JPH09150002A - Refining method for silicone oil - Google Patents

Refining method for silicone oil

Info

Publication number
JPH09150002A
JPH09150002A JP7334091A JP33409195A JPH09150002A JP H09150002 A JPH09150002 A JP H09150002A JP 7334091 A JP7334091 A JP 7334091A JP 33409195 A JP33409195 A JP 33409195A JP H09150002 A JPH09150002 A JP H09150002A
Authority
JP
Japan
Prior art keywords
silicone oil
molecular weight
low molecular
extractor
extraction solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7334091A
Other languages
Japanese (ja)
Inventor
Kenichi Kimura
憲一 木村
Fumio Tago
文夫 田子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP7334091A priority Critical patent/JPH09150002A/en
Publication of JPH09150002A publication Critical patent/JPH09150002A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Extraction Or Liquid Replacement (AREA)
  • Silicon Polymers (AREA)

Abstract

PROBLEM TO BE SOLVED: To excellently refine a silicone oil by continuously and efficiently removing unnecessary and unreacted substances with a low molecular weight and oligomer substances with a low molecular weight to a highly pure degree. SOLUTION: A silicone oil having the general formula (R1 and R2 stand for same or different monovalent hydrocarbon groups or hydroxyl, R3 and R4 for same or different monovalent hydrocarbon groups, (n) for integer between 100-300) is continuously brought into contact and mixed with an extraction solvent in a supercritical state in which the temperature and the pressure exceed the critical values which a substance characteristically has or a subcritical state in which either the temperature or the pressure exceeds the critical value which a substance characteristically has and then the resultant mixed fluid is released to and dispersed in an extractor which is previously filled with the extraction solvent in the supercritical state or the subcritical state to extract and remove substances with a low molecular weight contained in the silicone oil to the extraction solvent.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高品質のシリコー
ンオイルを得るためのシリコーンオイルの精製方法に関
する。
TECHNICAL FIELD The present invention relates to a method for purifying silicone oil for obtaining high-quality silicone oil.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】ジメチ
ルシロキサン重合体からなるシリコーンオイルは、エレ
クトロニクス機器用ポッティング剤、モールディング
剤、潤滑剤、塗布剤等の原料として使用されている。と
ころが、一般に、製造後のシリコーンオイルには、未反
応の低分子量ジメチルシロキサン及びオリゴマー低分子
量物質等が含まれているため、これら不純物の除去を十
分に行わないと、これをエレクトロニクス機器用の電子
基盤等に使用した場合、前記低分子量物質がシリコーン
製品中よりブリードし、エレクトロニクス機器の接点不
良等の故障原因となる。
2. Description of the Related Art Silicone oil made of dimethylsiloxane polymer is used as a raw material for potting agents for electronic devices, molding agents, lubricants, coating agents and the like. However, since generally produced silicone oil contains unreacted low-molecular-weight dimethylsiloxane and oligomer low-molecular-weight substances, if these impurities are not removed sufficiently, it is necessary to remove these impurities for electronic devices. When used as a substrate or the like, the low molecular weight substance bleeds out of the silicone product, causing failure such as contact failure of electronic equipment.

【0003】このため、従来よりこれら低分子量物質を
除去してシリコーンオイルを精製することが行われてお
り、従来、製造したシリコーンオイルを精製する方法と
しては、大気圧下又は減圧下での蒸留、薄膜蒸発方法等
が採用されており、これら方法を適宜選択あるいは組み
合わせることによって行われている。
Therefore, it has been conventionally practiced to remove these low molecular weight substances to purify the silicone oil. Conventionally, the method for purifying the produced silicone oil is distillation under atmospheric pressure or reduced pressure. The thin film evaporation method and the like are employed, and these methods are appropriately selected or combined.

【0004】しかしながら、上記低分子量物質の残存濃
度要求値は年々低濃度化しており、製品中の不要な成分
である未反応の低分子量物質やオリゴマー低分子量物質
の含有量を所望の値まで除去するためには、操作圧力及
び温度を極めて厳しい条件に保持しなければならず、こ
の点で製品の劣化及び精製工程費の増加等が問題となっ
ており、シリコーンオイル中の低分子量の物質を接点不
良等の故障を引き起こさないレベルまで効率よくしかも
安価に除去するための有効な精製方法が求められてい
る。
However, the residual concentration required value of the low molecular weight substance is decreasing year by year, and the content of unreacted low molecular weight substance or oligomer low molecular weight substance which is an unnecessary component in the product is removed to a desired value. In order to achieve this, the operating pressure and temperature must be maintained under extremely severe conditions, and in this respect, deterioration of the product and increase in the cost of the purification process have become problems. There is a need for an effective refining method for efficiently and inexpensively removing to the level that does not cause a failure such as contact failure.

【0005】また、上記従来の分離除去処理において
は、複数回の繰り返し精製又は滞留時間の延長等を行っ
ても精製濃度に限界があり、高度な分離能力を持った新
規な精製方法も望まれていた。
Further, in the above conventional separation and removal treatment, the purification concentration is limited even if the purification is repeated a plurality of times or the residence time is extended, and a new purification method having a high separation ability is also desired. Was there.

【0006】ところで、近年、微量成分の抽出方法とし
て超臨界状態の流体を溶媒として使用する超臨界流体抽
出分離法が注目を集めており、シリコーンオイルの精製
に関してもその応用例が報告されている。例えば、特公
昭54−10539号公報では超臨界流体にシリコーン
オイル等の物質を溶解し、必要成分のみを抽出させる方
法が報告されている。しかし、従来公知の方法、例えば
抽出器内にシリコーンオイルを仕込み、上方、下方又は
側方より超臨界状態の抽出溶媒を抽出器内に流し込み、
シリコーンオイルとの接触を生じさせる抽出分離方法を
用いた場合、シリコーンオイルからの低分子量物質の除
去は、シリコーンオイルが液滴になりにくいために表面
積が小さく、表面の更新も起こりにくい。更に、超臨界
状態の流体がシリコーンオイル中に拡散しにくく、物質
移動が有効に起こらないために低分子量物質の除去が不
十分であった。
By the way, in recent years, a supercritical fluid extraction separation method using a fluid in a supercritical state as a solvent has been attracting attention as a method for extracting a trace amount of components, and its application example has been reported for the purification of silicone oil. . For example, Japanese Examined Patent Publication No. 54-10539 discloses a method of dissolving a substance such as silicone oil in a supercritical fluid and extracting only necessary components. However, a conventionally known method, for example, charging silicone oil into an extractor and pouring an extraction solvent in a supercritical state from above, below or from the side into the extractor,
When an extraction separation method that causes contact with silicone oil is used, the removal of low molecular weight substances from silicone oil has a small surface area because silicone oil does not easily form droplets, and surface renewal does not occur easily. Further, the fluid in the supercritical state is difficult to diffuse into the silicone oil, and the mass transfer does not effectively occur, so that the removal of the low molecular weight substance was insufficient.

