JPH09178964A - Branching structure for optical waveguide - Google Patents

Branching structure for optical waveguide

Info

Publication number
JPH09178964A
JPH09178964A JP7341311A JP34131195A JPH09178964A JP H09178964 A JPH09178964 A JP H09178964A JP 7341311 A JP7341311 A JP 7341311A JP 34131195 A JP34131195 A JP 34131195A JP H09178964 A JPH09178964 A JP H09178964A
Authority
JP
Japan
Prior art keywords
waveguide
width
branch
output side
input side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7341311A
Other languages
Japanese (ja)
Inventor
Housetsu Chin
陳  抱雪
Yukiya Masuda
享哉 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NHK Spring Co Ltd
Original Assignee
NHK Spring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NHK Spring Co Ltd filed Critical NHK Spring Co Ltd
Priority to JP7341311A priority Critical patent/JPH09178964A/en
Priority to US08/742,407 priority patent/US5757995A/en
Publication of JPH09178964A publication Critical patent/JPH09178964A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a branching structure capable of reducing a mode conversion loss even when a dull part exists in a branch part tip and relaxing the necessity precisely forming the branch part tip. SOLUTION: A transient part waveguide 15 is provided between an input side waveguide 12 and two pieces of output side waveguides 13, 14. The transient part waveguide 15 is provided with an expansion part 16 quickly and slightly expanding a waveguide width stepwise from the end part 12a of the input side waveguide 12 and a prolonging part 17 prolonging from the expansion part 16 in the directions of the output side waveguides 13, 14. The waveguide width A of the expansion part 16 is slightly wider than the width B of the input side waveguide 12. The prolonging part 17 is shaped so that the waveguide width is fixed substantially or widened in tapered shape in the interval from the expansion part 16 to the output side waveguides 13, 14.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光通信などにおい
て信号光を分岐するディバイスなどに適用される光導波
路の分岐構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical waveguide branching structure applied to a device for branching signal light in optical communication or the like.

【0002】[0002]

【従来の技術】例えば光通信に使われる光集積回路(光
IC)用ディバイス等において、信号光を分岐させるた
めの一手段として、例えば特開平3−172804号公
報や特開平5−119220号公報に記載されているよ
うな光方向性結合器が知られている。また、特開平3−
245107号公報や特開平5−11130号公報に記
載されているようなY分岐導波路も知られている。
2. Description of the Related Art For example, in a device for an optical integrated circuit (optical IC) used for optical communication, etc., as one means for branching a signal light, for example, JP-A-3-172804 and JP-A-5-119220. Optical directional couplers such as those described in US Pat. In addition, Japanese Unexamined Patent Publication
Y-branch waveguides such as those described in Japanese Patent No. 245107 and Japanese Patent Laid-Open No. 5-11130 are also known.

【0003】従来の光方向性結合器は、図7に例示する
ように、基板1に形成された複数の導波路2,3,4の
一部を互いに平行かつ直線的に近接させることにより、
入力側導波路2を伝搬する光を出力側導波路3,4に移
行させるようにしている。この光方向性結合器は導波路
幅が一定であるため、シングルモードの入射光をシング
ルモードのまま伝搬させることができ、損失が少ないと
いう利点がある。
In a conventional optical directional coupler, as shown in FIG. 7, a part of a plurality of waveguides 2, 3 and 4 formed on a substrate 1 are brought close to each other in parallel and linearly.
The light propagating through the input side waveguide 2 is transferred to the output side waveguides 3 and 4. Since this optical directional coupler has a constant waveguide width, it has the advantage that single mode incident light can be propagated as it is in single mode, and loss is small.

【0004】しかしながら上記の光方向性結合器は、伝
搬定数が光の波長の変化に対して敏感に変化するため波
長依存性が強いという特性がある。このため、波長帯域
幅が50〜100オングストロームと狭く、導波路どう
しの間隔や結合部の長さ等の設計が難しく、製造時の寸
法ばらつきによって特性が大きく変化するという欠点が
あった。また光通信では主に波長1.3μmと1.55
μmの光が用いられるが、方向性結合器を用いた分岐で
は、使用する波長によって結合長などを変更する必要が
あり、その結果、波長の変化に応じて2種類の方向性結
合器を用いなければならず、通信システムを構成する上
で大きな問題となる。
However, the above-mentioned optical directional coupler has a characteristic that its propagation constant is sensitive to changes in the wavelength of light and therefore has strong wavelength dependence. For this reason, the wavelength band width is as narrow as 50 to 100 angstroms, it is difficult to design the distance between the waveguides, the length of the coupling portion, and the like, and there is a drawback that the characteristics greatly change due to dimensional variations during manufacturing. In optical communication, wavelengths of 1.3 μm and 1.55 are mainly used.
Although the light of μm is used, in the branch using the directional coupler, it is necessary to change the coupling length and the like depending on the wavelength to be used. This is a major problem in configuring a communication system.

【0005】これに対してY分岐導波路は、図8に例示
するように、基板1に設けた1本の導波路5と2本の出
力側導波路6,7との間に、Y形の分岐部8を形成して
いる。このようなY分岐導波路は、光の波長に対する依
存性が少なく、波長帯域幅が約1000オングストロー
ムと広いため、設計が比較的容易である。
On the other hand, the Y-branch waveguide is, as illustrated in FIG. 8, formed between the one waveguide 5 provided on the substrate 1 and the two output-side waveguides 6 and 7 in the Y-shape. To form a branch portion 8. Since such a Y-branch waveguide has little dependence on the wavelength of light and has a wide wavelength bandwidth of about 1000 Å, it is relatively easy to design.

