JPH09189801A - Optical parts with heat resistant antireflection film - Google Patents

Optical parts with heat resistant antireflection film

Info

Publication number
JPH09189801A
JPH09189801A JP8001566A JP156696A JPH09189801A JP H09189801 A JPH09189801 A JP H09189801A JP 8001566 A JP8001566 A JP 8001566A JP 156696 A JP156696 A JP 156696A JP H09189801 A JPH09189801 A JP H09189801A
Authority
JP
Japan
Prior art keywords
optical
antireflection film
refractive index
optical component
heat resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8001566A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Shiono
嘉幸 塩野
Toshiaki Watanabe
聡明 渡辺
Masayuki Tanno
雅行 丹野
Toshihiko Riyuuou
俊彦 流王
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP8001566A priority Critical patent/JPH09189801A/en
Priority to US08/768,292 priority patent/US5872652A/en
Priority to DE69631495T priority patent/DE69631495D1/en
Priority to DE69616957T priority patent/DE69616957T2/en
Priority to EP00113469A priority patent/EP1072925B1/en
Priority to EP96309199A priority patent/EP0780717B1/en
Publication of JPH09189801A publication Critical patent/JPH09189801A/en
Priority to US09/193,128 priority patent/US6163404A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Optical Elements (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Surface Treatment Of Glass (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To make it possible to obtain stable optical characteristics without an increase in reflectivity in spite of use at a high temp. by forming thin films consisting of a specific compd. on at least one surface of optical parts to be heated. SOLUTION: The heat resistant antireflection films 4 consisting of TiOX (X is 1.9 to 2.2) are formed on at least one surfaces of the optical parts 1. The heat resistant antireflection films 4 are preferably formed by laminating a low-refractive index layer 3 consisting of a thin film of SiO2 on a high- refractive index layer 2 consisting of the thin film of the TiOX (X is 1.9 to 2.2). The optical parts 1 include, for example, optical glass, single crystalline body or optical plastic. If the heat resistant antireflection films 4 are formed thereon, the compsn. of the TiOX does not change even if the optical parts are heated to a high temp. of >=250 deg.C and, therefore, the optical film thickness does not change and the increasing in the reflectivity of the antireflection film 4 does not arise. The reflectivity does not increase and the stable optical characteristics are obtd. even the optical parts are heated to >=250 deg.C and are joined by using solder and low melting glass or even if these parts are used at a high temp.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、250℃以上の高温下
で使用可能な耐熱性反射防止膜が形成された光学部品に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical component having a heat resistant antireflection film which can be used at a high temperature of 250 ° C. or higher.

【0002】[0002]

【従来の技術】光学ガラス、単結晶体、光学プラスチッ
クなどの光学部品は、一般に表面反射を減らすために反
射防止膜が設けられて使用される。反射防止膜は用途に
応じて単層または多層構造からなる。単層の場合は例え
ばTiO2、Ta25またはZrO2を原料とした薄膜層
で形成される。多層構造の場合は前記薄膜層の上にSi
2を原料とした低屈折な薄膜層が積層された構造にさ
れることが多い。反射防止膜は、真空蒸着法、イオンプ
レーティング法、スパッタリング法などによって光学部
品に形成される。
2. Description of the Related Art Optical parts such as optical glass, single crystal and optical plastic are generally provided with an antireflection film to reduce surface reflection. The antireflection film has a single-layer or multi-layer structure depending on the application. In the case of a single layer, for example, it is formed of a thin film layer using TiO 2 , Ta 2 O 5 or ZrO 2 as a raw material. In the case of a multilayer structure, Si is formed on the thin film layer.
In many cases, a low refractive index thin film layer made of O 2 is laminated. The antireflection film is formed on the optical component by a vacuum vapor deposition method, an ion plating method, a sputtering method, or the like.