【0007】また、撹拌装置を取り付けて、液の分散及
び接触を有効にならしめる等の方法が行われているが、
より高粘稠な高分子量シリコーンオイル等に関しては十
分な効果が得られなかった。そのため、シリコーンオイ
ルに関わる本分野では未だ工業化への応用が行われてい
ないものであった。
[0007] Further, a method of mounting a stirring device to effectively disperse and contact the liquid is used.
Sufficient effects were not obtained for higher viscosity high molecular weight silicone oil and the like. Therefore, it has not been applied to industrialization in this field related to silicone oil.

【0008】本発明は上記事情に鑑みなされたもので、
超臨界流体もしくは亜臨界状態の不活性流体を利用した
シリコーンオイルの精製方法であって、特に、高粘度の
シリコーンオイルでも良好かつ効率良くしかも安価で高
純度に精製することができ、工業化に応えることができ
る方法を提供する。
[0008] The present invention has been made in view of the above circumstances,
A method for purifying a silicone oil using a supercritical fluid or an inert fluid in a subcritical state. Particularly, even a highly viscous silicone oil can be refined satisfactorily, efficiently, and inexpensively to a high purity, which corresponds to industrialization. Provide a way that can be.

【0009】[0009]

【課題を解決するための手段及び発明の実施の形態】本
発明者は上記目的を達成するため鋭意検討を行った結
果、下記一般式(1)で示されるシリコーンオイル中の
低分子量物質を除去してシリコーンオイルを精製する場
合、まずこのシリコーンオイルを温度及び圧力が物質固
有の臨界値を超える超臨界状態又は温度と圧力との一方
が物質固有の臨界値を超える亜臨界状態にある抽出溶媒
に接触混合させること、そしてこの混合流体を次に超臨
界状態又は亜臨界状態の抽出溶媒を満たした抽出器(精
製器)に連続的に、好ましくは噴流又は噴霧状態で放出
分散させることにより、所定の温度及び圧力に設定され
た当該超臨界又は亜臨界流体雰囲気中にシリコーンオイ
ルに含有される不要な低分子量物質(未反応の低分子量
物質やオリゴマー低分子量物質)が優先的に溶解抽出さ
れ、より高分子量のシリコーンオイルから分離精製され
ること、そして未反応の低分子量物質やオリゴマー低分
子量物質を分離した比較的高分子量のシリコーンオイル
は抽出器(精製器)底部から回収され、一方、上記低分
子量物質は当該超臨界又は亜臨界状態の流体に同伴さ
れ、抽出器外へ排出され、これにより連続的な超臨界流
体によるシリコーンオイルに含有される不要な低分子量
物質の抽出分離が可能となることを知見した。
Means for Solving the Problems and Modes for Carrying Out the Invention As a result of intensive studies for achieving the above-mentioned object, the present inventor removed a low molecular weight substance in a silicone oil represented by the following general formula (1). In the case of refining the silicone oil, the extraction solvent in the supercritical state in which the temperature and the pressure exceed the critical value specific to the substance or in the subcritical state in which one of the temperature and the pressure exceeds the critical value specific to the substance is used. By contact-mixing with, and then continuously dispersing, preferably in a jet or atomized state, the mixed fluid into an extractor (purifier) filled with an extraction solvent in a supercritical state or a subcritical state, preferably by jet dispersion. Unnecessary low molecular weight substances (unreacted low molecular weight substances and oligomers low in the silicone oil contained in the supercritical or subcritical fluid atmosphere set to a predetermined temperature and pressure). Molecular weight substances) are preferentially dissolved and extracted, separated and purified from higher molecular weight silicone oils, and relatively high molecular weight silicone oils obtained by separating unreacted low molecular weight substances and oligomer low molecular weight substances are extracted by the extractor. (Purifier) Recovered from the bottom, while the low molecular weight substance is entrained in the supercritical or subcritical fluid and discharged to the outside of the extractor, whereby it is contained in the silicone oil by the continuous supercritical fluid. It was found that unnecessary low molecular weight substances can be extracted and separated.

【0010】[0010]

【化2】 (但し、式中R1及びR2は互いに同一又は異種の一価炭
化水素基又は水酸基、R3及びR4は互いに同一又は異種
の一価炭化水素基を示し、nは100〜3000の整数
である。)
Embedded image (In the formula, R 1 and R 2 are the same or different monovalent hydrocarbon groups or hydroxyl groups, R 3 and R 4 are the same or different monovalent hydrocarbon groups, and n is an integer of 100 to 3000. It is.)

【0011】更に詳述すると、精製するシリコーンオイ
ルを抽出器に導入する前に、温度及び圧力が臨界値を超
える超臨界状態あるいは温度又は圧力のいずれか一方が
臨界状態にある溶媒と該シリコーンオイルとを混合して
粘度を低下させた混合流体とし、この混合流体を抽出器
内に吐出させることによって、シリコーンオイルは微小
液滴となるので、撹拌装置が不要になる上、この液滴と
なったシリコーンオイルは、抽出器内で予め満たされた
温度及び圧力が臨界値を超える超臨界状態あるいは温度
又は圧力のいずれか一方を臨界状態にした溶媒と混合さ
れるので、シリコーンオイルと溶媒との表面接触がスム
ーズに行われ、低分子量物質を容易に溶解することがで
き、所望のシリコーンオイルを良好に回収できることを
見い出し、本発明をなすに至ったものである。
More specifically, before introducing the silicone oil to be purified into the extractor, a solvent in which the temperature and pressure are in a supercritical state in which the temperature and the pressure exceed the critical value, or in which either the temperature or the pressure is in the critical state, and the silicone oil By mixing and to form a mixed fluid with reduced viscosity, and discharging this mixed fluid into the extractor, the silicone oil becomes minute droplets, which eliminates the need for a stirrer and produces these droplets. Since the silicone oil is mixed with the solvent in which the temperature and the pressure pre-filled in the extractor exceed the critical value in the supercritical state or the temperature or the pressure is in the critical state, the silicone oil and the solvent It has been found that the surface contact can be made smoothly, low molecular weight substances can be easily dissolved, and desired silicone oil can be recovered well. Which has led to eggplant.