【0006】[0006]

【発明が解決しようとする課題】しかしY分岐導波路
は、分岐部8における導波路幅が各導波路5,6,7よ
りも広くなるために、入射光がシングルモードであって
も、分岐部8で高次モードの発生によるマルチモード化
の傾向がある。このためY分岐導波路は光パワーの一部
が導波路外に放射され、損失が大きくなるという欠点が
ある。また、分岐部先端8aを微細な鋭角パターンにす
る必要があるが、加工上の限界などから完全な鋭角パタ
ーンを形成することに困難を伴い、分岐部先端8aの形
状が不完全であると散乱損失を生じやすいという問題も
あった。
However, since the width of the waveguide in the branching portion 8 is wider than that of each of the waveguides 5, 6 and 7, the Y-branching waveguide splits even if the incident light is a single mode. There is a tendency for multi-mode to occur due to the generation of higher-order modes in the section 8. Therefore, the Y-branch waveguide has a drawback that a part of the optical power is radiated to the outside of the waveguide and the loss becomes large. Further, although it is necessary to form the branch tip 8a with a fine acute angle pattern, it is difficult to form a complete acute pattern due to processing limitations and the like, and if the shape of the branch tip 8a is incomplete, scattering occurs. There was also the problem of easy loss.

【0007】上記Y分岐導波路は、分岐部先端8aの幅
が小さくなるほど分岐損失が減少することが知られてい
る。しかし現実には分岐部先端8aが完全な鋭角となる
ように微細に形成することに困難を伴う。すなわち実際
にY分岐導波路を製作した際に、加工上の限界などから
分岐部先端8aが設計通りの形状とならず、図8に2点
鎖線で示すようにある程度の「なまり」9が生じてしま
う。このため導波路幅の広がる領域がさらに長くなった
り、埋込み型導波路ではコアがクラッド層によって十分
に覆われずに部分的に空洞が生じるなどして、設計値通
りの特性が得られないことがある。
It is known that in the Y-branch waveguide, the branch loss decreases as the width of the branch tip 8a decreases. However, in reality, it is difficult to form the tip 8a of the branch portion finely so as to form a complete acute angle. That is, when the Y-branch waveguide is actually manufactured, the tip 8a of the branch portion does not have the shape as designed due to processing limitations or the like, and a certain amount of "blurring" 9 occurs as shown by the chain double-dashed line in FIG. Will end up. For this reason, the region where the waveguide width expands becomes longer, and in the embedded waveguide, the core is not sufficiently covered by the cladding layer, and a cavity is partially formed, so that the characteristics as designed cannot be obtained. There is.

【0008】上記の問題を解決するには、分岐部8を設
計する際に、予め分岐部先端8aに2μm以上のなまり
幅Wを確保しておくとよい。また、分岐部先端8aを正
確に加工し、埋込み型導波路の製作においてコアがクラ
ッド層に完全に埋込まれるようにする必要からも、2μ
m以上のなまり幅Wを確保することが望まれる。しか
し、こうしたなまり幅Wの存在は、分岐部8におけるモ
ード変換損失をさらに増加させる要因となる。
In order to solve the above problem, it is advisable to secure a blunt width W of 2 μm or more at the tip 8a of the branched portion when designing the branched portion 8. In addition, since it is necessary to accurately process the tip 8a of the branch portion so that the core is completely embedded in the clad layer in manufacturing the embedded waveguide, 2 μ is required.
It is desired to secure a rounded width W of m or more. However, the existence of such a rounded width W becomes a factor for further increasing the mode conversion loss in the branching section 8.

【0009】すなわち、図9に示すように、なまり9を
有するY分岐構造においては、入力側導波路5における
界分布が緩やかな摂動を受けるため光は基本モード成分
M1がほとんどであり、その界分布が光の進行につれて
対称的に左右に広がるようになる。一方、分岐部8にお
いては2本の対称な出力側導波路6,7が設けられてい
るため、偶対称モードしか励起されない。つまり、入力
側導波路5を伝搬してきた光の基本モードM1 と、分岐
部8における出力側導波路6,7の結合端の偶対称モー
ドM2 との間では界分布に大きな差がある。そしてこれ
が原因となってモード変換損失が発生し、分岐損失の一
部になるという欠点がある。この場合の具体的な放射損
失は0.1dB(デシベル)程度以上の値となる。現状
の導波路製造プロセスでは、導波路形状に関してある程
度のばらつきは避けられず、またクラッド層によってコ
アを十分に埋込む必要があるなどの事情からも、なまり
幅Wが大きくなる傾向がある。
That is, as shown in FIG. 9, in the Y-branch structure having the rounded portion 9, the field distribution in the input side waveguide 5 is subject to a gentle perturbation, so that the light mostly contains the fundamental mode component M1. The distribution spreads symmetrically to the left and right as the light travels. On the other hand, in the branch portion 8, since two symmetrical output side waveguides 6 and 7 are provided, only the even symmetric mode is excited. That is, there is a large difference in the field distribution between the fundamental mode M1 of the light propagating through the input side waveguide 5 and the even symmetric mode M2 at the coupling ends of the output side waveguides 6 and 7 in the branch section 8. This causes a mode conversion loss, which is a part of the branch loss. The specific radiation loss in this case is a value of about 0.1 dB (decibel) or more. In the current waveguide manufacturing process, a certain degree of variation in the waveguide shape is unavoidable, and the round width W tends to increase due to the fact that the core needs to be sufficiently filled with the cladding layer.

