JPH09168206A - Electric vehicle - Google Patents

Electric vehicle

Info

Publication number
JPH09168206A
JPH09168206A JP32537495A JP32537495A JPH09168206A JP H09168206 A JPH09168206 A JP H09168206A JP 32537495 A JP32537495 A JP 32537495A JP 32537495 A JP32537495 A JP 32537495A JP H09168206 A JPH09168206 A JP H09168206A
Authority
JP
Japan
Prior art keywords
battery
battery capacity
value
electric vehicle
capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32537495A
Other languages
Japanese (ja)
Inventor
Masanori Takeso
當範 武曽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP32537495A priority Critical patent/JPH09168206A/en
Publication of JPH09168206A publication Critical patent/JPH09168206A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/15Road slope, i.e. the inclination of a road segment in the longitudinal direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • B60W2556/50External transmission of data to or from the vehicle of positioning data, e.g. GPS [Global Positioning System] data
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Landscapes

  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To recover the recovered charged energy at all times by providing means for controlling the battery capacity constantly to a level close to a target charging level while ensuring a predetermined charging energy at the time of recovery. SOLUTION: DC power is fed from a battery 1 through a power converter 2 to an AC motor 3 thus driving the motor 3. At the time of applying brake or descending a slope, energy of the motor 3 is recovered by regenerative braking and the battery 1 is charged through the power converter 2. A battery capacity controller 6 detects the battery capacity. A required regenerative amount X is calculated based on an estimated run state signal from a navigation system and an actual run state signal from a vehicle run state detector 8 and then a target charging amount α (α=100-X) is calculated therefrom. Finally, the target charging amount α is compared with the battery capacity and the small engine 4 is started thus controlling the battery capacity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はバッテリより電力変
換器を経てモータを駆動する電気車に、発電機駆動用エ
ンジンを搭載し、その発電機の出力にてバッテリに充電
する電気車に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric vehicle in which a generator driving engine is mounted on an electric vehicle that drives a motor from a battery via a power converter, and the battery is charged by the output of the generator.

【0002】[0002]

【従来の技術】環境汚染が地球規模での大きな問題とな
ってきており、エンジン自動車の排気ガスにも厳しい対
応が迫られている。かかる状況にあって、排気ガスのな
いクリーンな自動車として電気自動車が一部特定の用途
として実用化されているが、より広範にエンジン自動車
に代わって実用に供し得る電気自動車の早期実現が望ま
れている。
2. Description of the Related Art Environmental pollution has become a major problem on a global scale, and exhaust gas emitted from engine vehicles is required to be severely dealt with. In such a situation, electric vehicles have been put into practical use as clean vehicles without exhaust gas in some specific applications, but early realization of electric vehicles that can be put to practical use instead of engine vehicles in a wider range is desired. ing.

【0003】電気自動車の現状は、エンジン自動車と比
較すると、連続走行距離や加速性能等の面から見てまだ
かなり劣っている。エンジン自動車と同等の走行性を保
証するには、その動力源であるバッテリの小型,大容量
化が最も大きな課題の1つである。また現状のバッテリ
を搭載した電気自動車では、エンジン自動車に近い走行
性を実現するためにまだ解決しなければならない様々な
問題が残されている。一般に実用化されている従来の電
気自動車の駆動回路は、電気車の駆動時あるいは走行時
にバッテリの直流電力を電力変換器を通してモータに供
給し、かつ逆負荷時のブレーキ時あるいは下り坂時には
回生機能を働かせてモータが発生する電力をバッテリに
回生充電するように構成していた。
The current state of electric vehicles is still inferior to that of engine vehicles in terms of continuous mileage and acceleration performance. In order to guarantee the same drivability as that of an engine vehicle, one of the biggest challenges is to make the battery, which is the power source, smaller and larger in capacity. In addition, in the current electric vehicle equipped with a battery, various problems still remain that must be solved in order to achieve a running performance close to that of an engine vehicle. The drive circuit of a conventional electric vehicle that has been generally put into practical use supplies the DC power of the battery to the motor through the power converter when driving or running the electric vehicle, and also has a regenerative function during braking under reverse load or during downhill driving. Was used to regeneratively charge the battery with the electric power generated by the motor.

