiation position. Therefore, the number of wavelengths of the irradiation light used is small, and the error due to the influence of scattering that differs depending on the wavelength can be reduced.

【0017】図2は、生体光計測装置を使用した本発明
による画像作成方法の一実施例を説明するための図で、
上記方法における光入射点、光検出点及び計測点の関係
を示す。本実施例の画像作成方法は、被検者の頭部にお
ける酸化及び還元ヘモグロビン濃度の相対変化量のトポ
グラフィ画像を作成する方法で、被検者の右手指の運動
機能に関与している左側頭部に各4点の入射及び検出点
を設けて生体通過光強度を計測し、右手指の運動と左手
指の運動を負荷として与えた場合の測定結果を画像化す
る方法である。
FIG. 2 is a diagram for explaining an embodiment of an image creating method according to the present invention using a biological light measuring device.
The relationship between the light incident point, the light detection point, and the measurement point in the above method is shown. The image creating method of the present example is a method of creating a topographic image of the relative change amount of the oxyhemoglobin concentration and the reduced hemoglobin concentration in the head of the subject, and the left head that is involved in the motor function of the right finger of the subject. This is a method of providing four incident and detection points for each part, measuring the intensity of light passing through the living body, and imaging the measurement results when the motion of the right finger and the motion of the left finger are applied as loads.

【0018】図に示すように、被検者16の左側頭部に
光入射点17a〜17dと検出点18a〜18dを配置
した。ここで、各光入射点と各検出点の対応関係は、1
7a−18a、17a−18b、17b−18a、17
b−18b、17b−18c、17b−18d、17c
−18b、17c−18c、17d−18c、17d−
18dの10組ある。また、各対応する光入射点と検出
点の距離は30mmである。さらに、各検出点の計測信
号から求められる酸化及び還元ヘモグロビン濃度の相対
変化量の時間変化は、前記シェカオ・フェン(Shechao F
eng)他による「多重散乱媒体中での光子移動路分布のモ
ンテカルロシミュレーション(Monte Carlo simulations
of photon path distribution in multiple scattering
media)」、1993年エス・ピィ・アイ・イー発行の
会議録第1888巻、ランダム媒体及び生体組織におけ
る光子移動と画像、第78−89項(SPIE, Proceedings
of photon migration and imaging in random media an
d tissues, 1888, 78 (1993))に記載されているよう
に、各対応する入射点と検出点の中間の情報を最も多く
反映しているので、計測点19a〜19jを各入射点と
検出点の対応関係の中心に設定する。計測点19a〜1
9jの情報を求め、その情報も大きさを図2に示すよう
な二次元平面に等高線、濃淡、色識別図として表示す
る。
As shown in the figure, light incident points 17a to 17d and detection points 18a to 18d are arranged on the left side of the head of the subject 16. Here, the correspondence relationship between each light incident point and each detection point is 1
7a-18a, 17a-18b, 17b-18a, 17
b-18b, 17b-18c, 17b-18d, 17c
-18b, 17c-18c, 17d-18c, 17d-
There are 10 sets of 18d. The distance between each corresponding light incident point and detection point is 30 mm. Furthermore, the time change of the relative change amount of the oxidized and reduced hemoglobin concentrations obtained from the measurement signals at each detection point is
Eng et al., “Monte Carlo simulations of photon migration path distributions in multiple scattering media.
of photon path distribution in multiple scattering
media) ”, Proceedings of Spy, I, 1993, Volume 1888, Photon migration and images in random media and biological tissues, paragraphs 78-89 (SPIE, Proceedings).
of photon migration and imaging in random media an
d tissues, 1888, 78 (1993)), most of the information between the corresponding incident points and the detection points is reflected, so that the measurement points 19a to 19j are detected as the incident points. Set to the center of the point correspondence. Measurement points 19a-1
The information of 9j is obtained, and the size of the information is displayed as a contour line, a shade, and a color identification diagram on a two-dimensional plane as shown in FIG.

【0019】次に、本発明による上記各光検出点におけ
る計測信号から各ヘモグロビン濃度の相対変化量、すな
わち生体の特定機能(例えば指等身体の一部を動かす
等)が動作することによる脳の特定部位のモグロビン濃
度の変化を求める方法の一実施例についてについて説明
する。図3は、図2の上記実施例における生体光計測装
置の検出点18a〜18dの1つの点における計測信号
14と計測信号14から求められる予測無負荷信号15
の経時変化を表すグラフである。グラフの横軸は計測時
間を表わし、縦軸は相対濃度変化量を表わしている。予
測無負荷信号15は、計測信号14から、負荷を与えた
時間(負荷時間)Ttと負荷後信号が元に戻るまでの時
間(緩和時間)T2における信号を除き、負荷前時間T
1と負荷後時間T2における計測信号14に対して任意
関数を最小二乗法を用いてフィッティングし求たもので
ある。本実施例では、任意関数を5次の線形多項式、各
時間はT1=40秒,T2=30秒,Tt=30秒,T
3=30秒として処理している。
Next, the relative change amount of each hemoglobin concentration from the measurement signal at each of the light detection points according to the present invention, that is, the function of the brain by operating a specific function of the living body (for example, moving a part of the body such as a finger). An example of a method for obtaining a change in the moglobin concentration at a specific portion will be described. FIG. 3 is a measurement signal 14 at one of the detection points 18a to 18d of the biological optical measurement device in the embodiment of FIG. 2 and a predicted no-load signal 15 obtained from the measurement signal 14.
It is a graph showing the time-dependent change of. The horizontal axis of the graph represents the measurement time, and the vertical axis represents the relative concentration change amount. The predicted no-load signal 15 is the pre-load time T excluding the signals from the measurement signal 14 at the load application time (load time) Tt and the post-load signal return time (relaxation time) T2.
It is obtained by fitting an arbitrary function to the measurement signal 14 at 1 and the post-loading time T2 by using the least square method. In the present embodiment, the arbitrary function is a linear polynomial of degree 5, each time is T1 = 40 seconds, T2 = 30 seconds, Tt = 30 seconds, T
Processing is performed with 3 = 30 seconds.