【0010】従って本発明の目的は、波長の変化に影響
されにくいY分岐構造において、分岐部先端の形状ばら
つき等が特性に与える影響を低減でき、また、分岐部先
端のなまり幅を2μm以上確保してもモード変換損失が
少なく、しかも分岐部先端の加工が容易となるような光
導波路の分岐構造を提供することにある。
Therefore, an object of the present invention is to reduce the influence of variations in the shape of the tip of the branch portion on the characteristics in a Y-branch structure that is not easily affected by changes in wavelength, and to secure a rounded width of 2 μm or more at the tip of the branch portion. Even so, it is to provide a branching structure of an optical waveguide in which mode conversion loss is small and the tip of the branching portion can be easily processed.

【0011】[0011]

【課題を解決するための手段】上記の目的を果たすため
に開発された本発明は、クラッド層によって覆われたコ
アを有する光導波路において、1本の入力側導波路と、
上記入力側導波路の端部と対向して配置された2本の出
力側導波路と、上記入力側導波路の端部と上記2本の出
力側導波路との間に形成されかつ導波路幅が上記入力側
導波路の端部から段差状に広がる拡張部およびこの拡張
部から上記出力側導波路の方向に延びる延長部を有する
過渡部導波路とを具備している。
The present invention, which was developed to achieve the above object, provides an optical waveguide having a core covered with a cladding layer, wherein one input-side waveguide and
Two output-side waveguides arranged to face the ends of the input-side waveguide, and a waveguide formed between the end of the input-side waveguide and the two output-side waveguides There is provided a transition section waveguide having an expansion section whose width extends stepwise from the end section of the input side waveguide and an extension section extending from the expansion section toward the output side waveguide.

【0012】本発明において、入力側導波路に接続され
る過渡部導波路は従来のY分岐導波路のようなテーパ形
状ではなく、入力側導波路と過渡部導波路との界面にお
いて段差状に急に少し広がる拡張部と、この拡張部から
出力側導波路の方向に延びる延長部を有している。この
場合、入力側導波路と過渡部導波路との界面では伝搬す
る光は基本モードが主となるが、僅かな輻射モード成分
も励起させることができる。さらにこの過渡部導波路の
長さを適正な値に調整し、基本モードと輻射モードの界
分布を適正に重ね合わせることにより、2本の出力側導
波路への結合に有利な界分布を過渡部導波路内でつくり
出すことができる。この入力側導波路から過渡部導波路
に移行する際に僅かなモード変換損失を生じるが、過渡
部導波路から2本の出力側導波路への結合時には損失が
ほとんど発生しないため、分岐部全体として低損失に抑
えることができる。
In the present invention, the transient section waveguide connected to the input side waveguide is not tapered like the conventional Y-branch waveguide, but is formed in a step shape at the interface between the input side waveguide and the transient section waveguide. It has an expanding portion that abruptly expands slightly and an extending portion that extends from this expanding portion toward the output side waveguide. In this case, the propagating light is mainly in the fundamental mode at the interface between the input side waveguide and the transitional section waveguide, but a slight radiation mode component can be excited. Furthermore, by adjusting the length of the transient section waveguide to an appropriate value and properly overlapping the field distributions of the fundamental mode and the radiation mode, the field distribution advantageous for coupling to the two output side waveguides is transient. It can be created in a partial waveguide. A slight mode conversion loss occurs when the transition is made from this input side waveguide to the transient section waveguide, but there is almost no loss when coupling from the transient section waveguide to the two output side waveguides. As a result, low loss can be suppressed.

【0013】本発明はY型に分岐する2分岐タイプの分
岐構造であるが、このY分岐構造を複数組合わせること
によって、8分岐あるいは16分岐等の導波路も構成す
ることができ、その場合も分岐部1か所あたりの損失が
非常に小さいため挿入損失特性に優れたスターカプラが
得られる。さらに、上記分岐構造を応用して導波路型光
スイッチや変調器などを形成することもできる。
The present invention is a bifurcating type bifurcating structure for bifurcating into a Y-type, and by combining a plurality of the Y-branching structures, an 8-branch or 16-branch waveguide can be constructed. However, since the loss per branch is very small, a star coupler having excellent insertion loss characteristics can be obtained. Furthermore, a waveguide type optical switch, a modulator or the like can be formed by applying the above-mentioned branch structure.

【0014】[0014]

【発明の実施の形態】以下に本発明の一実施形態につい
て、図1から図6を参照して説明する。図1に示したY
分岐型の光導波路10を有する光分岐ディバイス11
は、1本の入力側導波路12と、2本の出力側導波路1
3,14と、過渡部導波路15などを備えている。過渡
部導波路15は、入力側導波路12の端部12aと出力
側導波路13,14との間に形成されている。この過渡
部導波路15は、入力側導波路12の端部12aを出た
ところで導波路幅が段差状に急に少し広がる拡張部16
を有し、かつ、拡張部16から出力側導波路13,14
の方向に延びる延長部17を備えている。入力側導波路
12に対して拡張部16がなす角度θは、直角あるいは
それに近い角度である。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described below with reference to FIGS. Y shown in FIG.
Optical branching device 11 having a branching optical waveguide 10
Is one input side waveguide 12 and two output side waveguides 1
3, 14 and the transition section waveguide 15 and the like. The transition section waveguide 15 is formed between the end 12 a of the input side waveguide 12 and the output side waveguides 13 and 14. The transitional portion waveguide 15 has an expanded portion 16 in which the width of the waveguide abruptly spreads in a step shape at the end 12a of the input side waveguide 12.
And the output side waveguides 13 and 14 from the expansion section 16
An extension portion 17 extending in the direction of is provided. The angle θ formed by the expansion portion 16 with respect to the input side waveguide 12 is a right angle or an angle close thereto.