【0003】反射防止膜の反射率は、光源波長、光線入
射角、各層の光学膜厚(屈折率と膜厚の積)および積層
構造によって決定される。高屈折率の反射防止膜として
酸化チタン、例えばTiO2が使用される。酸化チタン
としては、TiO、TiO2、Ti35などがあり、光
学部品に形成されるTiOXの組成(Xの値)は成膜技
術、成膜条件、原料組成に大きく依存する。TiOX
らなる膜を形成する方法として、例えばK.Narasimha Ra
o,at.el,J.Vac.Sci.Technol.A11,394-397,(1993)には、
酸素イオンを基板に照射しながら250℃でTiOを基
板に蒸着させることによりTiO2膜を形成する方法が
記載されており、H.Demiryont,J.R.Sites,J.Vac.Sci.Te
chnol.A2,1457-1460,(1984)には、アルゴン−酸素混合
物のイオンビームを基板に照射しながらTiO2を蒸着
させる方法が記載されている。
The reflectance of the antireflection film is determined by the wavelength of the light source, the incident angle of the light beam, the optical film thickness (product of the refractive index and film thickness) of each layer, and the laminated structure. Titanium oxide, such as TiO 2, is used as the antireflection film having a high refractive index. Examples of titanium oxide include TiO, TiO 2 , and Ti 3 O 5, and the composition (value of X) of TiO x formed in the optical component largely depends on the film forming technique, the film forming conditions, and the raw material composition. As a method for forming a film made of TiO x , for example, K. Narasimha Ra
o, at.el, J.Vac.Sci.Technol.A11,394-397, (1993),
A method for forming a TiO 2 film by depositing TiO 2 on a substrate at 250 ° C. while irradiating the substrate with oxygen ions is described. H. Demiryont, JR Sites, J. Vac. Sci. Te
Chnol.A2,1457-1460, the (1984), argon - the method of depositing TiO 2 while an ion beam of oxygen mixture is irradiated to the substrate is described.

【0004】一方、光学部品は、他の光学部品や匡体と
接合固定する際に、はんだ、低融点ガラス等の金属、無
機物を用いて接合されることがある。はんだ、低融点ガ
ラスを用いて接合する場合には、それらの融点、ガラス
軟化点になるまでの加熱を必要とする。例えばAu−S
nはんだの場合には280℃以上の加熱を必要とする。
On the other hand, an optical component may be joined using a solder, a metal such as low melting point glass or the like, or an inorganic substance when being joined and fixed to another optical component or an enclosure. In the case of joining using solder or low melting glass, it is necessary to heat them until their melting points and glass softening points are reached. For example Au-S
In the case of n solder, heating at 280 ° C. or higher is required.

【0005】[0005]

【発明が解決しようとする課題】この加熱によって光学
部品に形成された反射防止膜の光学膜厚が変化してしま
うため、TiO2の反射防止膜付き光学部品を280℃
程度以上に加熱してはんだ等で接合固定すると、接合後
の反射防止膜の反射率が増加してしまうという問題があ
った。上記文献でも、TiO2膜が250℃以上に加熱
されることは想定されていない。
Since the optical film thickness of the antireflection film formed on the optical component is changed by this heating, the optical component with the antireflection film of TiO 2 is heated to 280 ° C.
There is a problem in that the reflectance of the antireflection film after joining increases if it is heated to a certain degree or higher and joined and fixed with solder or the like. Also in the above document, it is not assumed that the TiO 2 film is heated to 250 ° C. or higher.

【0006】本発明は前記の課題を解決するためなされ
たもので、250℃以上に加熱して接合したり、高温下
で使用しても反射率が増加することがなく、安定した光
学特性が得られる耐熱性反射防止膜付き光学部品を提供
することを目的とする。
The present invention has been made to solve the above-mentioned problems, and the reflectance does not increase even when heated to 250 ° C. or higher for bonding or used at high temperature, and stable optical characteristics are obtained. It is an object of the present invention to provide an optical component having a heat-resistant antireflection film obtained.

【0007】[0007]

【課題を解決するための手段】前記の目的を達成するた
めになされた本発明の耐熱性反射防止膜付き光学部品
は、図1に示すように、250℃以上に加熱される光学
部品の少なくとも片面に、TiOX(Xは1.9〜2.
2)薄膜2からなる反射防止膜が形成されている。
As shown in FIG. 1, an optical component with a heat-resistant antireflection film of the present invention made to achieve the above-mentioned object is at least the optical component heated to 250 ° C. or higher. On one surface, TiO x (X is 1.9 to 2.
2) An antireflection film composed of the thin film 2 is formed.

【0008】TiOX薄膜2にSiO2薄膜3が積層され
ていることが好ましい。光学部品1は、例えば光学ガラ
ス、単結晶体または光学プラスチックが挙げられる。
A SiO 2 thin film 3 is preferably laminated on the TiO x thin film 2. The optical component 1 includes, for example, optical glass, single crystal or optical plastic.