【0020】図4は、1つの計測点における酸化及び還
元ヘモグロビンの濃度の相対変化量(以下、それぞれΔ
Coxy(t)信号20及びΔCdeoxy(t)信号
21とする)の時間変化を表わすグラフである。グラフ
の横軸は計測時間を表わし、縦軸は相対濃度変化量を表
わしている。また、斜線で示した時間が負荷印加時間
(右手指の運動期間)である。上記相対変化量は図2に
表示される2波長の計測信号14と予測無負荷信号15
から、酸化及び還元ヘモグロビン(HbO2,Hb)の
濃度の負荷印加による相対変化量を以下の演算処理で求
める。
FIG. 4 shows the relative changes in the concentrations of oxyhemoglobin and deoxyhemoglobin at one measurement point (hereinafter, Δ
6 is a graph showing a temporal change of Coxy (t) signal 20 and ΔCdeoxy (t) signal 21. The horizontal axis of the graph represents the measurement time, and the vertical axis represents the relative concentration change amount. The time indicated by the diagonal lines is the load application time (movement period of the right finger). The relative change amount is the two-wavelength measurement signal 14 and the predicted no-load signal 15 shown in FIG.
From the above, the relative change amount of the concentration of oxidized and reduced hemoglobin (HbO 2 , Hb) due to the load application is obtained by the following arithmetic processing.

【0021】波長λにおける予測無負荷信号Str
(λ,t)と光源強度I0(λ)の関係は、生体中での
光減衰を散乱と吸収に分離することで、以下の(2)式
で示される。なお、(2)(3)式は、「光を使った生
体計測−光CTへの道」第2回O plus E 19
87年6月号、61頁(8)式からも導出できる。 −Ln{Str(λ,t)/I0(λ)} =εoxy(λ)・Coxy(t)・d+εdeoxy(λ)・Cdeoxy(t)・d+A(λ)+S(λ)・・・・・(2) ここで、 εoxy(λ):波長λにおける酸化ヘモグロビンの吸光係
数 εdeoxy(λ):波長λにおける還元ヘモグロビンの吸光
係数 A(λ):波長λにおけるヘモグロビン以外による吸収に
よる減衰 S(λ):波長λにおける散乱による減衰 Coxy(t):計測時間tにおける酸化ヘモグロビン濃度 Cdeoxy(t):計測時間tにおける還元ヘモグロビン濃度 d:生体内での(注目領域における)実効的光路長 である。
Predicted no-load signal Str at wavelength λ
The relationship between (λ, t) and the light source intensity I0 (λ) is expressed by the following equation (2) by separating light attenuation in the living body into scattering and absorption. The equations (2) and (3) are described in “Biometrics Using Light-The Road to Optical CT”, 2nd O plus E 19
It can also be derived from the equation (8) on page 61, June 1987. -Ln {Str (λ, t) / I0 (λ)} = εoxy (λ) ・ Coxy (t) ・ d + εdeoxy (λ) ・ Cdeoxy (t) ・ d + A (λ) + S (λ) ・... (2) where εoxy (λ): absorption coefficient of oxyhemoglobin at wavelength λ εdeoxy (λ): absorption coefficient of reduced hemoglobin at wavelength λ A (λ): attenuation due to absorption other than hemoglobin at wavelength λ S (λ): Attenuation due to scattering at wavelength λ Coxy (t): Oxyhemoglobin concentration at measurement time t Cdeoxy (t): Reduced hemoglobin concentration at measurement time t d: Effective optical path length in the living body (in the region of interest) Is.

【0022】また、計測信号Sm(λ,t)と光源強度
I0(λ)の関係は、以下の(3)式で示される。 −Ln{Sm(λ,t)/I0(λ)} =εoxy(λ)・{Coxy(t)+C'oxy(t)+Noxy(t)}・d +εdeoxy(λ)・{Cdeoxy(t)+C'deoxy(t)+Ndeoxy(t)}・d+A'(λ)+S'(λ)・・・(3) ここで、 C'oxy(t):計測時間tにおける負荷印加による酸化ヘモ
グロビン濃度の変化 C'deoxy(t):計測時間tにおける負荷印加による還元ヘ
モグロビン濃度の変化 Noxy(t):雑音又は計測時間tにおける酸化ヘモグロビン
濃度の高周波揺らぎ Ndeoxy(t):雑音又は計測時間tにおける還元ヘモグロビ
ン濃度の高周波揺らぎ ここでは、A(λ)及びS(λ)が負荷印加及び負荷非
印加の状態で変化しないとすれば、すなわち、負荷によ
り生じる計測信号変化は酸化及び還元ヘモグロビン濃度
の変化のみによるとすれば、(2)及び(3)式の差分
は以下(4)式で示される。
The relationship between the measurement signal Sm (λ, t) and the light source intensity I0 (λ) is expressed by the following equation (3). −Ln {Sm (λ, t) / I0 (λ)} = εoxy (λ) ・ {Coxy (t) + C'oxy (t) + Noxy (t)} ・ d + εdeoxy (λ) ・ {Cdeoxy ( t) + C'deoxy (t) + Ndeoxy (t)} ・ d + A '(λ) + S' (λ) ・ ・ ・ (3) where C'oxy (t): load at measurement time t Change in oxygenated hemoglobin concentration due to application C'deoxy (t): Change in reduced hemoglobin concentration due to load application at measurement time t Noxy (t): noise or high-frequency fluctuation of oxygenated hemoglobin concentration at measurement time t Ndeoxy (t): noise or High Frequency Fluctuation of Reduced Hemoglobin Concentration at Measurement Time t Here, assuming that A (λ) and S (λ) do not change under load application and load non-application, that is, the measurement signal change caused by load is oxidation and reduction. If only due to the change in the hemoglobin concentration, the difference between the equations (2) and (3) is shown by the following equation (4).

【0023】 Ln{Str(λ,t)/Sm(λ,t)}=εoxy(λ){C'oxy(t)+Noxy(t)}d +εdeoxy(λ){C'deoxy(t)+Ndeoxy(t)}d・・・・・(4) ここで、負荷による酸化及び還元ヘモグロビン濃度相対
変化量の時間変化をそれぞれΔCoxy(t)、及びΔ
Cdeoxy(t)で表し、以下の式で定義する。 ΔCoxy(t)={C'oxy(t)+Noxy(t)}d ΔCdeoxy(t)={C'deoxy(t)+Ndeoxy(t)}d・・・・・・・・・・・・・・・(5) ここで、普通dを特定することは困難であるため、これ
らの濃度変化量の次元は濃度と距離dの積となってい
る。
Ln {Str (λ, t) / Sm (λ, t)} = εoxy (λ) {C'oxy (t) + Noxy (t)} d + εdeoxy (λ) {C'deoxy (t) + Ndeoxy (t)} d (4) where ΔCoxy (t) and ΔCoxy (t) are the time-dependent changes in the relative changes in oxygenated and reduced hemoglobin concentrations due to load, respectively.
It is represented by Cdeoxy (t) and defined by the following formula. ΔCoxy (t) = {C'oxy (t) + Noxy (t)} d ΔCdeoxy (t) = {C'deoxy (t) + Ndeoxy (t)} d ... (5) Since it is usually difficult to specify d, the dimension of the density change amount is the product of the density and the distance d.