【0015】図示例の拡張部16の導波路幅Aは、入力
側導波路12の導波路幅Bの例えば2倍以下である。延
長部17の導波路幅は拡張部側16から出力側導波路1
3,14に至る間で実質的に一定である。なお図1に2
点鎖線で示すように、延長部17の導波路幅が拡張部1
6から出力側導波路13,14に至る間でテーパ状に広
がる形状としてもよい。
The waveguide width A of the expanded portion 16 in the illustrated example is, for example, not more than twice the waveguide width B of the input side waveguide 12. The waveguide width of the extension portion 17 is from the extension portion side 16 to the output side waveguide 1.
It is substantially constant between 3 and 14. 2 in FIG.
As shown by the dotted line, the waveguide width of the extension 17 is equal to that of the extension 1.
It is also possible to have a shape that expands in a taper shape from the position 6 to the output side waveguides 13 and 14.

【0016】過渡部導波路15に対する出力側導波路1
3,14の結合端13a,14aの各々の導波路幅C
は、それぞれ入力側導波路12の幅Bの半分以下として
あり、しかもこの結合端13a,14aから延びる部分
13b,14bは、円弧またはサインカーブ等の三角関
数に基く形状から選ばれた曲線で構成されており、しか
も上記部分13b,14bの導波路幅は結合端13a,
14aから遠ざかるにつれて次第に幅が広がりながら一
定の導波路幅Dの部分13c,14cに連なる形状とな
っている。分岐部先端18は鋭角とせず、2μmあるい
はそれ以上のなまり幅Wが確保されている。
Output side waveguide 1 with respect to the transient section waveguide 15
Waveguide width C of each of coupling ends 13a and 14a
Are each less than or equal to half the width B of the input side waveguide 12, and the portions 13b and 14b extending from the coupling ends 13a and 14a are formed by curves selected from shapes based on trigonometric functions such as arcs or sine curves. In addition, the waveguide widths of the portions 13b and 14b are equal to the coupling end 13a,
The width gradually increases as the distance from 14a increases, and the shape becomes continuous with the portions 13c and 14c having the constant waveguide width D. The tip 18 of the diverging portion is not an acute angle, and a rounded width W of 2 μm or more is secured.

【0017】上記光導波路10の製造方法の一例を以下
に述べる。Siウエハあるいは石英等からなる基板20
(図3に示す)の表面に、CVD法(Chemical Vapor D
eposition :化学気相蒸着法)あるいはFHD法(Flam
eHydrolysis Deposition :火炎堆積法)などの膜形成
方法によって、SiO2を主成分とする低屈折率の下部
クラッド層21を形成する。また、下部クラッド層21
の上に、SiO2にドープ剤を添加するなどの手段によ
って屈折率をクラッド層21よりも0.2%〜0.4%
程度高めたコア22を形成する。なお、屈折率を下げる
ドープ剤をクラッド層21に添加することにより、クラ
ッド層21の屈折率を下げる方法をとってもよい。
An example of a method of manufacturing the above optical waveguide 10 will be described below. Substrate 20 made of Si wafer or quartz
The CVD method (Chemical Vapor D
eposition: Chemical vapor deposition method or FHD method (Flam
The lower clad layer 21 having SiO 2 as a main component and having a low refractive index is formed by a film forming method such as eHydrolysis Deposition (flame deposition method). In addition, the lower clad layer 21
The refractive index is 0.2% to 0.4% higher than that of the cladding layer 21 by means such as adding a doping agent to SiO 2.
The core 22 which is slightly elevated is formed. A method of lowering the refractive index of the clad layer 21 may be adopted by adding a dopant that lowers the refractive index to the clad layer 21.

【0018】上記コア22の表面にフォトレジストによ
って所定の導波路パターンを形成したのち、RIE(Re
active Ion Etching)などの方法によってエッチングを
行うことにより、所定パターンの導波路コア22を成形
する。その後、再びCVD法あるいはFHD法などによ
りコア22を埋込むように上部クラッド層25を形成す
る。これにより、ステップインデックス型屈折率分布を
もつ光導波路10が形成される。図3は、FHD法によ
って形成される埋込み型導波路構造であるが、図4に示
すようなリッジ型導波路構造をCVD法によって形成し
てもよい。
After forming a predetermined waveguide pattern on the surface of the core 22 with a photoresist, RIE (Re
The waveguide core 22 having a predetermined pattern is formed by etching by a method such as active ion etching. After that, the upper cladding layer 25 is formed again by the CVD method or the FHD method so as to fill the core 22. As a result, the optical waveguide 10 having the step index type refractive index distribution is formed. Although FIG. 3 shows a buried type waveguide structure formed by the FHD method, a ridge type waveguide structure as shown in FIG. 4 may be formed by the CVD method.

【0019】なお、コア22の屈折率をドープ剤の添加
によって予め高めに設定しておき、加熱によりドープ剤
を熱拡散させるなどの導波路製造方法を用いて、グレー
テッド型の屈折率分布をもつ導波路を形成してもよい。
また、上記の説明とは異なる公知の導波路製造プロセス
によって、グレーテッドインデックス型の屈折率分布を
もつ導波路を形成してもよい。
The graded refractive index distribution is determined by using a waveguide manufacturing method such that the refractive index of the core 22 is set higher in advance by adding a doping agent and the doping agent is thermally diffused by heating. You may form the waveguide which has.
Further, a waveguide having a graded index type refractive index distribution may be formed by a known waveguide manufacturing process different from the above description.