【0009】[0009]

【作用】本発明の耐熱性反射防止膜付き光学部品は、T
iOXの酸素の組成量がX=1.9〜2.2からなる反
射防止膜が形成されているため、250℃以上の高温に
加熱しても、TiOXの組成が変化することがないため
光学膜厚が変化することがなく、反射防止膜の反射率が
増加してしまうことがない。
The optical component with the heat-resistant antireflection film of the present invention is
Since the antireflection film having the oxygen composition amount of iO X of X = 1.9 to 2.2 is formed, the composition of TiO X does not change even when heated to a high temperature of 250 ° C. or higher. Therefore, the optical film thickness does not change, and the reflectance of the antireflection film does not increase.

【0010】[0010]

【実施例】図1は、本発明を適用する耐熱性反射防止膜
付き光学部品の実施例を示す断面図である。同図に示す
ように、耐熱性反射防止膜付き光学部品は、光学部品1
の両面に高屈折率層2および低屈折率層3からなる耐熱
性反射防止膜4が形成されている。この耐熱性反射防止
膜付き光学部品は、他の光学部品と接合される際、はん
だや低融点ガラスを使用して、250℃以上に加熱して
接合される。
FIG. 1 is a sectional view showing an embodiment of an optical component with a heat resistant antireflection film to which the present invention is applied. As shown in the figure, the optical component with the heat-resistant antireflection film is the optical component 1
A heat resistant antireflection film 4 composed of a high refractive index layer 2 and a low refractive index layer 3 is formed on both surfaces of. When this optical component with a heat-resistant antireflection film is bonded to another optical component, solder or low melting point glass is used and heated to 250 ° C. or higher for bonding.

【0011】図2は、光学部品に耐熱性反射防止膜を形
成する真空蒸着装置を示す概略図である。同図に示すよ
うに、チャンバー6には、酸素導入口7および排気口8
が設けられ不図示の弁を開閉して密閉できるようになっ
ている。チャンバー6内の底部には電子銃9およびイオ
ン銃11が配置されており、電子銃9の上には耐熱性反
射防止膜の蒸着原料10を入れるためのるつぼ12が配
置されている。チャンバー6内の上部には光学部品1を
保持するための保持具13が配置され、保持具13には
チャンバー6外部から貫通して光学膜厚計14が取り付
けられている。尚、光学膜厚とは屈折率と膜厚の積であ
る。
FIG. 2 is a schematic view showing a vacuum vapor deposition apparatus for forming a heat resistant antireflection film on an optical component. As shown in the figure, the chamber 6 has an oxygen introduction port 7 and an exhaust port 8.
Is provided so that a valve (not shown) can be opened and closed for sealing. An electron gun 9 and an ion gun 11 are arranged at the bottom of the chamber 6, and a crucible 12 for containing the vapor deposition material 10 of the heat resistant antireflection film is arranged on the electron gun 9. A holder 13 for holding the optical component 1 is arranged in the upper portion of the chamber 6, and an optical film thickness meter 14 is attached to the holder 13 so as to penetrate from the outside of the chamber 6. The optical film thickness is the product of the refractive index and the film thickness.

【0012】この真空蒸着装置は、所定の圧力になるま
で排気口8から排気した後、酸素導入口7から酸素を導
入し、保持具13に光学部品1を取り付け、光学部品1
を加熱しながら電子銃9でるつぼ12内の蒸着原料10
を蒸発させ光学部品1に蒸着させ高屈折率層2を形成さ
せる。このとき、必要に応じてイオン銃11を作動して
酸素イオンを光学部品1に照射しても良い。次に別にチ
ャンバー6内に用意した低屈折率層3の蒸着原料を蒸発
させ、高屈折率層2が蒸着された光学部品1に重ねて蒸
着させる。
In this vacuum vapor deposition apparatus, after exhausting from the exhaust port 8 to a predetermined pressure, oxygen is introduced from the oxygen introducing port 7, the optical component 1 is attached to the holder 13, and the optical component 1
Evaporation source 10 in crucible 12 with electron gun 9 while heating
Is evaporated and deposited on the optical component 1 to form the high refractive index layer 2. At this time, if necessary, the ion gun 11 may be operated to irradiate the optical component 1 with oxygen ions. Next, the vapor deposition material for the low refractive index layer 3 separately prepared in the chamber 6 is vaporized, and the vapor deposition is carried out on the optical component 1 on which the high refractive index layer 2 is vapor deposited.

