JPH09149903A - Body interior imaging device by scattering light - Google Patents

Body interior imaging device by scattering light

Info

Publication number
JPH09149903A
JPH09149903A JP7311993A JP31199395A JPH09149903A JP H09149903 A JPH09149903 A JP H09149903A JP 7311993 A JP7311993 A JP 7311993A JP 31199395 A JP31199395 A JP 31199395A JP H09149903 A JPH09149903 A JP H09149903A
Authority
JP
Japan
Prior art keywords
light
scatterer
imaging device
irradiation
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7311993A
Other languages
Japanese (ja)
Other versions
JP3682793B2 (en
Inventor
Yuichi Yamashita
優一 山下
Atsushi Maki
敦 牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP31199395A priority Critical patent/JP3682793B2/en
Priority to US08/875,081 priority patent/US6240309B1/en
Priority to DE19681107T priority patent/DE19681107B4/en
Priority to CA002210703A priority patent/CA2210703C/en
Priority to GB9713004A priority patent/GB2311854B/en
Priority to PCT/JP1996/003365 priority patent/WO1997018755A1/en
Publication of JPH09149903A publication Critical patent/JPH09149903A/en
Priority to US09/849,409 priority patent/US6640133B2/en
Priority to US10/689,760 priority patent/US7142906B2/en
Application granted granted Critical
Publication of JP3682793B2 publication Critical patent/JP3682793B2/en
Priority to US11/371,916 priority patent/US7774047B2/en
Priority to US11/371,918 priority patent/US20060184046A1/en
Priority to US11/371,919 priority patent/US20060184047A1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently image and measure information of an in-vivo wide space region by irradiating lights of different modulation frequencies at every plurality of parts and measuring modulation of a passing light obtained in a plurality of detection parts. SOLUTION: Each optical module 2 is composed of semiconductor lasers irradiating lights of a plurality of wavelengths in a wavelength region from visible rays to infrared rays and the semiconductor lasers are modulated by different frequencies by oscillating parts of oscillators 3 of different oscillating frequencies respectively. Three-wavelength lights are introduced into an irradiation optical fibers 8-1 to 8-16 according to each optical module and irradiated from an irradiation position of a subject 9. Its reflection lights are detected by detection optical fibers 10-1 to 10-25 arranged in detection positions and a modulated signal matched with an irradiation Position and wavelength is selectively detected bar a lock-in amplification module 12. Then, an analog output sill is converted into a digital signal by an A/D converter 14, calculated by a data processing part 16, and imaged and displayed on a display 17.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は光散乱体内部、例え
ば生体内部の情報を光を用いて画像化する装置に関する
技術分野に属する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technical field relating to an apparatus for imaging information inside a light scatterer, for example, inside a living body using light.

【0002】[0002]

【従来の技術】生体内部を簡便かつ生体に害を与えずに
測定する装置が臨床医学及び脳科学などの分野で望まれ
ている。例えば具体的に頭部を測定対象と考えると、脳
梗塞・脳内出血などの脳疾患及び、思考・言語・運動な
どの高次脳機能の計測などが挙げられる。また、このよ
うな測定対象は頭部に限らず、胸部では心筋梗塞などの
心臓疾患、腹部では腎臓・肝臓などの内臓疾患に対する
予防診断等も挙げられる。頭部を計測対象と考えて脳内
の疾患もしくは高次脳機能を計測する場合、疾患部また
は機能領域を明確に特定する必要がある。このため頭部
の広い領域を画像として計測することが非常に重要であ
る。この重要性を示す例としては、脳内の画像計測装置
として、ポジトロンエミッション断層装置(PET)及
び機能的核磁気共鳴断層装置(fMRI)が現在広く用
いられていることが挙げられる。これらの装置は、生体
内部の広い領域を画像として計測可能という利点がある
一方、装置が大型でその扱いが煩雑である。例えば、こ
れらの装置の設置には専用の部屋が必要となり、もちろ
ん装置の移動は容易ではなく被験者に対する拘束性は高
い。さらに、保守管理の専任者も必要になることから、
装置の運用には莫大なコストを要することになる。
2. Description of the Related Art An apparatus for measuring the inside of a living body easily and without harming the living body is desired in the fields of clinical medicine and brain science. For example, when the head is specifically considered as a measurement target, brain diseases such as cerebral infarction and intracerebral hemorrhage and higher brain functions such as thinking, language, and movement can be measured. Further, such an object to be measured is not limited to the head, and examples thereof include preventive diagnosis for heart diseases such as myocardial infarction in the chest and visceral diseases such as kidneys and liver in the abdomen. When measuring a disease or higher brain function in the brain by considering the head as a measurement target, it is necessary to clearly specify the diseased part or functional region. Therefore, it is very important to measure a wide area of the head as an image. As an example showing this importance, the positron emission tomography device (PET) and the functional nuclear magnetic resonance tomography device (fMRI) are currently widely used as image measuring devices in the brain. While these devices have the advantage of being able to measure a wide area inside a living body as an image, they are large and their handling is complicated. For example, the installation of these devices requires a dedicated room, which of course is not easy to move, and is highly restrictive to the subject. In addition, since a dedicated person for maintenance management is also required,
The operation of the device requires a huge cost.