【0012】従って、本発明は、下記一般式(1)で示
されるシリコーンオイルを、温度及び圧力が物質固有の
臨界値を超える超臨界状態又は温度と圧力とのいずれか
一方が物質固有の臨界値を超える亜臨界状態にある抽出
溶媒と連続的に接触混合させ、次いでこの混合流体を、
超臨界状態又は亜臨界状態にある抽出溶媒を予め満たし
た抽出器に放出分散させて、当該抽出溶媒に下記式
(1)のシリコーンオイル中に含まれる低分子量物質を
抽出除去することを特徴とするシリコーンオイルの精製
方法を提供する。
Therefore, according to the present invention, a silicone oil represented by the following general formula (1) is used in a supercritical state in which temperature and pressure exceed a critical value peculiar to a substance, or either one of temperature and pressure is a critical peculiar to the substance. The extraction solvent in a subcritical state exceeding the value is continuously contact-mixed, and then the mixed fluid is
The extraction solvent in the supercritical state or the subcritical state is discharged and dispersed in an extractor which is previously filled, and the low molecular weight substance contained in the silicone oil of the following formula (1) is extracted and removed in the extraction solvent. A method for purifying a silicone oil is provided.

【0013】[0013]

【化3】 (但し、式中R1及びR2は互いに同一又は異種の一価炭
化水素基又は水酸基、R3及びR4は互いに同一又は異種
の一価炭化水素基を示し、nは100〜3000の整数
である。)
Embedded image (In the formula, R 1 and R 2 are the same or different monovalent hydrocarbon groups or hydroxyl groups, R 3 and R 4 are the same or different monovalent hydrocarbon groups, and n is an integer of 100 to 3000. It is.)

【0014】上述したように、シリコーンオイル中に含
まれる未反応の低分子量物質やオリゴマー低分子量物質
を取り除くには、従来は大気圧下又は減圧下による蒸
留、あるいは薄膜蒸発方法等による分離が行われている
が、これらの方法は、機器の加熱に伴うエネルギー消費
量が多く、更に上記低分子量物質の除去レベルにも限界
が存在した。当然、前記蒸留法及び蒸発法の組み合わせ
や繰り返し操作によるシリコーンオイル中の残存低分子
量物質濃度の下限界追求も行われているが、工程及び設
備が複雑となり合理的なプロセスではなかった。
As described above, in order to remove the unreacted low molecular weight substance or oligomer low molecular weight substance contained in the silicone oil, conventionally, distillation under atmospheric pressure or reduced pressure, or separation by a thin film evaporation method or the like is performed. However, these methods consume a large amount of energy due to heating of equipment, and further, there is a limit in the removal level of the low molecular weight substance. Naturally, the lower limit of the concentration of the remaining low molecular weight substance in the silicone oil has been pursued by the combination of the above-mentioned distillation method and the evaporation method and the repeated operation, but it was not a rational process due to the complicated process and equipment.

【0015】これに対し、本発明の方法によれば、予め
室温近傍に臨界点を有する流体を、例えば二酸化炭素を
抽出溶媒として選定すれば、従来の蒸留法及び蒸発法と
比べ、室温近傍で精製処理可能なため、加熱に伴うエネ
ルギー消費量は微量であり、利得である。
On the other hand, according to the method of the present invention, if a fluid having a critical point near room temperature is selected as an extraction solvent in advance, for example, carbon dioxide, as compared with the conventional distillation method and evaporation method, the temperature is around room temperature. Since it can be refined, the amount of energy consumed by heating is very small, which is a gain.

【0016】また、上記低分子量物質の除去レベルも、
シリコーンオイルの重合度及び粘稠度等に左右されるも
のの、従来は繰り返しの蒸留法や蒸発法、更には、特公
昭54−10539号公報にて公知である超臨界流体を
用いた精製方法のように、抽出器内に撹拌機を配設して
撹拌したり、分離すべき混合物と超臨界流体とを直接向
流接触させ、抽出効率を上げる方法を行った場合、より
高分子量の物質、例えば上記一般式(1)中の重合度n
が1500以上の高粘稠物に対しては、約1000pp
m程度が下限界であった。これは、従来の超臨界流体抽
出分離法等では超臨界流体と抽出原料物質との接触は、
機械的な撹拌手段又は両物質の直接的な衝突により分散
を生じさせていたものであるが、かかる方法では均一な
分散は起こりにくく、また接触表面の更新も進まなかっ
たためである。
The removal level of the above low molecular weight substances is also
Although it depends on the degree of polymerization and the viscosity of the silicone oil, the conventional distillation method and evaporation method, and the purification method using a supercritical fluid known in Japanese Patent Publication No. 54-10539. As such, if a stirring device is provided in the extractor to stir, or if the mixture to be separated and the supercritical fluid are brought into direct countercurrent contact to increase the extraction efficiency, a higher molecular weight substance, For example, the degree of polymerization n in the above general formula (1)
About 1000 pp for highly viscous materials with a value of 1500 or more
The lower limit was about m. This is because the contact between the supercritical fluid and the extraction raw material in the conventional supercritical fluid extraction separation method, etc.
Dispersion was caused by mechanical stirring means or direct collision of both substances, but this method is because uniform dispersion hardly occurs, and renewal of the contact surface does not proceed.

【0017】これに対し、本発明の方法によれば、最終
的な超臨界又は亜臨界流体と抽出原料との接触は抽出原
料又は原料物質を含む溶液を超臨界又は亜臨界流体雰囲
気中へ放出分散させ、好ましくは微細なノズルから放出
させて噴流又は噴霧状態を形成させるため、微小液滴と
して均一に分散し、原料物質への超臨界又は亜臨界流体
の拡散が早められる。特に、高粘度のシリコーンオイル
を原料とする場合には、シリコーンオイルに超臨界又は
亜臨界流体を混合することによって粘度が低下するため
に、ノズルから流出した液柱がちぎれて、液滴になり易
いという利点がある。この放出による拡散方法により低
分子から高分子までのシリコーンオイルの分散が極めて
均一となり、シリコーンオイルの重合度及び粘稠度に左
右されることなく、従来方法に比べより高純度に、具体
的には50ppm程度まで未反応の低分子量物質やオリ
ゴマー低分子量物質の除去が可能になるものである。
On the other hand, according to the method of the present invention, the contact between the final supercritical or subcritical fluid and the extraction raw material releases the extraction raw material or the solution containing the raw material into the supercritical or subcritical fluid atmosphere. Since it is dispersed, preferably discharged from a fine nozzle to form a jet or atomized state, it is uniformly dispersed as fine droplets, and the diffusion of the supercritical or subcritical fluid to the raw material is accelerated. In particular, when a highly viscous silicone oil is used as the raw material, mixing the supercritical or subcritical fluid with the silicone oil lowers the viscosity, so the liquid column flowing out from the nozzle is broken and becomes droplets. It has the advantage of being easy. The diffusion method by this release makes the dispersion of silicone oil from low molecular weight to high molecular weight extremely uniform, and has a higher purity than the conventional method, specifically, without being influenced by the polymerization degree and the viscosity of the silicone oil. Is capable of removing unreacted low molecular weight substances and oligomer low molecular weight substances up to about 50 ppm.