【0004】しかしながらこの場合、充電量は限られて
しまい一充電走行距離は期待するほどあまり延びないの
が現状である。このため、例えば特開平3−270603 号公
報で知られているように小型エンジンで発電機を回して
バッテリに充電する、いわゆるハイブリッド電源を搭載
した電気車が一般に知られている。
However, in this case, the charging amount is limited and the one-charge traveling distance does not extend so much as expected. For this reason, an electric vehicle equipped with a so-called hybrid power source, in which a small engine rotates a generator to charge a battery, as is known from Japanese Patent Laid-Open No. 3-270603, is generally known.

【0005】[0005]

【発明が解決しようとする課題】しかしながら車両の走
行状態等でバッテリの容量は急激に変化をするためにバ
ッテリに常に充電をする必要があるが、あまり充電しす
ぎると回生のための充電ができなくなりエネルギの節約
にならなくなる。また登坂時にバッテリのエネルギをか
なり消費してしまうため、小型エンジンで充電しておく
と山の頂上付近で満充電に近い状態になってしまった場
合、下り坂を降りる時あるいはブレーキ時に回生制動が
出きなくなってしまう。
However, the battery capacity needs to be constantly charged because the capacity of the battery changes abruptly depending on the running condition of the vehicle. However, if the battery is charged too much, the battery cannot be charged for regeneration. No more energy savings. Also, since it consumes a lot of battery energy when climbing a hill, if recharging with a small engine results in near full charge near the top of the mountain, regenerative braking will be performed when going downhill or braking. It will not come out.

【0006】また山並みの高地の一般道路を長く走りた
い場合には山の頂上付近でも満充電に近い状態(100
−目標充電量α)にバッテリ容量を保持しておきたい等
の要求がでてくる。
In addition, when it is desired to drive on a high road on a mountainous area for a long time, a state close to the full charge (100 near the top of the mountain)
-There is a demand for keeping the battery capacity at the target charge amount α).

【0007】しかしながらバッテリの容量を小型エンジ
ンで駆動される発電機等で充電するシステムにおいて
は、常にバッテリを満充電にしておいたのではブレーキ
時や下り坂時の回生エネルギをバッテリに戻すことがで
きない。
However, in a system in which the capacity of the battery is charged by a generator driven by a small engine, if the battery is always fully charged, regenerative energy during braking or downhill can be returned to the battery. Can not.

【0008】従って(100−α)の回生分の容量を常
にバッテリに保持させておくことが省エネ的にも必要な
ことである。(100−α)の回生分は車両走行状態や
道路の状態(登坂,下り坂)等により大きく異なるた
め、これらの信号を集中的にバッテリ容量制御器にとり
込み必要に応じて目標充電量α値を設定し、そのα値ま
でバッテリ容量が達するよう発電機を駆動してバッテリ
に充電する必要がある。本発明の目的は、いかなる走行
状態にあっても必要な回生エネルギをバッテリに回収で
きるバッテリ容量制御システムを搭載した電気車を提供
するにある。
Therefore, it is necessary to keep the capacity of the (100-α) regenerative portion in the battery at all times in order to save energy. The (100-α) regenerative amount greatly differs depending on the vehicle running state, the road state (uphill, downhill), etc., so these signals are intensively taken into the battery capacity controller and the target charge amount α value is set as necessary. It is necessary to drive the generator to charge the battery so that the battery capacity reaches the α value. An object of the present invention is to provide an electric vehicle equipped with a battery capacity control system capable of recovering necessary regenerative energy in a battery under any running condition.

【0009】[0009]

【課題を解決するための手段】本発明はエンジンで駆動
される発電機の出力をバッテリに充電し、その電力を電
源として車両駆動用モータを運転してなる電気車であっ
て、前記バッテリの容量を検知する手段と、該検知手段
からの信号と、ナビゲーションシステムからの予想走行
状態信号と、車両走行状態を示す信号とを入力信号とし
回生時の充電エネルギ(100−α)を確保しながら常
にバッテリ容量を目標充電量αに近い状態に制御するバ
ッテリ容量制御手段とを備えることにより達成される。
SUMMARY OF THE INVENTION The present invention is an electric vehicle in which an output of a generator driven by an engine is charged in a battery and a vehicle driving motor is driven by using the electric power as a power source. While ensuring the charging energy (100-α) at the time of regeneration, the capacity detection means, the signal from the detection means, the expected traveling state signal from the navigation system, and the signal indicating the vehicle traveling state are used as input signals. This is achieved by including a battery capacity control unit that constantly controls the battery capacity to a state close to the target charge amount α.