【0013】上記した装置を使用して光学部品1に耐熱
性反射防止膜4を形成した。実施例1および2は本発明
を適用した方法で光学部品1に耐熱性反射防止膜4を形
成し、比較例1は本発明を適用外の方法で反射防止膜を
形成した。
The heat resistant antireflection film 4 was formed on the optical component 1 by using the above-mentioned apparatus. In Examples 1 and 2, the heat-resistant antireflection film 4 was formed on the optical component 1 by the method applying the present invention, and in Comparative Example 1, the antireflection film was formed by the method not applying the present invention.

【0014】実施例1 光学部品1として厚さ0.5mmの石英ガラス基板1
(波長1.31μmでの屈折率1.44)、高屈折率層
2の蒸着原料10としてTi35を使用し、チャンバー
6内が300℃を保つように加熱しながら1×10-5To
rr以下の圧力に排気した後、チャンバー11内に圧力が
2×10-4Torrとなるように酸素ガスを導入した。電子
銃9を作動させてTi35を蒸発させ蒸着速度0.3n
m/sで、光学膜厚計14を観察しながら石英ガラス基
板1の両面に光学膜厚が89nmの高屈折率層2を形成
させた。次に酸素ガスの導入を停止し、低屈折率層3の
原料として粒状のSiO2を使用して、電子銃9を作動
させてSiO2を蒸発させ蒸着速度0.5nm/sで、
高屈折率層2の上に光学膜厚が427nmの低屈折率層
3を形成させ、石英ガラス基板1に光源波長1.31μ
m用の2層の耐熱性反射防止膜4が形成された。
Example 1 As an optical component 1, a quartz glass substrate 1 having a thickness of 0.5 mm
(Refractive index 1.44 at a wavelength of 1.31 μm), Ti 3 O 5 is used as a vapor deposition material 10 for the high refractive index layer 2, and heating is performed so that the temperature in the chamber 6 is maintained at 300 ° C., and 1 × 10 −5. To
After exhausting to a pressure of rr or less, oxygen gas was introduced into the chamber 11 so that the pressure became 2 × 10 −4 Torr. The electron gun 9 is operated to evaporate Ti 3 O 5 and vapor deposition rate 0.3 n.
While observing the optical film thickness meter 14 at m / s, the high refractive index layer 2 having an optical film thickness of 89 nm was formed on both surfaces of the quartz glass substrate 1. Then, the introduction of oxygen gas is stopped, and granular SiO 2 is used as a raw material for the low refractive index layer 3, and the electron gun 9 is operated to evaporate SiO 2 at a vapor deposition rate of 0.5 nm / s.
The low refractive index layer 3 having an optical film thickness of 427 nm is formed on the high refractive index layer 2, and the light source wavelength is 1.31 μm on the quartz glass substrate 1.
A two-layer heat-resistant antireflection film 4 for m was formed.

【0015】実施例2 光学部品1として厚さ0.5mmの石英ガラス基板1
(波長1.31μmでの屈折率1.44)、高屈折率層
2の蒸着原料10としてTiO2を使用し、チャンバー
6内が100℃を保つように加熱しながら1×10-5To
rr以下の圧力に排気した後、チャンバー11内に圧力が
1×10-4Torrとなるように酸素ガスを導入した。イオ
ン銃11を作動させてイオンエネルギー750eV、イ
オン電流密度10μA/cm2の酸素イオンを石英ガラ
ス基板1に照射しながら、電子銃9を作動させてTiO
2を蒸発させ蒸着速度0.3nm/sで、光学膜厚計1
4を観察しながら石英ガラス基板1の両面に光学膜厚が
89nmの高屈折率層2を形成させた。次に酸素ガスの
導入を停止し、低屈折率層3の原料として粒状のSiO
2を使用して、電子銃9を作動させてSiO2を蒸発させ
蒸着速度0.5nm/sで、高屈折率層2の上に光学膜
厚が427nmの低屈折率層3を形成させ、石英ガラス
基板1に光源波長1.31μm用の2層の耐熱性反射防
止膜4が形成された。
Example 2 As an optical component 1, a quartz glass substrate 1 having a thickness of 0.5 mm
(Refractive index 1.44 at wavelength 1.31 μm), TiO 2 is used as the deposition material 10 for the high refractive index layer 2, and 1 × 10 −5 To while heating the inside of the chamber 6 to maintain 100 ° C.
After exhausting to a pressure of rr or less, oxygen gas was introduced into the chamber 11 so that the pressure became 1 × 10 −4 Torr. While the ion gun 11 is operated to irradiate the quartz glass substrate 1 with oxygen ions having an ion energy of 750 eV and an ion current density of 10 μA / cm 2 , the electron gun 9 is operated to activate TiO 2.
Optical film thickness meter 1 with evaporation of 2 and evaporation rate of 0.3 nm / s
While observing No. 4, the high refractive index layer 2 having an optical film thickness of 89 nm was formed on both surfaces of the quartz glass substrate 1. Next, the introduction of oxygen gas is stopped, and granular SiO 2 is used as a raw material for the low refractive index layer 3.
2 is used to operate the electron gun 9 to evaporate SiO 2 and form a low refractive index layer 3 having an optical film thickness of 427 nm on the high refractive index layer 2 at a vapor deposition rate of 0.5 nm / s, Two layers of heat-resistant antireflection film 4 for a light source wavelength of 1.31 μm were formed on a quartz glass substrate 1.