【0024】しかし、(5)式で距離dはΔCoxyとΔ
Cdeoxy同様に作用するため、(5)式を各ヘモグロビ
ン濃度の相対変化量とする。計測に二波長用いると、得
られる(4)式は、ΔCoxy(t)及びΔCdeoxy(t)
に対する二元連立方程式となり、各波長毎の予測無負荷
信号Str(λ,t)及び計測信号Sm(λ,t)か
ら、ΔCoxy(t)及びΔCdeoxy(t)が求まる。さら
に、負荷時間及び緩和時間以外におけるΔCoxy(t)
及びΔCdeoxy(t)が表わすものは、C’oxy(t)=
0, C’deoxy(t)=0とおけるので、雑音もしく
は生体起因の酸化ヘモグロビン濃度及び還元ヘモグロビ
ンの高周波揺らぎを表わしていることになる。上述の処
理によって時間0〜140秒にわたって求めたものが図
4のΔCoxy(t)信号20及びΔCdeoxy
(t)信号21である。
However, in the equation (5), the distance d is ΔCoxy and Δ
Since it acts like Cdeoxy, the expression (5) is defined as the relative change amount of each hemoglobin concentration. When two wavelengths are used for measurement, the obtained expression (4) is ΔCoxy (t) and ΔCdeoxy (t).
The simultaneous simultaneous equations with respect to are obtained, and ΔCoxy (t) and ΔCdeoxy (t) are obtained from the predicted no-load signal Str (λ, t) and the measurement signal Sm (λ, t) for each wavelength. Furthermore, ΔCoxy (t) other than the loading time and relaxation time
And ΔCdeoxy (t) represents C′oxy (t) =
Since 0, C'deoxy (t) = 0, it means that high-frequency fluctuations of oxyhemoglobin concentration and reduced hemoglobin due to noise or living body are expressed. The values obtained over the time of 0 to 140 seconds by the above-described processing are ΔCoxy (t) signal 20 and ΔCdeoxy of FIG.
(T) The signal 21.

【0025】図5及び図6は、それぞれ被検者の左手指
及び右手指の運動を負荷として、上記各計測点の酸化ヘ
モグロビン濃度の相対変化量の時間変化から作成した等
高線画像(トポグラフィ画像)を示す。トポグラフィ画
像を作成する方法は、負荷印加時間(図4の斜線期間)
中の相対変化量ΔCoxy(t)信号20の時間積分値
(時間平均値でもよい)を計算機11で計算し、各計測
点間の値はX軸方向及びY軸方向に線形に補間して作成
したものである。トポグラフィ画像としては、図5及び
図6に示すような等高線の他に、白黒濃淡画像、色彩に
よる識別表示してもよい。図5及び図6の画像の比較か
ら、明らかに右手運動時に特定の位置において酸化ヘモ
グロビン濃度が増加していることがわかる。この様な空
間的分布の情報を画像として表示することにより計測結
果の認識を迅速かつ容易にしている。また、図5及び図
6に示した画像は、負荷印加時間中の濃度相対変化量の
時間積分値で作成したが、同一計測時間毎の各計測点の
酸化ヘモグロビン濃度の相対変化量によって同様にトポ
グラフィ画像を作成することも可能である。前記作成し
た複数のトポグラフィ画像を、計測時間の順に従って表
示あるいは動画として表示すれば、酸化ヘモグロビン濃
度の相対変化量の時間変化を捉らえることができる。
FIG. 5 and FIG. 6 are contour image (topography image) created from the time change of the relative change amount of the oxygenated hemoglobin concentration at each of the above measurement points, with the load of the motion of the left and right fingers of the subject, respectively. Indicates. The method of creating a topography image is based on the load application time (the shaded period in FIG. 4).
The relative integrated amount ΔCoxy (t) signal 20 in the inside is calculated by the computer 11 with time integrated value (may be the time average value), and the values between the measurement points are linearly interpolated in the X-axis direction and the Y-axis direction. It was done. As the topography image, in addition to the contour lines as shown in FIGS. 5 and 6, a black and white gray image and a color-based identification display may be used. From the comparison of the images of FIGS. 5 and 6, it is apparent that the oxygenated hemoglobin concentration is increased at a specific position during the right-handed movement. By displaying such information of the spatial distribution as an image, the recognition of the measurement result is made quick and easy. The images shown in FIG. 5 and FIG. 6 were created by using the time-integrated value of the relative concentration change amount during the load application time. However, the images are similarly obtained by the relative change amount of the oxyhemoglobin concentration at each measurement point at the same measurement time. It is also possible to create topographic images. By displaying the plurality of created topographic images in the order of measurement time or as a moving image, it is possible to grasp the time change of the relative change amount of the oxygenated hemoglobin concentration.

【0026】さらに、任意1計測点の酸化ヘモグロビン
濃度の相対変化量の時間変化と自他計測点の酸化ヘモグ
ロビン濃度の相対変化量の時間変化の自己及び相互相関
関数を計算し、各計測点における相関関数よりトポグラ
フィ画像を作成することもできる。各計測点における相
関関数は、時間ずれτで定義される関数であるから、同
一時間ずれτにおける相関関数の値よりトポグラフィを
作成し、τの順に従って表示あるいは動画として表示す
れば、血液動態変化が伝播していく様子を可視化するこ
とができる。ここでは、酸化ヘモグロビン濃度の相対変
化量を代表的に用いて説明しているが、還元ヘモグロビ
ン濃度の相対変化量あるいは酸化及び還元ヘモグロビン
濃度の相対変化量の和で計算される総ヘモグロビン濃度
相対変化量も同様にトポグラフィを作成することができ
る。
Furthermore, the self- and cross-correlation functions of the time change of the relative change amount of the oxyhemoglobin concentration at any one measurement point and the time change of the relative change amount of the oxyhemoglobin concentration at the other measurement points are calculated, and at each measurement point It is also possible to create a topography image from the correlation function. Since the correlation function at each measurement point is a function defined by time lag τ, if a topography is created from the value of the correlation function at the same time lag τ and displayed in the order of τ or displayed as a moving image, hemodynamic changes Can be visualized as they propagate. Here, the relative change amount of the oxyhemoglobin concentration is described as a typical example, but the relative change amount of the reduced hemoglobin concentration or the total change of the total hemoglobin concentration calculated by the sum of the relative change amounts of the oxidized and reduced hemoglobin concentrations. Amounts can be topographically created as well.