【0010】[0010]

【発明の実施の形態】本発明の電気自動車用バッテリ容
量制御システムの一実施例を図面に沿って説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a battery capacity control system for an electric vehicle of the present invention will be described with reference to the drawings.

【0011】図1のブロック図に示すように、車両の駆
動源となるバッテリ1は電力変換器2と、モータ3と直
列接続され、該バッテリはガソリンあるいは軽油,ガス
等を燃料として駆動される小型エンジン4によって回転
駆動される発電機5の出力端に接続され電力を供給され
るように構成されている。バッテリ容量制御器6は図2
に示すようにバッテリ1の電圧変化(好ましくは電流,
ケース内温度等の補正係数を加えている)の信号を取り
込み演算してバッテリの容量を把握している。また、該
バッテリ容量制御器は車両に搭載されているナビゲーシ
ョンシステム7から目的地までの情報として渋滞情報,
地形情報等の予想走行状態信号を、車両走行状態検出装
置8から車両の実際の走行状態信号を入力し、前記バッ
テリ1と比較してその結果に応じて小型エンジンを駆動
するように構成されている。
As shown in the block diagram of FIG. 1, a battery 1 as a drive source of a vehicle is connected in series with an electric power converter 2 and a motor 3, and the battery is driven by using gasoline, light oil, gas or the like as fuel. It is configured to be connected to an output end of a generator 5 that is rotationally driven by the small engine 4 and to be supplied with electric power. The battery capacity controller 6 is shown in FIG.
As shown in, the voltage change (preferably current,
The battery capacity is ascertained by taking in the signal of the correction coefficient such as the temperature in the case). In addition, the battery capacity controller uses traffic information as information from the navigation system 7 mounted on the vehicle to the destination,
The actual traveling state signal of the vehicle is input from the vehicle traveling state detection device 8 to the expected traveling state signal such as topographical information, and the small engine is driven according to the result compared with the battery 1. There is.

【0012】一方、バッテリ容量表示器9は図3に示す
ようにバッテリの状態を表示するとともバッテリ容量Q
及び目標充電量αを表示していて、α値は運転手10か
らも任意に容易にマニアル設定できるような設定スイッ
チ11が設けられている。
On the other hand, the battery capacity indicator 9 displays the battery status as shown in FIG.
Further, the target charge amount α is displayed, and a setting switch 11 is provided so that the driver 10 can easily and arbitrarily set the α value.

【0013】上記構成において、バッテリ1よりの直流
電力を電力変換器2を経て交流モータ3に電力を供給
し、該モータ3を駆動させる(図中実線矢印)。一方、
ブレーキをかけた時や、坂道を下る時に回生制動により
回生エネルギをモータ3から電力変換器2を経てバッテ
リ1に回収し充電する(図中破線矢印)。これだけでは
長時間の走行はできないために小型エンジン4で発電機
5を回転させてバッテリ1に充電させるいわゆるハイブ
リッド電源システムを構成している。
In the above structure, the DC power from the battery 1 is supplied to the AC motor 3 via the power converter 2 to drive the motor 3 (solid line arrow in the figure). on the other hand,
When braking or when going down a slope, regenerative energy is collected by the regenerative braking from the motor 3 through the power converter 2 to the battery 1 for charging (broken line arrow in the figure). Since this alone cannot run for a long time, a so-called hybrid power supply system in which the small engine 4 rotates the generator 5 to charge the battery 1 is configured.