【0016】比較例1 高屈折率層2の原料としてTiO2を使用したことを除
き、実施例1と同様にして石英ガラス基板1に光源波長
1.31μm用の2層の反射防止膜を形成した。
Comparative Example 1 A two-layer antireflection film for a light source wavelength of 1.31 μm was formed on a quartz glass substrate 1 in the same manner as in Example 1 except that TiO 2 was used as a raw material for the high refractive index layer 2. did.

【0017】性能試験 実施例1、2および比較例1において、それぞれ3個の
石英ガラス基板1を使用して、SiO2を原料とした低
屈折率層3は形成させずに、高屈折率層2のみからなる
反射防止膜を形成させ、それぞれ試料1、試料2、試料
3とした。これらの試料について石英ガラス基板1に形
成された反射防止膜2のTiOX組成を光電子分光法に
より分析し、その結果を表1に示す。
Performance Test In Examples 1 and 2 and Comparative Example 1, three quartz glass substrates 1 were used, respectively, and the high refractive index layer 3 was formed without forming the low refractive index layer 3 made of SiO 2 as a raw material. An antireflection film consisting of only 2 was formed to obtain Sample 1, Sample 2, and Sample 3, respectively. For these samples, the TiO x composition of the antireflection film 2 formed on the quartz glass substrate 1 was analyzed by photoelectron spectroscopy, and the results are shown in Table 1.

【0018】[0018]

【表1】 [Table 1]

【0019】次に、実施例1、実施例2および比較例1
の方法で形成した2層の反射防止膜の試料を240℃か
ら360℃まで加熱しながら、波長1.31μmのレー
ザ光による透過率Tを測定し、反射率Rを次式(1)に
より算出した。
Next, Example 1, Example 2 and Comparative Example 1
While heating the sample of the two-layer antireflection film formed by the method described in (1) above from 240 ° C. to 360 ° C., the transmittance T by the laser light having a wavelength of 1.31 μm is measured, and the reflectance R is calculated by the following equation (1). did.

【0020】 100−2R=T ・・・(1) その結果を図3に示す。同図に示すように実施例1およ
び実施例2のように反射防止膜のTiOX組成がX≦
2.2のときには、250℃を超えて加熱を行っても反
射率が増加することはなかった。これに対し、比較例1
のようにTiOXの組成がX>2.2のときには、25
0℃を超えた加熱を行うと反射率が増大してしまった。
100-2R = T (1) The results are shown in FIG. As shown in the figure, the TiO x composition of the antireflection film is X ≦
In the case of 2.2, the reflectance did not increase even if heating was performed at over 250 ° C. In contrast, Comparative Example 1
When the composition of TiO x is X> 2.2 as shown in
When the heating temperature was higher than 0 ° C, the reflectance increased.

【0021】[0021]

【発明の効果】以上、詳細に説明したように本発明の耐
熱性反射防止膜付き光学部品は、はんだや低融点ガラス
を使用して250℃以上に加熱して接合したり、高温下
で使用しても反射率が増加することがなく、安定した光
学特性を得ることができる。
As described above in detail, the optical component with a heat-resistant antireflection film of the present invention is used at high temperatures of 250.degree. Even if the reflectance is not increased, stable optical characteristics can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を適用する耐熱性反射防止膜付き光学部
品の実施例を示す断面図である。
FIG. 1 is a sectional view showing an embodiment of an optical component with a heat resistant antireflection film to which the present invention is applied.