【0018】以下、本発明につき更に詳しく説明する
と、本発明は下記一般式(1)で示されるシリコーンオ
イルを精製する方法に係るものである。
The present invention will be described in more detail below. The present invention relates to a method for purifying a silicone oil represented by the following general formula (1).

【0019】[0019]

【化4】 Embedded image

【0020】ここで、R1及びR2は互いに同一又は異種
の置換又は非置換の一価炭化水素基又は水酸基であり、
一価炭化水素基としては炭素数1〜10のアルキル基、
アルケニル基、アリール基、アラルキル基などやそのハ
ロゲン置換一価炭化水素基などを挙げることができる
が、メチル基やフェニル基が一般的である。また、R3
及びR4は互いに同一又は異種の置換又は非置換の一価
炭化水素基であり、一価炭化水素基は上記と同様であ
る。
Here, R 1 and R 2 are the same or different, substituted or unsubstituted monovalent hydrocarbon groups or hydroxyl groups,
As the monovalent hydrocarbon group, an alkyl group having 1 to 10 carbon atoms,
Examples thereof include an alkenyl group, an aryl group, an aralkyl group, and a halogen-substituted monovalent hydrocarbon group thereof, but a methyl group and a phenyl group are common. Also, R 3
And R 4 are the same or different from each other, a substituted or unsubstituted monovalent hydrocarbon group, and the monovalent hydrocarbon group is the same as described above.

【0021】nは100〜3000の整数であるが、好
ましくは500〜3000、より好ましくは1000〜
3000であり、特に25℃の粘度が5000cp以上
のシリコーンオイルに対して本発明は好適に採用され
る。
N is an integer of 100 to 3000, preferably 500 to 3000, more preferably 1000 to
The present invention is preferably applied to a silicone oil having a viscosity of 3000 and a viscosity at 25 ° C. of 5000 cp or more.

【0022】なお、このシリコーンオイルから除去すべ
き不純物(低分子量物質)は、通常、下記一般式(2)
で示される環状オルガノポリシロキサン、下記一般式
(3)で示される非環状オルガノポリシロキサンであ
る。
The impurities (low molecular weight substances) to be removed from the silicone oil are usually the following general formula (2):
And a non-cyclic organopolysiloxane represented by the following general formula (3).

【0023】[0023]

【化5】 (但し、R1〜R4は上記と同様の意味を示し、mは3〜
20の整数である。)
Embedded image (However, R 1 to R 4 have the same meanings as above, and m is 3 to
It is an integer of 20. )

【0024】本発明においては、まず上記シリコーンオ
イルを超臨界又は亜臨界状態にある抽出溶媒と連続的に
接触混合する。ここで、抽出溶媒はランニングコスト及
び加熱に伴うエネルギー消費量を考慮し、好ましくは室
温近傍に物質固有の臨界温度を有する二酸化炭素を選定
する。なお、二酸化炭素の臨界温度は31℃、臨界圧は
72.80気圧である。
In the present invention, first, the silicone oil is continuously contact mixed with the extraction solvent in the supercritical or subcritical state. Here, carbon dioxide having a critical temperature peculiar to the substance in the vicinity of room temperature is preferably selected as the extraction solvent in consideration of running cost and energy consumption accompanying heating. The critical temperature of carbon dioxide is 31 ° C. and the critical pressure is 72.80 atm.

【0025】上記シリコーンオイルと抽出溶媒との連続
的な接触混合は撹拌機付きの混合槽でも、配管内の混合
でもかまわない。大きな設備を有しない点では配管内の
混合が有利である。この場合、単純な配管混合でもよい
が、より均一に混合するためには、ラインミキサーを設
置するか、超臨界又は亜臨界流体あるいはシリコーンオ
イルのいずれかを微細な口径のノズルで噴出させて混合
することが望ましい。これによって配管内でも若干の予
備的な抽出が起こる。なお、シリコーンオイルに対する
抽出溶媒の混合量は、使用される抽出溶媒の溶解度に左
右されるが、CO2を用いた場合、シリコーンオイル1
に対して2倍以上(重量比)の流量が好ましい。
The continuous contact mixing of the silicone oil and the extraction solvent may be a mixing tank equipped with a stirrer or mixing in a pipe. Mixing in the pipe is advantageous in that it does not have large equipment. In this case, simple pipe mixing may be used, but in order to mix more uniformly, a line mixer is installed, or supercritical or subcritical fluid or silicone oil is jetted with a nozzle having a fine bore to mix. It is desirable to do. This also causes some preliminary extraction in the pipe. The mixing amount of the extraction solvent for the silicone oil, when will depend on the solubility of the extraction solvent used, using CO 2, silicone oil 1
On the other hand, a flow rate of 2 times or more (weight ratio) is preferable.

【0026】続いて、予め接触混合された上記式(1)
のシリコーンオイルと当該抽出溶媒は、予め超臨界又は
亜臨界状態の抽出溶媒で満たした抽出器に連続的に放出
され、均一に分散される。この場合、前者と後者の抽出
溶媒は同一流体であるが、温度及び圧力の一方又は両方
が異なってもかまわない。予め行われる接触混合時と抽
出器への放出時の温度及び圧力は、接触混合時の方が温
度が低く、圧力が高い方がよい。これは抽出器に放出し
たときにノズルから流出した液柱に含まれている超臨界
又は亜臨界流体が膨張することによって、微細な液滴が
形成し易くなり、抽出効率が高くなるためである。ま
た、予め接触混合されたシリコーンオイルを含む溶液を
抽出器内へ連続的に放出させる場合は、微細な口径のノ
ズルから噴流又は噴霧状態で放出させることが好ましい
が、このノズル出口の線速は0.1m/s以上、好まし
くは0.5〜6m/sとなるように設定する。更に、ノ
ズル内径は0.2〜3mmが好ましい。このとき、当該
溶液は、微小な液滴となって表面積が増大した状態であ
り、抽出溶媒である超臨界流体と接触しながら抽出器内
を移動する。このように上記混合流体を抽出器内に放出
させることにより、ノズルからの噴出時及び抽出器内の
移動の間に未反応の低分子量物質やオリゴマー低分子量
物質成分が抽出されてシリコーンオイルが精製される。
なお、抽出器内の抽出溶媒は、抽出器内に放出されるシ
リコーンオイル含有溶液に対して向流又は並流のいずれ
においても可能であるが、流体の接触と物質移動を有効
に生じさせるためには、向流が好ましい。
Then, the above formula (1) preliminarily contact-mixed is used.
The silicone oil and the extraction solvent are continuously discharged into an extractor filled with the extraction solvent in a supercritical or subcritical state in advance and uniformly dispersed. In this case, the former and latter extraction solvents are the same fluid, but one or both of temperature and pressure may be different. Regarding the temperature and pressure at the time of contact mixing which is performed in advance and at the time of discharging to the extractor, it is better that the temperature is lower and the pressure is higher during the contact mixing. This is because the supercritical or subcritical fluid contained in the liquid column that has flowed out of the nozzle when discharged to the extractor expands, which facilitates the formation of fine droplets and increases the extraction efficiency. . Further, in the case of continuously discharging the solution containing the silicone oil that has been contact-mixed in advance into the extractor, it is preferable to discharge it in a jet or spray state from a nozzle having a fine diameter, but the linear velocity at the nozzle outlet is It is set to 0.1 m / s or more, preferably 0.5 to 6 m / s. Further, the inner diameter of the nozzle is preferably 0.2 to 3 mm. At this time, the solution is in the form of minute droplets having an increased surface area and moves in the extractor while contacting with the supercritical fluid that is the extraction solvent. By discharging the mixed fluid into the extractor in this way, unreacted low molecular weight substances and oligomer low molecular weight substance components are extracted during jetting from the nozzle and during movement in the extractor to purify the silicone oil. To be done.
The extraction solvent in the extractor can be countercurrent or cocurrent with the silicone oil-containing solution discharged into the extractor, but it effectively causes fluid contact and mass transfer. Countercurrent is preferred for this.