【0014】バッテリ1の充放電状態を把握するための
バッテリ容量制御器6はバッテリの容量を検出するとと
もにナビゲーションシステム7よりの予想走行状態信号
と、車両走行状態検出装置8からの実際の走行状態信号
により必要回生量Xを算出し、その値から目標充電量α
値(α=100−X)を算出する。次にこのα値とバッ
テリ容量を比較して小型エンジン4の始動をON−OF
F制御させてバッテリ容量を制御している。又バッテリ
容量Qはバッテリ容量表示器9に表示され、この表示器
には運転手10により任意に設定値をかえることができ
るα設定値やマニアルスイッチが設けられている。
The battery capacity controller 6 for grasping the charging / discharging state of the battery 1 detects the capacity of the battery, predicts the traveling state signal from the navigation system 7 and the actual traveling state from the vehicle traveling state detecting device 8. The required regeneration amount X is calculated from the signal, and the target charge amount α is calculated from the calculated value.
The value (α = 100−X) is calculated. Next, comparing the α value with the battery capacity, the start of the small engine 4 is turned ON-OF.
The F capacity is controlled to control the battery capacity. Further, the battery capacity Q is displayed on the battery capacity display 9, and this display is provided with an α set value and a manual switch whose driver 10 can arbitrarily change the set value.

【0015】具体的には図3に示すように、満充電バッ
テリ容量(100)−必要回生量X=αより目標充電量
α値を算出し、Q−α<0の時小型エンジン4を始動さ
せる信号をバッテリ容量制御器6より出力させ小型エン
ジン4を始動させバッテリ1を充電させる。またQ−α
≧0になった時、小型エンジン4を停止させる信号をバ
ッテリ容量制御器6より出力させ小型エンジン4を停止
させる。
Specifically, as shown in FIG. 3, the target charge amount α value is calculated from the fully charged battery capacity (100) −the required regeneration amount X = α, and the small engine 4 is started when Q−α <0. The battery capacity controller 6 outputs a signal to cause the small engine 4 to start and the battery 1 to be charged. Also Q-α
When ≧ 0, the battery capacity controller 6 outputs a signal for stopping the small engine 4 to stop the small engine 4.

【0016】これら動作は常に繰り返され、常にバッテ
リ容量Qをできるだけ満充電に近い状態(目標充電量α
を100に近づける)に保持するとともに回生エネルギ
をバッテリ1に戻すことができるようプログラムされて
いる。
These operations are always repeated, and the battery capacity Q is always in a state as close to full charge (target charge amount α).
To 100) and regenerative energy can be returned to the battery 1.

【0017】なお、ナビゲーションシステム7からの情
報はあまり長い間隔で見ていると、刻々と変化する情報
についていけず信頼性の低いものとなるため、例えば5
分〜10分単位程度で取り込むと良い。またバッテリ容
量Qはバッテリ容量表示器9に表示されるとともに目標
充電量α値も表示されるので現在のバッテリ容量及び充
電状態であるかどうかも表示されることになる(α>Q
の時発電機により充電状態)。
If the information from the navigation system 7 is viewed at too long intervals, the information that changes from moment to moment cannot be kept and the reliability is low.
It is good to take in about 10 minutes. Further, since the battery capacity Q is displayed on the battery capacity display 9 and the target charge amount α value is also displayed, it is also displayed whether or not the current battery capacity and the charging state are present (α> Q
When the state of charge by the generator).

【0018】また、バッテリ容量表示器9のマニアルス
イッチはα設定値を手動で任意に切り換えられ、マニア
ルでα設定値を設定した時はバッテリ容量制御器6で自
動的に設定されるα値よりも優先し、マニアルスッチを
OFFにすればまた自動的にα値を自動で設定するシス
テムに切り換わる。
Further, the manual switch of the battery capacity indicator 9 can arbitrarily change the α set value manually, and when the α set value is manually set, the α value automatically set by the battery capacity controller 6 is used. Also, if the manual switch is turned off, the system will automatically switch to the one that automatically sets the α value.

【0019】以上の実施例によれば、バッテリ容量を正
確に把握するとともに、ナビゲーションシステムよりこ
れから走行しようとする土地の状況(標高及び高低差,
目的地までの距離)信号や車両の実際の走行状態信号か
ら必要回生量Qを算出し、バッテリ容量(100%充
電)からこの必要回生量Qを引いた値である目標充電量
αを算出する。また現在のバッテリ容量がこのα値より
も小さい場合にはバッテリ容量制御器から小型エンジン
を始動させる信号を出して発電機を作動させ、バッテリ
を充電し、バッテリ容量がα値に達したらバッテリ容量
制御器から信号で小型エンジンの起動を停止させるシス
テムとなっている。
According to the above embodiment, the battery capacity is accurately grasped, and the state of the land to be driven by the navigation system (elevation and elevation difference,
The required regeneration amount Q is calculated from the signal (distance to the destination) or the actual traveling state signal of the vehicle, and the target charge amount α which is a value obtained by subtracting the required regeneration amount Q from the battery capacity (100% charge) is calculated. . If the current battery capacity is smaller than this α value, the battery capacity controller issues a signal to start the small engine to operate the generator, charge the battery, and when the battery capacity reaches the α value, the battery capacity The system uses a signal from the controller to stop the startup of the small engine.