【0027】図7は上記記載の方法で作成されたトポグ
ラフィ画像22を、被検者の脳表面画像23と重ねあわ
せた表示例を示す。トポグラフィ画像22は、生体の機
能に関連して変化した脳の血液動態の変化であるため、
脳表面画像と重ねあわせて表示することが望ましい。脳
表面画像23は3次元MRIあるいは3次元X線CTで
計測し表示する。トポグラフィ画像22は、各計測点の
座標を脳表面に位置するように座標変換し、座標変換し
た後の各計測点間の値を補間してトポグラフィ画像を作
成する。作成したトポグラフィ画像22と脳表面画像2
3を重ねあわせて表示する時、重ねたトポグラフィ画像
22の色を半透明として、下に位置する脳表面画像が透
けて見えるようにする。
FIG. 7 shows a display example in which the topography image 22 created by the method described above is superimposed on the brain surface image 23 of the subject. The topography image 22 is a change in the hemodynamics of the brain that changes in association with the function of the living body,
It is desirable to display it on top of the brain surface image. The brain surface image 23 is measured and displayed by three-dimensional MRI or three-dimensional X-ray CT. For the topography image 22, the coordinates of each measurement point are coordinate-converted so as to be located on the brain surface, and the values between the measurement points after the coordinate conversion are interpolated to create a topography image. Created topography image 22 and brain surface image 2
When 3 is superimposed and displayed, the color of the superimposed topography image 22 is made semitransparent so that the brain surface image located therebelow can be seen through.

【0028】図8は、計測点座標変換方法を説明する図
を示す。3次元MRIあるいは3次元X線CTの形態画
像を撮影する際に、生体光計測装置で設定する計測点に
マーカーを配置して撮影すると、撮影した形態情報から
皮膚及び骨像24と脳像25とマーカー像26を表示す
ることができる。上記撮影像は、3次元的な座標情報を
有している。そこで、マーカー像26が示す計測点27
を通り、計測点27における皮膚表面もしくはマーカー
像26の底面に対して垂線28を計算し、脳像25と交
わる点を座標変換した計測点29とする。本実施例で示
したように、脳機能の計測の場合には、負荷に相関のあ
る血液動態変化は、主に脳表面(大脳皮質)で生じてい
ることがわかっている。前記理由より、生体の形態情報
を用いることで、計測点を座標変換する深さを知ること
ができる。しかし、計測対象を筋肉等他の生体器官とし
た場合には、形態情報から座標変換する深さを知ること
ができない場合がある。前記の様な計測に本方法を用い
る場合には、モンテカルロ法による数値計算で、生体内
の光伝播をあらかじめ計算し、計測信号に最も大きく寄
与する深さを求め、前記求められた深さに計測点を座標
変換する。
FIG. 8 is a diagram for explaining the measuring point coordinate conversion method. When a morphological image of three-dimensional MRI or three-dimensional X-ray CT is photographed, a marker is placed at a measurement point set by the biological optical measurement device, and when the photograph is taken, skin and bone images 24 and brain images 25 are obtained from the photographed morphological information. The marker image 26 can be displayed. The photographed image has three-dimensional coordinate information. Therefore, the measurement point 27 indicated by the marker image 26
A perpendicular line 28 is calculated with respect to the skin surface at the measurement point 27 or the bottom surface of the marker image 26, and the point intersecting the brain image 25 is set as the coordinate-converted measurement point 29. As shown in this example, in the case of measuring brain function, it is known that hemodynamic changes correlated with load mainly occur on the brain surface (cerebral cortex). For the above reason, it is possible to know the depth of coordinate conversion of the measurement point by using the morphological information of the living body. However, when the measurement target is another biological organ such as a muscle, the depth at which the coordinate conversion is performed may not be known from the morphological information. When this method is used for the measurement as described above, the light propagation in the living body is preliminarily calculated by the numerical calculation by the Monte Carlo method, the depth that most contributes to the measurement signal is calculated, and the depth is calculated as described above. Coordinate conversion of measurement points.

【0029】[0029]

【発明の効果】本発明では、低コストの光照射手段、光
検出器を用い、簡単な演算処理であるため経済的な装置
で高速の処理ができ、被定測体の形状を表す平面画像と
対応づけた生体機能を画像化ができるので、特に生体の
局所定な機能の測定に有効な手段となる。
According to the present invention, a low-cost light irradiation means and a photodetector are used, and since the arithmetic processing is simple, high-speed processing can be performed with an economical device, and a planar image showing the shape of the object to be measured. Since the biological function associated with can be imaged, it becomes an effective means particularly for measuring a predetermined function of the biological body.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による生体光計測装置の一実施例の構成
を示すブロック図
FIG. 1 is a block diagram showing the configuration of an embodiment of a biological optical measurement device according to the present invention.

【図2】上記生体光計測装置を使用した画像作成方法の
一実施例を説明するための図
FIG. 2 is a diagram for explaining an embodiment of an image creating method using the biological optical measurement device.

【図3】上記実施例の一計測点における計測信号と計測
信号から求められる予測無負荷信号15の経時変化を表
す図
FIG. 3 is a diagram showing a change with time of a measurement signal and a predicted no-load signal 15 obtained from the measurement signal at one measurement point in the above embodiment.

【図4】上記実施例の一計測点におけるヘモグロビン濃
度相対変化量の時間変化を示す図
FIG. 4 is a diagram showing a temporal change of a relative change amount of hemoglobin concentration at one measurement point in the above-mentioned embodiment.

【図5】本発明による生体光計測装置の一実施例におけ
るトポグラフィ画像を示す図
FIG. 5 is a diagram showing a topography image in an embodiment of the biological optical measurement device according to the present invention.

【図6】本発明による生体光計測装置の一実施例におけ
るトポグラフィ画像を示す図
FIG. 6 is a diagram showing a topography image in an embodiment of the biological optical measurement device according to the present invention.

【図7】本発明による生体光計測装置の一実施例におけ
るトポグラフィ画像の表示例を示す図
FIG. 7 is a diagram showing a display example of a topography image in an embodiment of the biological optical measurement device according to the present invention.

【図8】本発明による生体光計測装置の他の実施例本発
明おける座標変換方法を説明する図
FIG. 8 is a diagram for explaining a coordinate conversion method according to another embodiment of the biological light measuring device according to the present invention.