【0027】抽出器内で抽出溶媒に溶解された未反応の
低分子量物質やオリゴマー低分子量物質はより高分子量
のシリコーンオイルから分離され、抽出溶媒と共に系外
に排出される。系外に排出された上記低分子量物質は、
抽出器に連結した少なくとも一つの分離器に移し、抽出
溶媒から分離する。分離回収された抽出溶媒は再び本精
製工程に使用することが可能であり、抽出溶媒を多量に
消費する本精製方法においては循環再利用が経済的に有
利である。
The unreacted low molecular weight substance or oligomer low molecular weight substance dissolved in the extraction solvent in the extractor is separated from the higher molecular weight silicone oil and discharged out of the system together with the extraction solvent. The low molecular weight substance discharged out of the system is
Transfer to at least one separator connected to the extractor and separate from the extraction solvent. The separated and recovered extraction solvent can be used again in the present purification step, and in the present purification method in which a large amount of the extraction solvent is consumed, recycling and recycling is economically advantageous.

【0028】一方、上記低分子量物質を除かれたより高
分子量のシリコーンオイルは抽出器底部から回収され
る。
On the other hand, the higher molecular weight silicone oil from which the above low molecular weight substances have been removed is recovered from the bottom of the extractor.

【0029】以上の操作を連続的又は間欠的に行うこと
により、シリコーンオイルからの未反応の低分子量物質
やオリゴマー低分子量物質等の不要な低分子量の物質を
効率的に、しかも高純度に除去できる。
By carrying out the above operation continuously or intermittently, unnecessary low molecular weight substances such as unreacted low molecular weight substances and oligomer low molecular weight substances from silicone oil can be efficiently and highly purifiedly removed. it can.

【0030】図1は、本発明の好適な実施態様を示すフ
ローチャートで、図中1はシリコーンオイル補給管1a
を備えたシリコーンオイル貯槽、2は二酸化炭素補給管
2aを備えた二酸化炭素貯槽、3は抽出器(精製器)で
あり、シリコーンオイル貯槽1の下部と抽出器3の上部
とはシリコーンオイル供給ポンプ4を介装するシリコー
ンオイル輸送管5によって連結されていると共に、この
輸送管5には、上記ポンプ4と抽出器3との間の位置に
おいて一端が上記二酸化炭素貯槽2の下部と二酸化炭素
供給ポンプ6を介在して連結された二酸化炭素輸送管7
の他端が連結され、また上記シリコーンオイル輸送管5
の抽出器3挿入端部には噴霧ノズル8が設けられてい
る。更に、上記二酸化炭素輸送管7には分岐管9の一端
が連結され、この分岐管9の他端は上記抽出器3の下部
に挿入されている。
FIG. 1 is a flow chart showing a preferred embodiment of the present invention, in which 1 is a silicone oil supply pipe 1a.
A silicone oil storage tank 2 having a carbon dioxide supply pipe 2a, a carbon dioxide storage tank 3 having a carbon dioxide supply pipe 2a, and an extractor (refiner) 3 having a lower portion of the silicone oil storage tank 1 and an upper portion of the extractor 3. 4 is connected by a silicone oil transport pipe 5 and one end of the transport pipe 5 at the position between the pump 4 and the extractor 3 is connected to the lower portion of the carbon dioxide storage tank 2 and the carbon dioxide supply. Carbon dioxide transport pipe 7 connected via a pump 6
And the other end of the silicone oil transport pipe 5 is connected.
A spray nozzle 8 is provided at the insertion end of the extractor 3. Further, one end of a branch pipe 9 is connected to the carbon dioxide transport pipe 7, and the other end of the branch pipe 9 is inserted in the lower portion of the extractor 3.

【0031】そして、上記シリコーンオイル貯槽1内の
シリコーンオイルがシリコーンオイル輸送管5内を輸送
されている時に、二酸化炭素貯槽2内の超臨界又は亜臨
界状態の二酸化炭素が上記二酸化炭素輸送管7内を通っ
てシリコーンオイル輸送管5内に導入され、シリコーン
オイルと混合され、その混合流体が上記ノズル8から抽
出器3内の上部に噴出される一方、二酸化炭素貯槽2内
の超臨界又は亜臨界状態の二酸化炭素が分岐管9より抽
出器3内の下部に導入され、上記混合流体と向流接触し
てシリコーンオイル中の不純物の抽出が行われるもので
ある。
While the silicone oil in the silicone oil storage tank 1 is being transported in the silicone oil transport pipe 5, the carbon dioxide in the supercritical or subcritical state in the carbon dioxide storage bath 2 is transferred to the carbon dioxide transport pipe 7. Is introduced into the silicone oil transport pipe 5 and mixed with the silicone oil, and the mixed fluid is jetted from the nozzle 8 to the upper portion in the extractor 3, while the supercritical or subcritical fluid in the carbon dioxide storage tank 2 is injected. Carbon dioxide in a critical state is introduced into the lower part of the extractor 3 through the branch pipe 9 and comes into countercurrent contact with the mixed fluid to extract impurities in the silicone oil.