【0020】上記実施例の光導波路10の分岐構造で
は、入力側導波路12と過渡部導波路15との界面にお
いて伝搬する光は主に基本モードとなるが、入力側導波
路12に接続された拡張部16が段差状に急に少し広が
った形状となっているため、過渡部導波路15において
僅かな輻射モード成分を励起させることができる。しか
も過渡部導波路15の長さを適正な値に調整し、基本モ
ードと輻射モードの界分布を適正に重ね合わせるように
すれば、過渡部導波路15と2本の出力側導波路13,
14との界面での損失がほとんど発生しなくなるため、
この界面で僅かなモード変換損失を生じても分岐部全体
として低損失に抑えることができる。
In the branch structure of the optical waveguide 10 of the above-mentioned embodiment, the light propagating at the interface between the input side waveguide 12 and the transient section waveguide 15 is mainly in the fundamental mode, but is connected to the input side waveguide 12. Further, since the expanded portion 16 has a shape that abruptly spreads in a stepped manner, a slight radiation mode component can be excited in the transient portion waveguide 15. Moreover, if the length of the transitional waveguide 15 is adjusted to an appropriate value and the field distributions of the fundamental mode and the radiation mode are properly overlapped, the transitional waveguide 15 and the two output side waveguides 13,
Since almost no loss occurs at the interface with 14,
Even if a slight mode conversion loss occurs at this interface, the overall branch portion can be suppressed to a low loss.

【0021】図2に、上記実施形態における界分布の各
モード結合状態を示す。入力側導波路12と過渡部導波
路15との界面では基本モードM1 が主である。しか
し、過渡部導波路15において2本の出力側導波路1
3,14に必要な界分布が作られているため、過渡部導
波路15との結合端13a,14aにおいて、偶対称モ
ードM2 に対しスムーズなモード結合が実現できる。さ
らにこの2本の出力側導波路13,14の結合端13
a,14aでは各導波路幅を入力側導波路12のコア幅
の半分以下まで細くすることにより、光の閉じ込めを一
時的に弱め、モード変換に伴う損失も減少させることが
できる。
FIG. 2 shows each mode coupling state of the field distribution in the above embodiment. At the interface between the input side waveguide 12 and the transitional section waveguide 15, the fundamental mode M1 is predominant. However, the two waveguides 1 on the output side in the transient waveguide 15
Since the field distributions required for 3 and 14 are created, smooth mode coupling can be realized for the even symmetric mode M2 at the coupling ends 13a and 14a with the transient waveguide 15. Furthermore, the coupling end 13 of these two output side waveguides 13 and 14
In a and 14a, by narrowing each waveguide width to less than half of the core width of the input side waveguide 12, the confinement of light is temporarily weakened and the loss due to mode conversion can be reduced.

【0022】上記分岐構造では出力側導波路13,14
の分岐部先端18の幅Wを2μm以上に設定している
が、この部位で急激なモード変換はほとんど生じないた
め、このようななまり幅Wを有する形状であってもモー
ド変換損失は問題にならない程度に小さい。また、出力
側導波路13,14の結合端13a,14aから他端側
に連なる部分13b,14bを円弧や三角関数に基く曲
線などから選ばれた適正な形状を用いることにより、曲
げ損失を0.001dB以下に抑えることができる。
In the above branch structure, the output side waveguides 13 and 14 are provided.
The width W of the tip 18 of the branch portion is set to 2 μm or more. However, since abrupt mode conversion hardly occurs at this portion, mode conversion loss is a problem even with a shape having such a round width W. It is small enough not to become. Further, by using an appropriate shape selected from an arc or a curve based on a trigonometric function for the portions 13b and 14b connected from the coupling ends 13a and 14a of the output side waveguides 13 and 14 to the other end side, the bending loss can be reduced to 0. It can be suppressed to 0.001 dB or less.

【0023】上記実施態様の分岐構造によれば、分岐部
先端18の幅を2μm以下の鋭角パターンに形成しなく
てもモード変換損失を少なくでき、分岐部において微細
な鋭角部分を形成する必要がないため、加工が容易であ
るとともに、コア22を上部クラッド層25によって完
全に埋込むことができる。つまり分岐部を歩留まり良く
成形できる形状にすることができ、特性ばらつきの少な
い光導波路10が得られる。
According to the branch structure of the above embodiment, mode conversion loss can be reduced without forming the width of the tip 18 of the branch portion into an acute angle pattern of 2 μm or less, and it is necessary to form a fine acute angle portion in the branch portion. Since it is not present, the processing is easy and the core 22 can be completely embedded by the upper clad layer 25. That is, the branching portion can be formed into a shape that can be molded with a high yield, and the optical waveguide 10 with less characteristic variation can be obtained.

【0024】上記実施形態の光導波路10の作用(挿入
損失等)を確かめるために、本発明者らはBPM(ビー
ム伝搬法)によるシミュレーションを行った。その結果
について以下に述べる。まず分岐損失については、図5
に示すように、上記実施形態の場合、なまり幅2μm付
近で損失が0.04dB程度ときわめて低くなってい
る。分岐損失は、なまり幅の増加に伴って増加する傾向
があるが、上記実施形態では従来のY分岐構造よりも損
失の増加の程度が緩やかである。なまり幅が3μm程度
まで増加しても分岐損失が0.1dB以下に抑えられて
おり、従来のY分岐構造に比較して著しく低い分岐損失
となっている。
In order to confirm the operation (insertion loss, etc.) of the optical waveguide 10 of the above-mentioned embodiment, the present inventors conducted a simulation by BPM (beam propagation method). The results will be described below. First, regarding the branch loss,
As shown in FIG. 7, in the above embodiment, the loss is as low as about 0.04 dB in the vicinity of the round width of 2 μm. The branch loss tends to increase as the rounding width increases, but the degree of increase in the loss is slower in the above embodiment than in the conventional Y-branch structure. The branch loss is suppressed to 0.1 dB or less even if the rounding width is increased to about 3 μm, which is a significantly lower branch loss than the conventional Y-branch structure.