【符号の説明】[Explanation of symbols]

1:発振器、2:光源、3:光ファイバー、4:結合
器、5:光ファイバー、6:被検者、7:光検出光ファ
イバー、8:光検出器、9:ロックインアンプ、10:
アナログ−デジタル変換器、11:計算機、12:記憶
装置、13:表示装置、14:計測信号、15:予測無
負荷信号、16:被検者、17:入射点、18:検出
点、19:計測点、20:ΔCoxy(t)信号、2
1:ΔCdeoxy(t)信号、22:トポグラフィ画
像、23:脳表面画像、24:皮膚及び骨像、25:脳
像、26:マーカー像、27:計測点、28:垂線、2
9:座標変換した計測点。
1: Oscillator, 2: Light source, 3: Optical fiber, 4: Coupler, 5: Optical fiber, 6: Subject, 7: Photodetection optical fiber, 8: Photodetector, 9: Lock-in amplifier, 10:
Analog-digital converter, 11: calculator, 12: storage device, 13: display device, 14: measurement signal, 15: predicted no-load signal, 16: subject, 17: incident point, 18: detection point, 19: Measurement point, 20: ΔCoxy (t) signal, 2
1: ΔCdeoxy (t) signal, 22: topography image, 23: brain surface image, 24: skin and bone image, 25: brain image, 26: marker image, 27: measurement point, 28: perpendicular line, 2
9: Coordinate-converted measurement point.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小泉 英明 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hideaki Koizumi 1-280 Higashi Koikekubo, Kokubunji City, Tokyo Inside Hitachi Central Research Laboratory

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】被検体に可視から近赤外領域の波長の光を
照射する複数の光照射手段と、上記光照射手段から照射
され、上記被検体内部で反射された光を検出する複数の
受光手段と、上記受光手段で検出された信号を複数の受
光手段毎にかつ経時的に記憶記憶する記憶手段と、上記
記憶手段に記憶された信号を用いて複数の計測点の計測
対象の信号に変換する演算手段と、上記演算手段の出力
を上記測定位置を表す二次元表示面に強度信号として表
すトポグラフィ画像として表示する画像作成部とをもつ
ことを特徴とする生体光計測装置。
1. A plurality of light irradiating means for irradiating a subject with light having a wavelength in the visible to near-infrared region, and a plurality of light irradiating means for detecting the light emitted from the light irradiating means and reflected inside the subject. Light receiving means, storage means for storing and storing the signal detected by the light receiving means for each of the plurality of light receiving means over time, and signals to be measured at a plurality of measurement points using the signals stored in the storage means A living body optical measurement device, comprising: an arithmetic unit for converting into an optical image and an image creating unit for displaying the output of the arithmetic unit on a two-dimensional display surface representing the measurement position as a topography image represented as an intensity signal.
【請求項2】上記複数の光照射手段のそれぞれが波長の
ことなる複数の光源と、上記複数の光源の光を互いに異
なった周波数で変調する変調器と、変調された複数の光
を照射位置に導く導波手段とからなり、上記複数の受光
手段のそれぞれが上記波長の異なる複数の光源からの光
の強度を分離する分離手段をもつことを特徴とする生体
光計測装置。
2. A plurality of light sources, each of which has a different wavelength, a modulator for modulating the light of the plurality of light sources at different frequencies, and an irradiation position of the plurality of modulated lights. A living body optical measurement device, characterized in that the living body optical measuring device comprises a waveguide means for guiding the light to each of the plurality of light receiving means, and each of the plurality of light receiving means has a separating means for separating the intensities of light from the plurality of light sources having different wavelengths.
【請求項3】上記分離手段が、上記変調器の変調信号で
駆動するロックインアンプで構成されたことを特徴とす
る請求項2記載の生体光計測装置。
3. The living body optical measurement system according to claim 2, wherein said separating means comprises a lock-in amplifier driven by a modulation signal of said modulator.
【請求項4】上記波長の異なる複数の光源の数が計測さ
れる光吸収体の種類数と同数であることを特徴とする請
求項1記載の生体光計測装置。
4. The living body optical measurement system according to claim 1, wherein the number of the plurality of light sources having different wavelengths is the same as the number of types of the light absorbers to be measured.
【請求項5】可視から近赤外領域の波長の光を被検体の
複数の光照射位置に照射し、被検体内部を通過した光を
上記複数の光照射位置のそれぞれに対して少なくとも一
つの光検出点で検出し、上記複数の光照射位置の近傍に
おける計測点の被検体内部に含まれる光吸収体濃度を求
める第1ステップと、上記第1ステップで得た複数の計
測点の光吸収体濃度を上記被検体を表す二次元面のトポ
グラフィ画像として表示する第2ステップとをもつこと
を特徴とする画像作成方法。
5. A plurality of light irradiation positions of a subject are irradiated with light having a wavelength in the visible to near-infrared region, and light passing through the inside of the subject is at least one for each of the plurality of light irradiation positions. The first step of obtaining the concentration of the light absorber contained in the subject at the measurement point in the vicinity of the plurality of light irradiation positions, and the light absorption of the plurality of measurement points obtained in the first step. And a second step of displaying the body concentration as a two-dimensional topography image representing the subject.
【請求項6】第1ステップにおいて上記計測点を上記光
照射位置と光検出する位置の中点から、上記被検体内部
への被検体表面に対する垂線上の任意の位置とし、上記
第2ステップにおいて、上記複数の計測点で得た光吸収
体濃度及び上記複数の計測点で得た光吸収体濃度を各計
測点間で補間して得た補間光吸収体濃度をトポグラフィ
画像として表示することを特徴とする請求項5記載の画
像作成方法。
6. In the first step, the measurement point is set to an arbitrary position on the normal line from the midpoint of the light irradiation position and the light detection position to the inside of the subject and perpendicular to the surface of the subject, and in the second step. , Displaying the interpolated light absorber concentration obtained by interpolating the light absorber concentration obtained at the plurality of measurement points and the light absorber concentration obtained at the plurality of measurement points between each measurement point as a topography image. The image creating method according to claim 5, characterized in that
【請求項7】上記光吸収体濃度を任意の時間点における
光吸収体濃度又は光吸収体濃度の一定時間の変化量を時
間平均したものを用いて画像を得ることを特徴とする請
求項5又は6記載の画像作成方法。
7. An image is obtained by using the light absorber concentration as a light absorber concentration at an arbitrary time point or a time-averaged variation amount of the light absorber concentration for a certain period of time. Alternatively, the image creating method described in item 6.
【請求項8】上記第2ステップにおいて、任意の時間間
隔で光吸収体濃度又は光吸収体濃度の変化量を求め、各
時間間隔ごと連続した経時画像を得ることを特徴とする
請求項5又は6記載の画像作成方法。
8. The method according to claim 5, wherein in the second step, the light absorber concentration or the amount of change in the light absorber concentration is obtained at arbitrary time intervals, and continuous time-lapse images are obtained at each time interval. 6. The image creating method described in 6.
【請求項9】上記第2ステップにおいて、磁気共鳴及び
X線による計測した被検体内部の画像情報を、上記光吸
収体濃度の情報と共に上記二次元画像と同一画面上で重
ね合わせて表示することを特徴とする請求項6から8の
いずれか一つに記載の画像作成方法。
9. In the second step, image information of the inside of the object measured by magnetic resonance and X-rays is displayed together with the information of the light absorber concentration on the same screen as the two-dimensional image. 9. The image creating method according to claim 6, further comprising:
【請求項10】上記第2ステップにおいて、任意の時間
間隔で光吸収体濃度又は光吸収体濃度の変化量を求め、
任意の1計測点における上記変化量の時間変化を基準と
して、他計測点における上記変化量の時間変化との相関
を求め、各時間間隔ごと連続した相関関数の経時画像を
得ることを特徴とする請求項5又は6記載の画像作成方
法。
10. In the second step, the light absorber concentration or the amount of change in the light absorber concentration is obtained at an arbitrary time interval,
It is characterized in that, with reference to the time change of the change amount at any one measurement point, a correlation with the time change of the change amount at another measurement point is obtained, and a temporal image of a continuous correlation function is obtained at each time interval. The image creating method according to claim 5.
JP16982095A 1994-10-06 1995-07-05 Biological light measurement device Expired - Lifetime JP3599426B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP16982095A JP3599426B2 (en) 1995-07-05 1995-07-05 Biological light measurement device
US08/539,871 US5803909A (en) 1994-10-06 1995-10-06 Optical system for measuring metabolism in a body and imaging method
US09/149,155 US6128517A (en) 1994-10-06 1998-09-08 Optical system for measuring metabolism in a body and imaging method
US09/203,610 US6282438B1 (en) 1994-10-06 1998-12-02 Optical system for measuring metabolism in a body and imaging method
US09/900,144 US7286870B2 (en) 1994-10-06 2001-07-09 Optical system for measuring metabolism in a body and imaging method
US11/037,282 US7440794B2 (en) 1994-10-06 2005-01-19 Optical system for measuring metabolism in a body and imaging method
US11/037,338 US8050744B2 (en) 1994-10-06 2005-01-19 Optical system for measuring metabolism in a body and imaging method
US11/037,339 US7715904B2 (en) 1994-10-06 2005-01-19 Optical system for measuring metabolism in a body and imaging method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16982095A JP3599426B2 (en) 1995-07-05 1995-07-05 Biological light measurement device