【0032】また、10は抽出物回収塔で、抽出相加熱
器11を介装する抽出物回収管12により抽出器3上部
と連結されており、一方、13は抽残物回収塔で、抽残
相加熱器14を介装する抽残物回収管15により抽出器
3下部と連結されており、上記抽出器3内で不純物(低
分子量物質)を抽出した抽出溶媒(二酸化炭素)は抽出
物回収管12を通って抽出物回収塔10に導入され、こ
こで低分子量物質を分離した二酸化炭素は冷却器16を
介装する二酸化炭素返送管17より上記二酸化炭素貯槽
2に返送され、また不純物は抽出物排出管18より排出
される。一方、抽出器3内で不純物(低分子量物質)が
抽出除去されたシリコーンオイルは抽残物回収管15よ
り抽残物回収塔13内に導入され、ここで随伴する二酸
化炭素を分離したシリコーンオイルは抽残物排出管19
より排出され、シリコーンオイルと分離された二酸化炭
素は上記返送管17より二酸化炭素貯槽2に戻されるも
のである。
Numeral 10 is an extract recovery tower, which is connected to the upper part of the extractor 3 by an extract recovery pipe 12 which is provided with an extraction phase heater 11, while 13 is a raffinate recovery tower, which is an extraction residue recovery tower. The extraction solvent (carbon dioxide), which is connected to the lower part of the extractor 3 by a raffinate recovery pipe 15 provided with a residual phase heater 14, and which extracts impurities (low molecular weight substances) in the extractor 3 is an extract. The carbon dioxide introduced into the extract recovery column 10 through the recovery pipe 12 and separated from the low molecular weight substance is returned to the carbon dioxide storage tank 2 through the carbon dioxide return pipe 17 provided with the cooler 16, and impurities are also contained. Is discharged from the extract discharge pipe 18. On the other hand, the silicone oil from which impurities (low-molecular-weight substances) have been extracted and removed in the extractor 3 is introduced into the raffinate recovery column 13 through the raffinate recovery pipe 15, and the silicone oil from which the accompanying carbon dioxide has been separated is separated. Is the residue discharge pipe 19
The carbon dioxide discharged further and separated from the silicone oil is returned to the carbon dioxide storage tank 2 through the return pipe 17.

【0033】[0033]

【実施例】以下、実施例と比較例とを示し、本発明を具
体的に説明するが、本発明は下記実施例に制限されるも
のではない。
EXAMPLES The present invention will be described below in detail with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.

【0034】[実施例1]不純物として上記一般式
(2)あるいは(3)で示される環状・非環状オルガノ
ポリシロキサン低沸点化合物を合計0.3重量%含有す
る、高分子量・高粘稠ジメチルシリコーンオイル(室温
での動粘度14000cp)を抽出原料として使用し
た。
[Example 1] A high-molecular-weight, highly viscous dimethyl compound containing 0.3% by weight of a cyclic or acyclic organopolysiloxane low-boiling compound represented by the above general formula (2) or (3) as an impurity. Silicone oil (kinematic viscosity at room temperature 14000 cp) was used as an extraction raw material.

【0035】図1に示す装置を用い、800g/hの原
料(2.4g/hの低分子量不純物を含有)に35℃、
170kg/cm2Gで二酸化炭素1600g/hを配
管内で混合し、この混合流体を40℃、150kg/c
2Gに保った抽出装置(抽出部の内径25mm、高さ
2970mm)にその塔頂に設置した内径0.5mmの
単一ノズルから供給した。また、抽出塔下部から800
g/hの二酸化炭素を別途供給し、抽出物を含む二酸化
炭素を抽出装置上部から、また抽残液を抽出装置下部か
らそれぞれ連続的に排出した。
Using the apparatus shown in FIG. 1, a raw material of 800 g / h (containing low molecular weight impurities of 2.4 g / h) at 35 ° C.,
170 kg / cm 2 G of carbon dioxide (1600 g / h) was mixed in the pipe, and this mixed fluid was heated at 40 ° C. and 150 kg / c.
A single nozzle having an inner diameter of 0.5 mm installed at the top of the column was supplied to an extracting device (inner diameter of the extracting section: 25 mm, height: 2970 mm) kept at m 2 G. 800 from the bottom of the extraction tower
Carbon dioxide of g / h was separately supplied, carbon dioxide containing the extract was continuously discharged from the upper part of the extractor, and the raffinate was continuously discharged from the lower part of the extractor.

【0036】抽出装置上部から排出された抽出相には1
5g/hの抽出物が含まれ、この中には2g/hの低分
子量不純物が含有されていた。抽出装置下部から排出さ
れた抽残物は785g/hのシリコーンオイルであり、
低分子量不純物は0.4g/hに低下していた。なお、
低分子量不純物の検出には島津製作所製GC−17Aキ
ャピラリーガスクロマトグラフ及びC−R6Aクロマト
パックを使用した。
The extraction phase discharged from the upper part of the extractor is 1
It contained 5 g / h of extract, which contained 2 g / h of low molecular weight impurities. The raffinate discharged from the lower part of the extractor is 785 g / h of silicone oil,
Low molecular weight impurities were reduced to 0.4 g / h. In addition,
A Shimadzu GC-17A Capillary Gas Chromatograph and C-R6A Chromatopack were used to detect low molecular weight impurities.

【0037】[実施例2]実施例1と同一の原料を58
0g/h用い、これに35℃、170kg/cm2Gで
二酸化炭素1740g/hを配管内で混合し、この混合
流体を40℃、150kg/cm2Gに保持した実施例
1で使用したものと同一の抽出装置にその塔頂に設置し
た内径0.5mmの単一ノズルから供給した。更に、抽
出塔下部から580g/hの二酸化炭素を別途供給し、
抽出物を含む二酸化炭素を抽出装置上部から、また抽残
液を抽出装置下部からそれぞれ連続的に排出した。
[Example 2] The same raw material as in Example 1 was used.
0 g / h was used, which was mixed with carbon dioxide 1740 g / h at 35 ° C. and 170 kg / cm 2 G in a pipe, and this mixed fluid was used in Example 1 which was kept at 40 ° C. and 150 kg / cm 2 G It was supplied to the same extraction apparatus as above through a single nozzle having an inner diameter of 0.5 mm installed at the top of the column. Furthermore, 580 g / h of carbon dioxide is separately supplied from the lower part of the extraction tower,
Carbon dioxide containing the extract was continuously discharged from the upper part of the extractor, and the raffinate was continuously discharged from the lower part of the extractor.

【0038】抽出相には20g/hの抽出物が含まれ、
この中には1.7g/hの低分子量不純物が含有されて
いた。抽出塔下部から排出された抽残物は560g/h
のシリコーンオイルであり、不純物は検出されなかっ
た。
The extraction phase contains 20 g / h of extract,
This contained 1.7 g / h of low molecular weight impurities. The extraction residue discharged from the lower part of the extraction tower is 560 g / h
No silicone was detected.