【0025】これに対し従来のY分岐導波路のようなテ
ーパ状の過渡部分をもつ分岐構造では、なまり幅が2μ
mとなるように分岐部先端を微細に成形したとしても、
損失は0.1dB以上となる。図5は波長1.3μmに
おける特性であるが、従来のY分岐構造では、なまり幅
が増加するにつれて分岐損失が急激に増加する傾向があ
る。
On the other hand, in the branch structure having a tapered transient portion like the conventional Y-branch waveguide, the round width is 2 μm.
Even if the tip of the bifurcation is finely molded to be m,
The loss is 0.1 dB or more. FIG. 5 shows the characteristics at a wavelength of 1.3 μm, but in the conventional Y-branch structure, the branch loss tends to increase rapidly as the rounding width increases.

【0026】光通信では主に波長1.3μmと1.55
μmの光が用いられるが、図6に示すように波長に対す
る分岐損失の依存性は小さく、上記実施形態の光導波路
10であれば上記2種類の波長のいずれでも十分に低い
分岐損失が得られている。
In optical communication, wavelengths of 1.3 μm and 1.55 are mainly used.
Although the light of μm is used, the dependence of the branch loss on the wavelength is small as shown in FIG. 6, and the optical waveguide 10 of the above embodiment can obtain a sufficiently low branch loss at any of the two types of wavelengths. ing.

【0027】上述したように、導波路の分岐部を製造す
る際にばらつく要因となる分岐部の形状等に関し、特に
分岐部先端の形状等について精度を緩和できるため、分
岐部での低損失化が図れるのは勿論のこと、なまり幅の
許容範囲を広く設定できるので加工が容易となり、導波
路の分岐部を製造する上で歩留まりを飛躍的に高めるこ
とができる。
As described above, with respect to the shape of the branch portion, which becomes a factor of variation when manufacturing the branch portion of the waveguide, and particularly the accuracy of the shape of the tip of the branch portion can be relaxed, the loss at the branch portion can be reduced. Of course, since the allowable range of the rounded width can be set wide, processing becomes easy, and the yield can be dramatically increased in manufacturing the branched portion of the waveguide.

【0028】[0028]

【発明の効果】本発明によれば、分岐損失が低減し、光
を効率良く伝搬することができる。しかも分岐部のコア
を形成する際の加工上の限界によって製造時にばらつく
可能性のある分岐部先端の形状精度等を緩和でき、なま
り幅の許容範囲を広く設定できる。このため、製造時に
ばらつく要因による導波路特性への影響を低減でき、製
造が容易になるとともに不良品の発生が減って歩留まり
が大幅に向上する。しかも波長が変化しても光伝搬特性
への影響が少ない。また、分岐部における出力側導波路
の曲線を少なくできるため曲り損失の低減化を図ること
ができる。
According to the present invention, branching loss is reduced and light can be efficiently propagated. In addition, the shape accuracy of the tip of the branch portion, which may vary during manufacturing, can be relaxed due to the processing limit when forming the core of the branch portion, and the allowable range of the rounding width can be set wide. Therefore, it is possible to reduce the influence on the waveguide characteristics due to factors that vary during manufacturing, facilitate manufacturing, reduce the number of defective products, and significantly improve the yield. Moreover, even if the wavelength changes, it has little effect on the light propagation characteristics. Further, since the curve of the output side waveguide at the branch portion can be reduced, the bending loss can be reduced.

【0029】請求項4のように2本の出力側導波路の結
合端の導波路幅をそれぞれ入力側導波路の半分以下まで
細くした場合には、過渡部導波路と各出力側導波路との
結合部に生じるモード変換に伴う損失を更に減少させる
ことができる。
When the waveguide width at the coupling end of the two output side waveguides is narrowed to less than half of the input side waveguide as in the fourth aspect, the transition section waveguide and each output side waveguide are It is possible to further reduce the loss due to the mode conversion occurring at the coupling part of the.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施形態を示す光導波路の分岐部
の平面図。
FIG. 1 is a plan view of a branch portion of an optical waveguide showing an embodiment of the present invention.

【図2】 図1に示された分岐部における界分布の変化
を示す図。
FIG. 2 is a diagram showing a change in the field distribution at the bifurcation shown in FIG.

【図3】 図1中のIII-III 線に沿う断面図。FIG. 3 is a sectional view taken along line III-III in FIG.

【図4】 導波路コアの変形例を示す断面図。FIG. 4 is a sectional view showing a modification of the waveguide core.

【図5】 図1に示す分岐部と従来の分岐部におけるな
まり幅と損失との関係を示す図。
FIG. 5 is a diagram showing a relationship between a rounded width and a loss in the branch portion shown in FIG. 1 and a conventional branch portion.

【図6】 なまり幅と損失の関係を2種類の波長に関し
て示す図。
FIG. 6 is a diagram showing a relationship between rounded width and loss for two types of wavelengths.

【図7】 従来の光方向性結合器を示す平面図。FIG. 7 is a plan view showing a conventional optical directional coupler.

【図8】 従来のY分岐導波路を示す平面図。FIG. 8 is a plan view showing a conventional Y-branch waveguide.

【図9】 図8に示されたY分岐導波路における界分布
の変化を示す図。
9 is a diagram showing a change in field distribution in the Y-branch waveguide shown in FIG.