Related Child Applications (3)

Application Number Title Priority Date Filing Date
JP2002189452A Division JP3648497B2 (en) 2002-06-28 2002-06-28 Biological light measurement device and image creation method in the device
JP2004190630A Division JP3952045B2 (en) 2004-06-29 2004-06-29 Biological light measurement device
JP2004190629A Division JP3646729B2 (en) 2004-06-29 2004-06-29 Biological light measurement device

Publications (2)

Publication Number Publication Date
JPH0919408A true JPH0919408A (en) 1997-01-21
JP3599426B2 JP3599426B2 (en) 2004-12-08

Family

ID=15893510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16982095A Expired - Lifetime JP3599426B2 (en) 1994-10-06 1995-07-05 Biological light measurement device

Country Status (1)

Country Link
JP (1) JP3599426B2 (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997018755A1 (en) * 1995-11-17 1997-05-29 Hitachi, Ltd. Instrument for optical measurement of living body
WO2000022415A1 (en) * 1998-10-13 2000-04-20 Hitachi, Ltd. Optical measuring method and device
WO2000034761A1 (en) * 1998-12-07 2000-06-15 Hitachi, Ltd. Optical measurement device
JP2002323444A (en) * 2001-04-26 2002-11-08 Hitachi Medical Corp Organism light measurement apparatus
WO2003002004A1 (en) * 2001-06-28 2003-01-09 Hitachi Nedical Corporation Biological optical measuring instrument
JP2003322612A (en) * 2002-04-30 2003-11-14 Communication Research Laboratory Brain-activity measuring apparatus and head mounting implement for brain-activity measurement
WO2005038438A1 (en) * 2003-10-15 2005-04-28 Kose Corporation Method of evaluating inside of object by transmitted light
JP2007054376A (en) * 2005-08-25 2007-03-08 Univ Nihon Method and system for signal analysis for functional near-infrared spectroscope, functional near-infrared spectroscope, and signal analysis program
JP2007130038A (en) * 2005-11-08 2007-05-31 Hitachi Medical Corp Bio-optical measurement instrument
US7228166B1 (en) 1999-09-14 2007-06-05 Hitachi Medical Corporation Biological light measuring instrument
JP2007524468A (en) * 2003-06-26 2007-08-30 ホアナ メディカル、インコーポレイテッド Radiation stress type non-invasive blood pressure measurement method
JP2008064675A (en) * 2006-09-08 2008-03-21 Shimadzu Corp Light measuring apparatus
JP2008067904A (en) * 2006-09-14 2008-03-27 Shimadzu Corp Brain function data controller
JP2009000230A (en) * 2007-06-20 2009-01-08 Hitachi Medical Corp Biological photometric device
JP2009142611A (en) * 2007-12-18 2009-07-02 Hitachi Medical Corp Bio-optical measuring device
JP2009268707A (en) * 2008-05-08 2009-11-19 Hitachi Ltd Biological optical measuring apparatus
WO2010038774A1 (en) * 2008-10-01 2010-04-08 株式会社 日立メディコ Biological light measurement device and position display method for displaying light irradiation position and light detection position, or measurement channel
WO2010050170A1 (en) * 2008-10-30 2010-05-06 株式会社日立製作所 Organism light measuring device
US8040519B2 (en) 2006-05-23 2011-10-18 Hitachi Medical Corporation Biological optical measurement apparatus
US8180426B2 (en) 2003-11-13 2012-05-15 Shimadzu Corporation Method for transforming head surface coordinates to brain surface coordinates and transcranial brain function measuring method using the transformation data
WO2012144356A1 (en) * 2011-04-21 2012-10-26 学校法人 聖マリアンナ医科大学 Concentration-measurement device and concentration-measurement method
WO2013069820A1 (en) * 2011-11-11 2013-05-16 Hideo Ando Detecting method of life activity, controlling method of life activity, and transmission method of information concerning life activity
US9198624B2 (en) 2010-07-06 2015-12-01 Hitachi Medical Corporation Biological photometric device and biological photometry method using same
JP2016064150A (en) * 2008-03-18 2016-04-28 ノバダック テクノロジーズ インコーポレイテッド Imaging system for combined full-color reflected light and near-infrared imaging
US9456776B2 (en) 2013-05-07 2016-10-04 Hideo Ando Detection method of life activity, measuring device of life activity, transmission method of life activity detection signal, or service based on life activity information
JP2017113637A (en) * 2017-03-30 2017-06-29 学校法人 聖マリアンナ医科大学 Concentration measuring apparatus and concentration measuring method
US9700248B2 (en) 2012-02-20 2017-07-11 Hamamatsu Photonics K.K. Concentration measurement device and concentration measurement method
US9814378B2 (en) 2011-03-08 2017-11-14 Novadaq Technologies Inc. Full spectrum LED illuminator having a mechanical enclosure and heatsink
US10548518B2 (en) 2014-06-23 2020-02-04 Hitachi, Ltd. Biophotonic measurement device and method
US10602971B2 (en) 2016-02-17 2020-03-31 Panasonic Intellectual Property Management Co., Ltd. Biological information detection device including calculation circuit that generates signal of biological information
US10694151B2 (en) 2006-12-22 2020-06-23 Novadaq Technologies ULC Imaging system with a single color image sensor for simultaneous fluorescence and color video endoscopy
US10869645B2 (en) 2016-06-14 2020-12-22 Stryker European Operations Limited Methods and systems for adaptive imaging for low light signal enhancement in medical visualization
USD916294S1 (en) 2016-04-28 2021-04-13 Stryker European Operations Limited Illumination and imaging device
US10980420B2 (en) 2016-01-26 2021-04-20 Stryker European Operations Limited Configurable platform
US10992848B2 (en) 2017-02-10 2021-04-27 Novadaq Technologies ULC Open-field handheld fluorescence imaging systems and methods
US11930278B2 (en) 2015-11-13 2024-03-12 Stryker Corporation Systems and methods for illumination and imaging of a target