【0039】[比較例1]実施例1と同一の原料を80
0g/h用い、これに40℃、150kg/cm2Gに
保持した実施例1で使用したものと同一の抽出装置にそ
の塔頂に設置した内径6mmの管から供給した。抽出塔
下部から2400g/hの二酸化炭素を供給し、抽出物
を含む二酸化炭素を抽出装置上部から、また抽残液を抽
出装置下部からそれぞれ連続的に排出した。
Comparative Example 1 The same raw material as used in Example 1 was used.
0 g / h was used, and the same extraction apparatus used in Example 1, which was maintained at 40 ° C. and 150 kg / cm 2 G, was supplied from a tube having an inner diameter of 6 mm installed at the top of the column. 2400 g / h of carbon dioxide was supplied from the lower part of the extraction tower, carbon dioxide containing the extract was continuously discharged from the upper part of the extractor, and the raffinate was continuously discharged from the lower part of the extractor.

【0040】抽出相には10g/hの抽出物が含まれ、
この中には1.0g/hの低分子量不純物が含有されて
いた。抽残物は790g/hのシリコーンオイルであ
り、不純物を1.4g/h含んでいた。
The extraction phase contains 10 g / h of extract,
This contained 1.0 g / h of low molecular weight impurities. The raffinate was 790 g / h of silicone oil and contained 1.4 g / h of impurities.

【0041】[0041]

【発明の効果】本発明によれば、シリコーンオイルから
不要な未反応の低分子量物質やオリゴマー低分子量物質
を連続的に効率よく、しかも高純度に除去してシリコー
ンオイルを良好に精製することができる。
According to the present invention, unnecessary unreacted low molecular weight substances and oligomer low molecular weight substances can be continuously and efficiently removed from silicone oil with high purity, and the silicone oil can be satisfactorily purified. it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の好適な実施態様を説明するフローチャ
ートである。
FIG. 1 is a flow chart illustrating a preferred embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 シリコーンオイル貯槽 2 二酸化炭素貯槽 3 抽出器 4 供給ポンプ 5 シリコーンオイル輸送管 6 供給ポンプ 7 二酸化炭素輸送管 8 ノズル 9 分岐管 10 抽出物回収塔 11 抽出相加熱器 12 抽出物回収管 13 抽残物回収塔 14 抽残物加熱器 15 抽残物回収管 16 冷却器 17 二酸化炭素返送管 1 Silicone Oil Storage Tank 2 Carbon Dioxide Storage Tank 3 Extractor 4 Supply Pump 5 Silicone Oil Transport Pipe 6 Supply Pump 7 Carbon Dioxide Transport Pipe 8 Nozzle 9 Branch Pipe 10 Extract Recovery Tower 11 Extraction Phase Heater 12 Extract Recovery Pipe 13 Extraction Residue Material recovery tower 14 Extraction residue heater 15 Extraction residue recovery pipe 16 Cooler 17 Carbon dioxide return pipe

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 下記一般式(1) 【化1】 (但し、式中R1及びR2は互いに同一又は異種の一価炭
化水素基又は水酸基、R3及びR4は互いに同一又は異種
の一価炭化水素基を示し、nは100〜3000の整数
である。)で示されるシリコーンオイルを、温度及び圧
力が物質固有の臨界値を超える超臨界状態又は温度と圧
力とのいずれか一方が物質固有の臨界値を超える亜臨界
状態にある抽出溶媒と連続的に接触混合させ、次いでこ
の混合流体を、超臨界状態又は亜臨界状態にある抽出溶
媒を予め満たした抽出器に放出分散させて、当該抽出溶
媒に上記式(1)のシリコーンオイル中に含まれる低分
子量物質を抽出除去することを特徴とするシリコーンオ
イルの精製方法。
[Claim 1] The following general formula (1) (In the formula, R 1 and R 2 are the same or different monovalent hydrocarbon groups or hydroxyl groups, R 3 and R 4 are the same or different monovalent hydrocarbon groups, and n is an integer of 100 to 3000. The silicone oil represented by the formula (1) is an extraction solvent in a supercritical state in which temperature and pressure exceed the critical value specific to the substance or in a subcritical state in which either temperature or pressure exceeds the critical value specific to the substance. The mixture is continuously contact-mixed, and then the mixed fluid is discharged and dispersed in an extractor pre-filled with an extraction solvent in a supercritical state or a subcritical state, and the extracted solvent is dispersed in the silicone oil of the above formula (1). A method for purifying a silicone oil, which comprises extracting and removing low molecular weight substances contained therein.
【請求項2】 上記混合流体を抽出器内に噴流又は噴霧
状態に放出分散させる請求項1記載の方法。
2. The method according to claim 1, wherein the mixed fluid is discharged and dispersed in a jet or spray state in the extractor.
【請求項3】 抽出溶媒が二酸化炭素である請求項1又
は2記載の方法。
3. The method according to claim 1, wherein the extraction solvent is carbon dioxide.
JP7334091A 1995-11-29 1995-11-29 Refining method for silicone oil Pending JPH09150002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7334091A JPH09150002A (en) 1995-11-29 1995-11-29 Refining method for silicone oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7334091A JPH09150002A (en) 1995-11-29 1995-11-29 Refining method for silicone oil

Publications (1)

Publication Number Publication Date
JPH09150002A true JPH09150002A (en) 1997-06-10

Family

ID=18273433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7334091A Pending JPH09150002A (en) 1995-11-29 1995-11-29 Refining method for silicone oil

Country Status (1)

Country Link
JP (1) JPH09150002A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002146024A (en) * 2000-11-06 2002-05-22 Shin Etsu Chem Co Ltd Method for refining organopolysiloxane and organopolysiloxane obtained therefrom
WO2003080713A1 (en) * 2002-03-21 2003-10-02 Bausch & Lomb Incorporated Supercritical fluid extraction of vitreoretinal silicone tamponades
EP1362878A1 (en) * 2002-05-13 2003-11-19 Shin-Etsu Chemical Co., Ltd. Purification of silicone oil
JP2007284701A (en) * 2007-08-09 2007-11-01 Shin Etsu Chem Co Ltd Refining method of organopolysiloxane and organopolysiloxane obtained by the refining method
JP2008182161A (en) * 2007-01-26 2008-08-07 Hitachi Ltd Silicone liquid containing electric equipment, silicone liquid containing transformer, and measurement method for cyclic compound in silicone liquid used for silicone liquid containing electric equipment
JP2008231247A (en) * 2007-03-20 2008-10-02 Momentive Performance Materials Japan Kk Silicone gel composition and method for producing the same
CN106693441A (en) * 2017-03-14 2017-05-24 南昌安润科技有限公司 Novel extraction device for extracting nickel sulfate from waste batteries
CN108329476A (en) * 2018-03-23 2018-07-27 江苏宇道生物科技有限公司 A kind of novel solid-liquid system separation method
CN110483776A (en) * 2019-08-27 2019-11-22 佛山市天宝利硅工程科技有限公司 A kind of synthetic method and its synthesizer of high purity silicone oil
US10485654B2 (en) 2014-07-31 2019-11-26 Lensgen, Inc. Accommodating intraocular lens device
US10526353B2 (en) 2016-05-27 2020-01-07 Lensgen, Inc. Lens oil having a narrow molecular weight distribution for intraocular lens devices
CN110790934A (en) * 2018-08-03 2020-02-14 中国科学院化学研究所 Purification method, purification device and application of organic silicon rubber and silicone oil
US10647831B2 (en) 2014-09-23 2020-05-12 LensGens, Inc. Polymeric material for accommodating intraocular lenses
US10772721B2 (en) 2010-04-27 2020-09-15 Lensgen, Inc. Accommodating intraocular lens
US10842616B2 (en) 2013-11-01 2020-11-24 Lensgen, Inc. Accommodating intraocular lens device
US11000364B2 (en) 2013-11-01 2021-05-11 Lensgen, Inc. Two-part accommodating intraocular lens device
US11065107B2 (en) 2015-12-01 2021-07-20 Lensgen, Inc. Accommodating intraocular lens device