【符号の説明】[Explanation of symbols]

10…光導波路 11…光分岐ディバイス 12…入力側導波路 13,14…出力側導波路 15…過渡部導波路 16…拡張部 17…延長部 DESCRIPTION OF SYMBOLS 10 ... Optical waveguide 11 ... Optical branching device 12 ... Input side waveguide 13, 14 ... Output side waveguide 15 ... Transient part waveguide 16 ... Expansion part 17 ... Extension part

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】クラッド層によって覆われたコアを有する
光導波路において、 1本の入力側導波路と、 上記入力側導波路の端部と対向して配置された2本の出
力側導波路と、 上記入力側導波路の端部と上記2本の出力側導波路との
間に形成されかつ導波路幅が上記入力側導波路の端部か
ら段差状に広がる拡張部およびこの拡張部から上記出力
側導波路の方向に延びる延長部を有する過渡部導波路
と、 を具備したことを特徴とする光導波路の分岐構造。
1. An optical waveguide having a core covered with a cladding layer, wherein one input-side waveguide and two output-side waveguides are arranged so as to face an end portion of the input-side waveguide. An extension portion formed between the end portion of the input side waveguide and the two output side waveguides and having a waveguide width stepwise extending from the end portion of the input side waveguide; An optical waveguide branching structure comprising: a transitional portion waveguide having an extension portion extending in the direction of the output side waveguide.
【請求項2】上記拡張部の導波路幅が上記入力側導波路
よりもやや広くかつ上記延長部の導波路幅が上記拡張部
から上記出力側導波路に至る間で実質的に一定としたこ
とを特徴とする請求項1記載の光導波路の分岐構造。
2. The waveguide width of the extension is slightly wider than that of the input side waveguide, and the waveguide width of the extension is substantially constant from the extension to the output side waveguide. The branch structure of the optical waveguide according to claim 1, wherein
【請求項3】上記拡張部の導波路幅が上記入力側導波路
よりもやや広くかつ上記延長部の導波路幅が上記拡張部
から上記出力側導波路に至る間でテーパ状に広がる形状
としたことを特徴とする請求項1記載の光導波路の分岐
構造。
3. A shape in which the waveguide width of the expanded portion is slightly wider than that of the input side waveguide and the waveguide width of the extended portion is tapered so as to extend from the expanded portion to the output side waveguide. The branched structure of the optical waveguide according to claim 1, wherein:
【請求項4】上記過渡部導波路に結合される上記2本の
出力側導波路の分岐部先端の幅を2μm以上としたこと
を特徴とする請求項1記載の光導波路の分岐構造。
4. The optical waveguide branching structure according to claim 1, wherein the width of the tip of the branching portion of the two output side waveguides coupled to the transitional portion waveguide is set to 2 μm or more.
【請求項5】上記過渡部導波路に対する上記出力側導波
路の結合端の導波路幅がそれぞれ上記入力側導波路の幅
の半分以下であり、かつ、上記結合端から延びる部分が
円弧または三角関数に基く形状から選ばれた曲線で構成
されしかも上記結合端から離れるにつれて導波路幅が次
第に広がる形状としたことを特徴とする請求項1記載の
光導波路の分岐構造。
5. The waveguide width at the coupling end of the output side waveguide to the transitional portion waveguide is half or less of the width of the input side waveguide, and the portion extending from the coupling end is an arc or a triangle. 2. The branch structure of an optical waveguide according to claim 1, wherein the waveguide has a shape that is formed by a curve selected from a shape based on a function and that the width of the waveguide gradually widens as the distance from the coupling end increases.
JP7341311A 1995-12-27 1995-12-27 Branching structure for optical waveguide Pending JPH09178964A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP7341311A JPH09178964A (en) 1995-12-27 1995-12-27 Branching structure for optical waveguide
US08/742,407 US5757995A (en) 1995-12-27 1996-11-04 Optical coupler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7341311A JPH09178964A (en) 1995-12-27 1995-12-27 Branching structure for optical waveguide

Publications (1)

Publication Number Publication Date
JPH09178964A true JPH09178964A (en) 1997-07-11

Family

ID=18345078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7341311A Pending JPH09178964A (en) 1995-12-27 1995-12-27 Branching structure for optical waveguide

Country Status (1)

Country Link
JP (1) JPH09178964A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100416997B1 (en) * 2001-07-23 2004-02-05 삼성전자주식회사 Y-branch optical waveguide and multi-stage optical power splitter using that
KR100417001B1 (en) * 2001-12-17 2004-02-05 삼성전자주식회사 Optical power splitter with assistant waveguide
KR100474727B1 (en) * 2002-11-13 2005-03-11 삼성전자주식회사 Y-branch waveguide using offset
WO2005101075A1 (en) * 2004-04-12 2005-10-27 Hitachi Chemical Company, Ltd. Optical waveguide structure
US7280713B2 (en) 2002-05-15 2007-10-09 Fujitsu Limited Optical modulator, optical waveguide device and acousto-optic tunable filter apparatus
WO2010082673A1 (en) * 2009-01-16 2010-07-22 日本碍子株式会社 Branched optical waveguide, optical waveguide substrate and optical modulator
JP2018136550A (en) * 2011-06-27 2018-08-30 学校法人慶應義塾 Optical waveguide