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107111949B (en) 2014-12-26 2020-04-10 横滨橡胶株式会社 Anti-collision system and anti-collision method
EP3239958B1 (en) 2014-12-26 2020-01-22 The Yokohama Rubber Co., Ltd. Collision avoidance system and collision avoidance method

Cited By (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2311854A (en) * 1995-11-17 1997-10-08 Hitachi Ltd Instrument for optical measurement of living body
GB2311854B (en) * 1995-11-17 2000-03-22 Hitachi Ltd Optical measurement instrument for living body
WO1997018755A1 (en) * 1995-11-17 1997-05-29 Hitachi, Ltd. Instrument for optical measurement of living body
US6611698B1 (en) 1998-10-13 2003-08-26 Hitachi, Ltd. Optical measuring instrument
WO2000022415A1 (en) * 1998-10-13 2000-04-20 Hitachi, Ltd. Optical measuring method and device
WO2000034761A1 (en) * 1998-12-07 2000-06-15 Hitachi, Ltd. Optical measurement device
US6947779B2 (en) 1998-12-07 2005-09-20 Hitachi, Ltd. Optical measurement device
US7228166B1 (en) 1999-09-14 2007-06-05 Hitachi Medical Corporation Biological light measuring instrument
JP2002323444A (en) * 2001-04-26 2002-11-08 Hitachi Medical Corp Organism light measurement apparatus
JP4603718B2 (en) * 2001-04-26 2010-12-22 株式会社日立メディコ Biological light measurement device
JP4642279B2 (en) * 2001-06-28 2011-03-02 株式会社日立メディコ Biological light measurement device
JP2003010188A (en) * 2001-06-28 2003-01-14 Hitachi Medical Corp Organism light measuring instrument
WO2003002004A1 (en) * 2001-06-28 2003-01-09 Hitachi Nedical Corporation Biological optical measuring instrument
CN1326491C (en) * 2001-06-28 2007-07-18 株式会社日立医药 Biological optical measuring instrument
JP2003322612A (en) * 2002-04-30 2003-11-14 Communication Research Laboratory Brain-activity measuring apparatus and head mounting implement for brain-activity measurement
JP2007524468A (en) * 2003-06-26 2007-08-30 ホアナ メディカル、インコーポレイテッド Radiation stress type non-invasive blood pressure measurement method
JP4575296B2 (en) * 2003-10-15 2010-11-04 株式会社コーセー Evaluation method inside the target object by transmitted light
JPWO2005038438A1 (en) * 2003-10-15 2007-01-18 株式会社コーセー Evaluation method inside the target object by transmitted light
WO2005038438A1 (en) * 2003-10-15 2005-04-28 Kose Corporation Method of evaluating inside of object by transmitted light
US8180426B2 (en) 2003-11-13 2012-05-15 Shimadzu Corporation Method for transforming head surface coordinates to brain surface coordinates and transcranial brain function measuring method using the transformation data
JP2007054376A (en) * 2005-08-25 2007-03-08 Univ Nihon Method and system for signal analysis for functional near-infrared spectroscope, functional near-infrared spectroscope, and signal analysis program
JP2007130038A (en) * 2005-11-08 2007-05-31 Hitachi Medical Corp Bio-optical measurement instrument
US8040519B2 (en) 2006-05-23 2011-10-18 Hitachi Medical Corporation Biological optical measurement apparatus
JP2008064675A (en) * 2006-09-08 2008-03-21 Shimadzu Corp Light measuring apparatus
JP2008067904A (en) * 2006-09-14 2008-03-27 Shimadzu Corp Brain function data controller
US11025867B2 (en) 2006-12-22 2021-06-01 Stryker European Operations Limited Imaging systems and methods for displaying fluorescence and visible images
US10694151B2 (en) 2006-12-22 2020-06-23 Novadaq Technologies ULC Imaging system with a single color image sensor for simultaneous fluorescence and color video endoscopy
US10694152B2 (en) 2006-12-22 2020-06-23 Novadaq Technologies ULC Imaging systems and methods for displaying fluorescence and visible images
US11770503B2 (en) 2006-12-22 2023-09-26 Stryker European Operations Limited Imaging systems and methods for displaying fluorescence and visible images
JP2009000230A (en) * 2007-06-20 2009-01-08 Hitachi Medical Corp Biological photometric device
JP2009142611A (en) * 2007-12-18 2009-07-02 Hitachi Medical Corp Bio-optical measuring device
JP2016064150A (en) * 2008-03-18 2016-04-28 ノバダック テクノロジーズ インコーポレイテッド Imaging system for combined full-color reflected light and near-infrared imaging
US10779734B2 (en) 2008-03-18 2020-09-22 Stryker European Operations Limited Imaging system for combine full-color reflectance and near-infrared imaging
JP2009268707A (en) * 2008-05-08 2009-11-19 Hitachi Ltd Biological optical measuring apparatus
CN102170826A (en) * 2008-10-01 2011-08-31 株式会社日立医疗器械 Biological light measurement device and position display method for displaying light irradiation position and light detection position, or measurement channel
JP5159893B2 (en) * 2008-10-01 2013-03-13 株式会社日立メディコ Biological light measurement device and light irradiation position and light detection position or measurement channel position display method
US8565501B2 (en) 2008-10-01 2013-10-22 Hitachi Medical Corporation Biological light measurement device and position display method of light irradiation position and light detection position or measurement channel
WO2010038774A1 (en) * 2008-10-01 2010-04-08 株式会社 日立メディコ Biological light measurement device and position display method for displaying light irradiation position and light detection position, or measurement channel
JP5147949B2 (en) * 2008-10-30 2013-02-20 株式会社日立製作所 Biological light measurement device
WO2010050170A1 (en) * 2008-10-30 2010-05-06 株式会社日立製作所 Organism light measuring device
US9198624B2 (en) 2010-07-06 2015-12-01 Hitachi Medical Corporation Biological photometric device and biological photometry method using same
US9814378B2 (en) 2011-03-08 2017-11-14 Novadaq Technologies Inc. Full spectrum LED illuminator having a mechanical enclosure and heatsink
WO2012144356A1 (en) * 2011-04-21 2012-10-26 学校法人 聖マリアンナ医科大学 Concentration-measurement device and concentration-measurement method
US10660551B2 (en) 2011-04-21 2020-05-26 St. Marianna University School Of Medicine Concentration-measurement device and concentration-measurement method
JP2012223451A (en) * 2011-04-21 2012-11-15 St Marianna Univ School Of Medicine Device and method for measuring concentration
US9808189B2 (en) 2011-04-21 2017-11-07 St. Marianna University School Of Medicine Concentration-measurement device and concentration-measurement method
TWI549656B (en) * 2011-04-21 2016-09-21 Univ School St Marianna Concentration measuring device and concentration measuring method
US9743837B2 (en) 2011-11-11 2017-08-29 Hideo Ando Measuring method of life activity, measuring device of life activity, transmission method of life activity detection signal, or service based on life activity information
WO2013069820A1 (en) * 2011-11-11 2013-05-16 Hideo Ando Detecting method of life activity, controlling method of life activity, and transmission method of information concerning life activity
JP2013122443A (en) * 2011-11-11 2013-06-20 Hideo Ando Biological activity measuring method, biological activity measuring device, method for transfer of biological activity detection signal and method for provision of service using biological activity information
US9265425B2 (en) 2011-11-11 2016-02-23 Hideo Ando Measuring method of life activity, measuring device of life activity, transmission method of life activity detection signal, or service based on life activity information
US10405783B2 (en) 2012-02-20 2019-09-10 Hamamatsu Photonics K.K. Concentration measurement device and concentration measurement method
US9700248B2 (en) 2012-02-20 2017-07-11 Hamamatsu Photonics K.K. Concentration measurement device and concentration measurement method
US9456776B2 (en) 2013-05-07 2016-10-04 Hideo Ando Detection method of life activity, measuring device of life activity, transmission method of life activity detection signal, or service based on life activity information
US10548518B2 (en) 2014-06-23 2020-02-04 Hitachi, Ltd. Biophotonic measurement device and method
US11930278B2 (en) 2015-11-13 2024-03-12 Stryker Corporation Systems and methods for illumination and imaging of a target
US11298024B2 (en) 2016-01-26 2022-04-12 Stryker European Operations Limited Configurable platform
US10980420B2 (en) 2016-01-26 2021-04-20 Stryker European Operations Limited Configurable platform
US10602971B2 (en) 2016-02-17 2020-03-31 Panasonic Intellectual Property Management Co., Ltd. Biological information detection device including calculation circuit that generates signal of biological information
USD916294S1 (en) 2016-04-28 2021-04-13 Stryker European Operations Limited Illumination and imaging device
US10869645B2 (en) 2016-06-14 2020-12-22 Stryker European Operations Limited Methods and systems for adaptive imaging for low light signal enhancement in medical visualization
US11756674B2 (en) 2016-06-14 2023-09-12 Stryker European Operations Limited Methods and systems for adaptive imaging for low light signal enhancement in medical visualization
US11140305B2 (en) 2017-02-10 2021-10-05 Stryker European Operations Limited Open-field handheld fluorescence imaging systems and methods
US10992848B2 (en) 2017-02-10 2021-04-27 Novadaq Technologies ULC Open-field handheld fluorescence imaging systems and methods
JP2017113637A (en) * 2017-03-30 2017-06-29 学校法人 聖マリアンナ医科大学 Concentration measuring apparatus and concentration measuring method