【0020】従って、図4にあるように必要回生量(1
00−α)を常に維持しながらバッテリ容量Qを常に目
標充電量αに近づけるようにバッテリ充電が必要に応じ
てなされているため、車両の走行距離を限りなく長くす
る(エンジン用の燃料が無くなるまで)ことができ、ガ
ソリン車並の長距離運転が可能な電動車となる。また必
要回生量を常に確保しているため、ブレーキをかける時
や、下り坂走行時の回生エネルギを最大に回収すること
ができ、省エネ運転が可能となる。
Therefore, as shown in FIG. 4, the required regeneration amount (1
(00-α) is always maintained, the battery charge is performed as necessary so that the battery capacity Q is always brought close to the target charge amount α, so that the vehicle travels as much as possible (the fuel for the engine runs out. It becomes an electric car that can be operated over a long distance like a gasoline car. In addition, since the required amount of regeneration is always secured, it is possible to recover the maximum amount of regenerative energy when the brake is applied or when traveling on a downhill, which enables energy saving operation.

【0021】バッテリの容量はバッテリ容量表示器に表
示するようにしているので運転手が任意にα値を指定で
き、またマニアルで運転手の希望によりこの指定を変化
させることもできるので常に必要なバッテリ容量を任意
に維持できる。
Since the battery capacity is displayed on the battery capacity display, the driver can arbitrarily specify the α value, and this specification can be changed manually according to the driver's request, so that it is always necessary. The battery capacity can be maintained arbitrarily.

【0022】[0022]

【発明の効果】本発明はバッテリ容量制御器でバッテリ
の容量を検出するとともにナビゲーションシステムより
の予想走行状態信号と、車両走行状態検出器からの実際
の走行状態信号により必要回生量Xを算出し、その値か
ら目標充電量α値(α=100−X)を算出し、このα
値とバッテリ容量を比較してエンジンの始動をON−O
FF制御させてバッテリ容量を制御しているのでいかな
る走行状態にあっても必要な回生エネルギをバッテリに
回収でき、省エネで安全性の高い電気車が得られる。
According to the present invention, the battery capacity controller detects the capacity of the battery, and the required regeneration amount X is calculated from the predicted traveling state signal from the navigation system and the actual traveling state signal from the vehicle traveling state detector. , The target charge amount α value (α = 100−X) is calculated from this value, and this α
ON-O to start the engine by comparing the value with the battery capacity
Since the FF control is performed to control the battery capacity, necessary regenerative energy can be collected in the battery in any running state, and an energy-saving and highly safe electric vehicle can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例におけるバッテリ容量制御シス
テムブロック図。
FIG. 1 is a block diagram of a battery capacity control system according to an embodiment of the present invention.

【図2】同バッテリ容量制御システム入出力図。FIG. 2 is an input / output diagram of the battery capacity control system.

【図3】同容量表示図。FIG. 3 is a diagram showing the same capacity.

【図4】同バッテリ容量制御状態図。FIG. 4 is a battery capacity control state diagram of the same.

【符号の説明】[Explanation of symbols]