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5157457A (en) * 1974-09-20 1976-05-19 Max Planck Gesellschaft Dohakanomochiita jikoketsuzohoshiki
JPH01156703A (en) * 1987-12-14 1989-06-20 Fujitsu Ltd Optical coupler
US4950045A (en) * 1988-07-15 1990-08-21 Stc Plc Single mode couplers
JPH0430108A (en) * 1990-05-28 1992-02-03 Nippon Telegr & Teleph Corp <Ntt> Waveguide type optical star coupler
JPH0470605A (en) * 1990-07-06 1992-03-05 Nippon Telegr & Teleph Corp <Ntt> Branching and multiplexing optical waveguide
JPH04213407A (en) * 1990-12-10 1992-08-04 Nippon Telegr & Teleph Corp <Ntt> Branching/multiplexing optical waveguide circuit
JPH0627336A (en) * 1992-07-06 1994-02-04 Nippon Telegr & Teleph Corp <Ntt> Optical multiplexing/demultiplexing circuit
JPH0694931A (en) * 1992-09-11 1994-04-08 Nikon Corp Optical waveguide device
JPH06503899A (en) * 1990-12-20 1994-04-28 イギリス国 intensity splitting device
JPH06503900A (en) * 1990-12-20 1994-04-28 イギリス国 optical device
JPH07174929A (en) * 1993-11-01 1995-07-14 Sumitomo Electric Ind Ltd Light branching device and optical parts

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5157457A (en) * 1974-09-20 1976-05-19 Max Planck Gesellschaft Dohakanomochiita jikoketsuzohoshiki
JPH01156703A (en) * 1987-12-14 1989-06-20 Fujitsu Ltd Optical coupler
US4950045A (en) * 1988-07-15 1990-08-21 Stc Plc Single mode couplers
JPH0430108A (en) * 1990-05-28 1992-02-03 Nippon Telegr & Teleph Corp <Ntt> Waveguide type optical star coupler
JPH0470605A (en) * 1990-07-06 1992-03-05 Nippon Telegr & Teleph Corp <Ntt> Branching and multiplexing optical waveguide
JPH04213407A (en) * 1990-12-10 1992-08-04 Nippon Telegr & Teleph Corp <Ntt> Branching/multiplexing optical waveguide circuit
JPH06503899A (en) * 1990-12-20 1994-04-28 イギリス国 intensity splitting device
JPH06503900A (en) * 1990-12-20 1994-04-28 イギリス国 optical device
JPH0627336A (en) * 1992-07-06 1994-02-04 Nippon Telegr & Teleph Corp <Ntt> Optical multiplexing/demultiplexing circuit
JPH0694931A (en) * 1992-09-11 1994-04-08 Nikon Corp Optical waveguide device
JPH07174929A (en) * 1993-11-01 1995-07-14 Sumitomo Electric Ind Ltd Light branching device and optical parts

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100416997B1 (en) * 2001-07-23 2004-02-05 삼성전자주식회사 Y-branch optical waveguide and multi-stage optical power splitter using that
KR100417001B1 (en) * 2001-12-17 2004-02-05 삼성전자주식회사 Optical power splitter with assistant waveguide
US7280713B2 (en) 2002-05-15 2007-10-09 Fujitsu Limited Optical modulator, optical waveguide device and acousto-optic tunable filter apparatus
US7289703B2 (en) 2002-05-15 2007-10-30 Fujitsu Limited Optical modulator, optical waveguide device and acousto-optic tunable filter apparatus
US7315676B2 (en) 2002-05-15 2008-01-01 Fujitsu Limited Optical modulator, optical waveguide device and acousto-optic tunable filter apparatus
KR100474727B1 (en) * 2002-11-13 2005-03-11 삼성전자주식회사 Y-branch waveguide using offset
WO2005101075A1 (en) * 2004-04-12 2005-10-27 Hitachi Chemical Company, Ltd. Optical waveguide structure
JPWO2005101075A1 (en) * 2004-04-12 2007-08-16 日立化成工業株式会社 Optical waveguide structure
US7457498B2 (en) 2004-04-12 2008-11-25 Hitachi Chemical Company, Ltd. Optical waveguide structure
WO2010082673A1 (en) * 2009-01-16 2010-07-22 日本碍子株式会社 Branched optical waveguide, optical waveguide substrate and optical modulator
JPWO2010082673A1 (en) * 2009-01-16 2012-07-12 日本碍子株式会社 Branched optical waveguide, optical waveguide substrate, and optical modulator
JP2018136550A (en) * 2011-06-27 2018-08-30 学校法人慶應義塾 Optical waveguide

Similar Documents

Publication Publication Date Title
US5757995A (en) Optical coupler
US6236784B1 (en) Y branching optical waveguide and optical integrated circuit
US7088890B2 (en) Dual “cheese wedge” silicon taper waveguide
EP1530736B1 (en) Improved optical splitter with taperd multimode interference waveguide
US7343071B2 (en) Optical component and a method of fabricating an optical component
JPH09265018A (en) Branched multiplexing optical waveguide circuit
JP2004511820A (en) Waveguide spatial filter
CN113777708B (en) Mode converter
WO2003062883A2 (en) High-index contrast waveguide coupler
JPH04172308A (en) Y-branched light circuit
US6553164B1 (en) Y-branch waveguide
JP3841969B2 (en) Y branch optical waveguide and optical integrated circuit
JPH09178964A (en) Branching structure for optical waveguide
JP3543138B2 (en) Optical branch circuit and device
JP3795821B2 (en) Optical splitter
JP2961057B2 (en) Optical branching device
JP2000258648A (en) Optical planar waveguide
JPH07168146A (en) Spot conversion optical waveguide
JP2004529377A (en) Integrated optical device with adiabatic junction
JPH09311235A (en) Branching structure of optical waveguide
US6788854B2 (en) Optical coupler and AWG having the same
JP2001235645A (en) Optical waveguide circuit
KR100383586B1 (en) Y-branch lightwave circuits using offset
JP7205678B1 (en) Directional coupler and manufacturing method thereof
US11714234B2 (en) Optical waveguide device that converts polarization of light