【図2】光学部品に耐熱性反射防止膜を形成する真空蒸
着装置を示す概略図である。
FIG. 2 is a schematic view showing a vacuum vapor deposition apparatus for forming a heat resistant antireflection film on an optical component.

【図3】実施例および比較例における反射防止膜付き光
学部品の加熱温度と反射率の関係を示す図である。
FIG. 3 is a graph showing the relationship between the heating temperature and the reflectance of optical components with an antireflection film in Examples and Comparative Examples.

【符号の説明】[Explanation of symbols]

1は石英ガラス基板、2は高屈折率層、3は低屈折率
層、4は耐熱性反射防止膜、6はチャンバー、7は酸素
導入口、8は排気口、9は電子銃、10は蒸着原料、1
1はイオン銃、12はるつぼ、13は保持具、14は光
学膜厚計である。
1 is a quartz glass substrate, 2 is a high refractive index layer, 3 is a low refractive index layer, 4 is a heat resistant antireflection film, 6 is a chamber, 7 is an oxygen inlet, 8 is an exhaust port, 9 is an electron gun, 10 is Evaporation material, 1
1 is an ion gun, 12 is a crucible, 13 is a holder, and 14 is an optical film thickness meter.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G02B 1/10 G02B 1/10 Z (72)発明者 流王 俊彦 群馬県安中市磯部2丁目13番1号 信越化 学工業株式会社精密機能材料研究所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location G02B 1/10 G02B 1/10 Z (72) Inventor Toshihiko Nagao 2 Isobu, Annaka-shi, Gunma Prefecture No. 13-1 Shin-Etsu Chemical Co., Ltd., Precision Materials Research Laboratory

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 250℃以上に加熱される光学部品の少
なくとも片面に、TiOX(Xは1.9〜2.2)薄膜
からなる反射防止膜が形成されていることを特徴とする
耐熱性反射防止膜付き光学部品。
1. A heat resistance characterized in that an antireflection film made of a TiO x (X is 1.9 to 2.2) thin film is formed on at least one surface of an optical component heated to 250 ° C. or higher. Optical parts with anti-reflection film.
【請求項2】 前記TiOX薄膜にSiO2薄膜が積層さ
れていることを特徴とする請求項1に記載の耐熱性反射
防止膜付き光学部品。
2. The optical component with a heat-resistant antireflection film according to claim 1, wherein a SiO 2 thin film is laminated on the TiO x thin film.
【請求項3】 前記光学部品が、光学ガラス、単結晶体
または光学プラスチックであることを特徴とする請求項
1に記載の耐熱性反射防止膜付き光学部品。
3. The optical component with a heat-resistant antireflection film according to claim 1, wherein the optical component is an optical glass, a single crystal, or an optical plastic.
JP8001566A 1995-12-18 1996-01-09 Optical parts with heat resistant antireflection film Pending JPH09189801A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP8001566A JPH09189801A (en) 1996-01-09 1996-01-09 Optical parts with heat resistant antireflection film
US08/768,292 US5872652A (en) 1995-12-18 1996-12-17 Optical isolator and optical part having heat-resistant anti-reflection coating
DE69631495T DE69631495D1 (en) 1995-12-18 1996-12-17 Optical element with a heat-resistant anti-reflection layer
DE69616957T DE69616957T2 (en) 1995-12-18 1996-12-17 Optical isolator and optical component with a heat-resistant anti-reflective coating
EP00113469A EP1072925B1 (en) 1995-12-18 1996-12-17 Optical element having heat-resistant anti-reflection coating
EP96309199A EP0780717B1 (en) 1995-12-18 1996-12-17 Optical isolator and optical part having heat-resistant anti-reflection coating
US09/193,128 US6163404A (en) 1995-12-18 1998-11-17 Optical isolator and optical part having heat-resistant anti-reflection coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8001566A JPH09189801A (en) 1996-01-09 1996-01-09 Optical parts with heat resistant antireflection film

Publications (1)

Publication Number Publication Date
JPH09189801A true JPH09189801A (en) 1997-07-22

Family

ID=11505078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8001566A Pending JPH09189801A (en) 1995-12-18 1996-01-09 Optical parts with heat resistant antireflection film