1…バッテリ(2次電池)、2…電力変換器、3…モー
タ、4…小型エンジン、5…発電機、6…バッテリ容量
制御器、7…ナビゲーションシステム、8…車両走行状
態検出装置、9…バッテリ容量表示器、10…運転手。
1 ... Battery (secondary battery), 2 ... Power converter, 3 ... Motor, 4 ... Small engine, 5 ... Generator, 6 ... Battery capacity controller, 7 ... Navigation system, 8 ... Vehicle running state detection device, 9 ... Battery capacity indicator, 10 ... driver.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】エンジンで駆動される発電機の出力をバッ
テリに充電し、その電力を電源として車両駆動用モータ
を運転してなる電気車において、 前記バッテリの容量を検知する手段と、該検知手段から
の信号と、ナビゲーションシステムからの予想走行状態
信号と、実際の車両走行状態を示す信号とを入力信号と
し回生時の充電エネルギ(100−α)を確保しながら
常にバッテリ容量を目標充電量αに近い状態に制御する
バッテリ容量制御手段とを備えてなることを特徴とした
電気車。
1. An electric vehicle in which an output of a generator driven by an engine is charged in a battery and a vehicle driving motor is driven by using the electric power as a power source, a means for detecting the capacity of the battery, and the detection means. The battery capacity is always the target charge amount while ensuring the charging energy (100-α) during regeneration with the signal from the means, the expected traveling state signal from the navigation system, and the signal indicating the actual vehicle traveling state as input signals. An electric vehicle comprising: a battery capacity control means for controlling a state close to α.
【請求項2】請求項1記載において、バッテリの目標充
電量α値をバッテリ容量表示器に表示することを特徴と
した電気車。
2. The electric vehicle according to claim 1, wherein the target charge amount α value of the battery is displayed on a battery capacity indicator.
【請求項3】請求項2記載において、バッテリ容量表示
器に示されているα値は任意に設定できることを特徴と
した電気車。
3. The electric vehicle according to claim 2, wherein the α value shown on the battery capacity indicator can be set arbitrarily.
【請求項4】請求項3記載において、α値をマニアルで
切り換えるマニアルスイッチをバッテリ容量表示器に設
けたことを特徴とした電気車。
4. The electric vehicle according to claim 3, wherein the battery capacity indicator is provided with a manual switch for manually switching the α value.
【請求項5】請求項4記載において、マニアルで設定さ
れるα値はバッテリ容量制御器で自動的に求められるα
値よりも優先することを特徴とする電気車。
5. The α value set in the manual according to claim 4, wherein the α value automatically determined by the battery capacity controller.
Electric vehicles characterized by prioritizing over value.
JP32537495A 1995-12-14 1995-12-14 Electric vehicle Pending JPH09168206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32537495A JPH09168206A (en) 1995-12-14 1995-12-14 Electric vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32537495A JPH09168206A (en) 1995-12-14 1995-12-14 Electric vehicle

Publications (1)

Publication Number Publication Date
JPH09168206A true JPH09168206A (en) 1997-06-24

Family

ID=18176128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32537495A Pending JPH09168206A (en) 1995-12-14 1995-12-14 Electric vehicle

Country Status (1)

Country Link
JP (1) JPH09168206A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001054202A (en) * 1999-08-05 2001-02-23 Nissan Motor Co Ltd Vehicle braking force controller
JP2002084603A (en) * 2000-06-20 2002-03-22 Bae Systems Controls Inc Energy control system for hybrid electric rolling stock
WO2008044516A1 (en) * 2006-10-11 2008-04-17 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle, hybrid vehicle control method, program for causing computer to execute the control method, and computer-readable recording medium containing the program
WO2009008546A1 (en) 2007-07-12 2009-01-15 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle and hybrid vehicle control method
US8022674B2 (en) 2007-07-10 2011-09-20 Toyota Motor Engineering & Manufacturing North America, Inc. State of charge control method and systems for vehicles
JP2011230678A (en) * 2010-04-28 2011-11-17 Toyota Motor Corp Control device for vehicle
JP2012147574A (en) * 2011-01-12 2012-08-02 Toyota Motor Corp Amount-of-charge display device
JP2016075072A (en) * 2014-10-06 2016-05-12 日立建機株式会社 Hybrid work machine
US10053082B2 (en) 2016-10-20 2018-08-21 Hyundai Motor Company Control method of hybrid vehicle
CN109080634A (en) * 2017-06-14 2018-12-25 本田技研工业株式会社 Vehicle
JP2019062697A (en) * 2017-09-27 2019-04-18 三菱自動車工業株式会社 Charge control device for electric vehicle
JP2019075895A (en) * 2017-10-16 2019-05-16 三菱自動車工業株式会社 Electric-vehicular charge control apparatus
JP2019131108A (en) * 2018-02-01 2019-08-08 本田技研工業株式会社 Vehicle control system, vehicle control method, and program