Also Published As

Publication number Publication date
JP3599426B2 (en) 2004-12-08

Similar Documents

Publication Publication Date Title
JP3599426B2 (en) Biological light measurement device
US7440794B2 (en) Optical system for measuring metabolism in a body and imaging method
Scholkmann et al. A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology
JPH0998972A (en) Measurement equipment of light from living body and image generation method
Doulgerakis et al. High-density functional diffuse optical tomography based on frequency-domain measurements improves image quality and spatial resolution
Culver et al. Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia
Toronov et al. The roles of changes in deoxyhemoglobin concentration and regional cerebral blood volume in the fMRI BOLD signal
Benaron et al. Noninvasive functional imaging of human brain using light
Selb et al. Improved sensitivity to cerebral hemodynamics during brain activation with a time-gated optical system: analytical model and experimental validation
EP2155043B1 (en) Imaging apparatus and imaging method
JP3142079B2 (en) Optical CT device
US20120277559A1 (en) Apparatus for Measuring Blood Parameters
Fantini et al. Perspective: Prospects of non-invasive sensing of the human brain with diffuse optical imaging
WO2001019241A1 (en) Calibration methods and systems for diffuse optical tomography and spectroscopy
Torricelli et al. Neurophotonics: non-invasive optical techniques for monitoring brain functions
JP2003075331A (en) Biological light measuring unit and image formation method therein
JP3304559B2 (en) Optical measurement method and device
JP3876322B2 (en) Non-invasive brain activity measurement method
JP3952045B2 (en) Biological light measurement device
JP3646729B2 (en) Biological light measurement device
KR101801473B1 (en) Apparatus for brain imaging using bundled light elements
Caffini et al. Functional near infrared spectroscopy and diffuse optical tomography in neuroscience
Yamamoto et al. Development and application of noninvasive optical topography
Peirson Diffuse Optical Tomography: Theoretical Basis, Advantages, and Applications
Peirson Theory, Advantages, Applications and Future of Diffuse Optical Tomography

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040518

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040914

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070924

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120924

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120924

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 9

EXPY Cancellation because of completion of term