Country Status (1)

Country Link
JP (1) JPH09189801A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6468402B1 (en) 1996-01-05 2002-10-22 Bekaert Vds Process for coating a substrate with titanium dioxide
JP2009244583A (en) * 2008-03-31 2009-10-22 Konica Minolta Opto Inc Method for manufacturing optical element, optical element unit, and imaging unit
JPWO2010004879A1 (en) * 2008-07-11 2012-01-05 コニカミノルタオプト株式会社 OPTICAL ELEMENT, OPTICAL ELEMENT MANUFACTURING METHOD, AND ELECTRONIC DEVICE MANUFACTURING METHOD
USRE43817E1 (en) 2004-07-12 2012-11-20 Cardinal Cg Company Low-maintenance coatings
US9738967B2 (en) 2006-07-12 2017-08-22 Cardinal Cg Company Sputtering apparatus including target mounting and control
US10604442B2 (en) 2016-11-17 2020-03-31 Cardinal Cg Company Static-dissipative coating technology

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6468402B1 (en) 1996-01-05 2002-10-22 Bekaert Vds Process for coating a substrate with titanium dioxide
USRE43817E1 (en) 2004-07-12 2012-11-20 Cardinal Cg Company Low-maintenance coatings
USRE44155E1 (en) 2004-07-12 2013-04-16 Cardinal Cg Company Low-maintenance coatings
US9738967B2 (en) 2006-07-12 2017-08-22 Cardinal Cg Company Sputtering apparatus including target mounting and control
JP2009244583A (en) * 2008-03-31 2009-10-22 Konica Minolta Opto Inc Method for manufacturing optical element, optical element unit, and imaging unit
JPWO2010004879A1 (en) * 2008-07-11 2012-01-05 コニカミノルタオプト株式会社 OPTICAL ELEMENT, OPTICAL ELEMENT MANUFACTURING METHOD, AND ELECTRONIC DEVICE MANUFACTURING METHOD
JP5488464B2 (en) * 2008-07-11 2014-05-14 コニカミノルタ株式会社 OPTICAL ELEMENT, OPTICAL ELEMENT MANUFACTURING METHOD, AND ELECTRONIC DEVICE MANUFACTURING METHOD
US10604442B2 (en) 2016-11-17 2020-03-31 Cardinal Cg Company Static-dissipative coating technology
US11325859B2 (en) 2016-11-17 2022-05-10 Cardinal Cg Company Static-dissipative coating technology

Similar Documents

Publication Publication Date Title
JP3808917B2 (en) Thin film manufacturing method and thin film
US6844976B1 (en) Heat-absorbing filter and method for making same
DK166536B1 (en) PRODUCT WITH HIGH TRANSMITTANCE AND LOW EMISSIVITY
JPH08254612A (en) Multilayer film optical component and manufacture thereof
JPH09189801A (en) Optical parts with heat resistant antireflection film
JP3128554B2 (en) Method for forming oxide optical thin film and apparatus for forming oxide optical thin film
CN100418913C (en) Transparent zirconium oxide - tantalum and/or tantalum oxide coating
JPS585855B2 (en) semi-reflective glass
JP2002339084A (en) Metal film and metal film coated member
JPH07331412A (en) Optical parts for infrared ray and their production
Guenther et al. Corrosion-resistant front surface aluminum mirror coatings
EP1072925B1 (en) Optical element having heat-resistant anti-reflection coating
Ristau et al. Thin Film Optical Coatings
EP1211523B1 (en) Infrared laser optical element and manufacturing method therefor
JP2010072636A (en) Optical article and method for manufacturing the same
WO2017119335A1 (en) Method for manufacturing reflective film
CN111218659A (en) Film forming method and film forming apparatus
JP3332271B2 (en) Reflecting mirror and manufacturing method thereof
JPH0553001A (en) Multilayered antireflection film of optical parts made of synthetic resin
JPH09263936A (en) Production of thin film and thin film
WO2023042438A1 (en) Light blocking film, multilayer antireflection film, method for producing said light blocking film, method for producing said multilayer antireflection film, and optical member
JP4520107B2 (en) Translucent thin film and method for producing the same
JPH11213448A (en) Corrosion resistant film and structural body coated with this film
JP2583295Y2 (en) Vacuum deposition equipment
JPS63112441A (en) Transfarent heat reflecting plate

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040525