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001054202A (en) * 1999-08-05 2001-02-23 Nissan Motor Co Ltd Vehicle braking force controller
JP2002084603A (en) * 2000-06-20 2002-03-22 Bae Systems Controls Inc Energy control system for hybrid electric rolling stock
WO2008044516A1 (en) * 2006-10-11 2008-04-17 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle, hybrid vehicle control method, program for causing computer to execute the control method, and computer-readable recording medium containing the program
US8210293B2 (en) 2006-10-11 2012-07-03 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle, method of controlling hybrid vehicle, program for causing computer to execute the method of controlling hybrid vehicle, and computer readable storage medium having the program stored therein
US8022674B2 (en) 2007-07-10 2011-09-20 Toyota Motor Engineering & Manufacturing North America, Inc. State of charge control method and systems for vehicles
EP2907683A1 (en) 2007-07-12 2015-08-19 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle and method for controlling hybrid vehicle
WO2009008546A1 (en) 2007-07-12 2009-01-15 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle and hybrid vehicle control method
USRE47625E1 (en) 2007-07-12 2019-10-01 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle and method for controlling hybrid vehicle
US8428803B2 (en) 2007-07-12 2013-04-23 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle and method for controlling hybrid vehicle
EP2722243A1 (en) 2007-07-12 2014-04-23 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle and method for controlling hybrid vehicle
JP2011230678A (en) * 2010-04-28 2011-11-17 Toyota Motor Corp Control device for vehicle
JP2012147574A (en) * 2011-01-12 2012-08-02 Toyota Motor Corp Amount-of-charge display device
JP2016075072A (en) * 2014-10-06 2016-05-12 日立建機株式会社 Hybrid work machine
US10053082B2 (en) 2016-10-20 2018-08-21 Hyundai Motor Company Control method of hybrid vehicle
CN109080634A (en) * 2017-06-14 2018-12-25 本田技研工业株式会社 Vehicle
JP2019004596A (en) * 2017-06-14 2019-01-10 本田技研工業株式会社 vehicle
CN109080634B (en) * 2017-06-14 2022-02-25 本田技研工业株式会社 Vehicle with a steering wheel
JP2019062697A (en) * 2017-09-27 2019-04-18 三菱自動車工業株式会社 Charge control device for electric vehicle
JP2019075895A (en) * 2017-10-16 2019-05-16 三菱自動車工業株式会社 Electric-vehicular charge control apparatus
JP2019131108A (en) * 2018-02-01 2019-08-08 本田技研工業株式会社 Vehicle control system, vehicle control method, and program

Similar Documents

Publication Publication Date Title
JP5429197B2 (en) Vehicle control device
EP2071285B1 (en) Display device for vehicle, method of controlling display device for vehicle, program, and recording medium having program recorded thereon
KR100949260B1 (en) Battery prediction control algorism for hybrid electric vehicle
US8731752B2 (en) Distance based battery charge depletion control for PHEV energy management
JP3463514B2 (en) Generator control device for hybrid electric vehicle
KR102078123B1 (en) Method for managing an alternator combined with at least one power battery and driven by a heat engine
KR101836250B1 (en) Method and apparatus of controlling output voltage of dc converter for vehicle including driving motor
JPH11234806A (en) Electric vehicle using battery regeneration which relies upon charged state of battery
JP2003047110A (en) Method of using on-board navigation system for hybrid electric vehicle for vehicle energy management
JP2002325311A (en) Vehicle equipped with super-capacitor for recovery of energy in braking
JP2000032606A (en) Vehicle
JPH11243603A (en) Hybrid electric vehicle driving main electric motor arranged between battery and an auxiliary power source in accordance with charged state of battery
JP2001112121A (en) Navigation system for electric vehicle
JP3931457B2 (en) Charge control device for hybrid vehicle
JPH09168206A (en) Electric vehicle
JP2002354612A (en) Operation system for hybrid automobile
JP5102101B2 (en) Control device for hybrid vehicle
US11312360B2 (en) Control system for vehicle
JP2003235108A (en) Control device for vehicle
JP2017085723A (en) Electric car control device
JP2011230642A (en) Hybrid vehicle
KR100867808B1 (en) Method for controlling driving mode of plug-in hev
JPH07123514A (en) Electric vehicle and running control method therefor
KR20190056152A (en) Method and appratus for controlling power of mild hybrid electric vehicle
JP2004064840A (en) Controlling device for storage system