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002146024A (en) * 2000-11-06 2002-05-22 Shin Etsu Chem Co Ltd Method for refining organopolysiloxane and organopolysiloxane obtained therefrom
WO2003080713A1 (en) * 2002-03-21 2003-10-02 Bausch & Lomb Incorporated Supercritical fluid extraction of vitreoretinal silicone tamponades
US7276619B2 (en) 2002-03-21 2007-10-02 Bausch & Lomb Incorporated Vitreoretinal silicone tamponades made by supercritical fluid extraction
EP1362878A1 (en) * 2002-05-13 2003-11-19 Shin-Etsu Chemical Co., Ltd. Purification of silicone oil
US6737538B2 (en) 2002-05-13 2004-05-18 Shin-Etsu Chemical Co., Ltd. Purification of silicone oil
JP2008182161A (en) * 2007-01-26 2008-08-07 Hitachi Ltd Silicone liquid containing electric equipment, silicone liquid containing transformer, and measurement method for cyclic compound in silicone liquid used for silicone liquid containing electric equipment
JP2008231247A (en) * 2007-03-20 2008-10-02 Momentive Performance Materials Japan Kk Silicone gel composition and method for producing the same
JP2007284701A (en) * 2007-08-09 2007-11-01 Shin Etsu Chem Co Ltd Refining method of organopolysiloxane and organopolysiloxane obtained by the refining method
US10772721B2 (en) 2010-04-27 2020-09-15 Lensgen, Inc. Accommodating intraocular lens
US11000364B2 (en) 2013-11-01 2021-05-11 Lensgen, Inc. Two-part accommodating intraocular lens device
US11471273B2 (en) 2013-11-01 2022-10-18 Lensgen, Inc. Two-part accommodating intraocular lens device
US11464624B2 (en) 2013-11-01 2022-10-11 Lensgen, Inc. Two-part accommodating intraocular lens device
US11464622B2 (en) 2013-11-01 2022-10-11 Lensgen, Inc. Two-part accommodating intraocular lens device
US10842616B2 (en) 2013-11-01 2020-11-24 Lensgen, Inc. Accommodating intraocular lens device
US11464621B2 (en) 2014-07-31 2022-10-11 Lensgen, Inc. Accommodating intraocular lens device
US10485654B2 (en) 2014-07-31 2019-11-26 Lensgen, Inc. Accommodating intraocular lens device
US11826246B2 (en) 2014-07-31 2023-11-28 Lensgen, Inc Accommodating intraocular lens device
US10647831B2 (en) 2014-09-23 2020-05-12 LensGens, Inc. Polymeric material for accommodating intraocular lenses
US11065107B2 (en) 2015-12-01 2021-07-20 Lensgen, Inc. Accommodating intraocular lens device
US11471270B2 (en) 2015-12-01 2022-10-18 Lensgen, Inc. Accommodating intraocular lens device
US10526353B2 (en) 2016-05-27 2020-01-07 Lensgen, Inc. Lens oil having a narrow molecular weight distribution for intraocular lens devices
CN106693441A (en) * 2017-03-14 2017-05-24 南昌安润科技有限公司 Novel extraction device for extracting nickel sulfate from waste batteries
CN108329476A (en) * 2018-03-23 2018-07-27 江苏宇道生物科技有限公司 A kind of novel solid-liquid system separation method
CN110790934B (en) * 2018-08-03 2021-02-19 中国科学院化学研究所 Purification method, purification device and application of organic silicon rubber and silicone oil
CN110790934A (en) * 2018-08-03 2020-02-14 中国科学院化学研究所 Purification method, purification device and application of organic silicon rubber and silicone oil
CN110483776A (en) * 2019-08-27 2019-11-22 佛山市天宝利硅工程科技有限公司 A kind of synthetic method and its synthesizer of high purity silicone oil

Similar Documents

Publication Publication Date Title
JPH09150002A (en) Refining method for silicone oil
JP4376969B2 (en) Method for separating medium-boiling substances from a mixture of low-boiling substances, medium-boiling substances and high-boiling substances
US6495044B1 (en) Method and device for removing a component from solid particle material by extraction
KR20190132344A (en) Distillation of dimethyl sulfoxide, and multistage distillation column
JPH08502543A (en) Method and apparatus for purifying liquid polysiloxane materials and uses thereof
JPH07188421A (en) Polymerization reactor and polymerization method
JPH08176162A (en) Improved method of cracking siloxane
DE1645671A1 (en) Process for the purification of organopolysiloxanoels
JPH0639204A (en) Method and device for treating material or material mixture
US2346491A (en) Solvent separation of liquid mixtures
KR100516987B1 (en) Process for purifying caprolactam
JP3972963B2 (en) Desalination of phenol tar
JP3810326B2 (en) Solvent recovery method in polyphenylene ether production
CN1278241A (en) Sulfur removal process for waste acrylate stream
JP2980754B2 (en) Method for separating aromatics from hydrocarbon mixtures
EP0106317B1 (en) Purification of fluorinated lubricants free from hydrogen
JP3026576B2 (en) Vacuum distillation method
EP0058074A1 (en) Liquid-liquid contacting process
US5766370A (en) Method for recovering a volatile organic component of solvent-in-water emulsions derived from paint overspray treatment and capture systems
US4562288A (en) Method of operating mixer-settler
US2689874A (en) Liquid-liquid solvent extraction
US10508241B2 (en) Recovery of hydrocarbon diluent from tailings
EP0732320B1 (en) Method for recovering carboxylic acids from aqueous solutions
JPH0791263B2 (en) Caprolactam recovery method and device
CA2125625A1 (en) Method for reprocessing solvent mixtures containing constituents of low volatility and apparatus suitable therefor