【0003】一方、前述の要望に対し、光計測は非常に
有効である。その第1の理由は、生体内器官の正常及び
異常、さらには高次脳機能に関する脳の活性化は、生体
内部の酸素代謝及び血液循環と密接に関係している。こ
の酸素代謝と血液循環は、生体中の特定色素(ヘモグロ
ビン,チトクロームaa3,ミオグロビン等)の濃度に対
応し、この色素濃度は可視から赤外領域の波長の光吸収
量から求められるからである。また、光計測が有効であ
る第2、第3の理由としては、光は光ファイバによって
扱いが簡便であり、さらに安全基準の範囲内での使用に
より生体に害を与えないことが挙げられる。このよう
に、光計測は実時間計測及び生体中の色素濃度定量化な
ど、PET及びfMRIには無い利点を有し、また光に
よる計測装置は小型・簡便化に適している。このような
光計測の利点を利用して、可視から赤外の波長の光を生
体に照射し、生体から反射された光を検出することで生
体内部を計測する装置が、例えば特開昭57−1152
32号公報、特開昭63−260532号公報、特開昭
63−275323号公報もしくは特開平5−3172
95号公報に記載されている。
On the other hand, optical measurement is very effective for the above-mentioned demand. The first reason is that normal and abnormal internal organs, as well as activation of the brain related to higher brain functions, are closely related to oxygen metabolism and blood circulation inside the body. This oxygen metabolism and blood circulation correspond to the concentrations of specific dyes (hemoglobin, cytochrome aa 3 , myoglobin, etc.) in the living body, and this dye concentration is obtained from the amount of light absorption in the visible to infrared wavelength range. . The second and third reasons why optical measurement is effective are that light is easy to handle with an optical fiber, and that it does not harm the living body when used within the range of safety standards. As described above, the optical measurement has advantages that PET and fMRI do not have, such as real-time measurement and quantification of dye concentration in the living body, and the optical measurement device is suitable for miniaturization and simplification. An apparatus for measuring the inside of a living body by irradiating the living body with light having a wavelength from visible to infrared and detecting the light reflected from the living body by utilizing such an advantage of the optical measurement is disclosed in, for example, JP-A-57 / 57. -1152
32, JP-A-63-260532, JP-A-63-275323 or JP-A-5-3172.
No. 95 publication.

【0004】[0004]

【発明が解決しようとする課題】しかし、前述の光によ
る生体計測技術では、生体の特定の位置もしくは限られ
た狭い領域しか計測できず、生体の広い空間領域におけ
る画像計測について考慮されていない。ここで、光計測
方法及び光照射・検出点配置について、従来の方法によ
る具体的問題点を以下に示す。まず、光計測方法につい
て示す。広い空間領域での画像計測には、多点での光照
射及び検出が必要になる。この多点計測の一例を、図2
で簡単に説明する。この例では、被検体表面の3個所の
位置(「照射位置1」、「照射位置2」、「照射位置
3」)から光を照射し、反射光を被検体表面の3個所の
位置(「検出位置1」、「検出位置2」、「検出位置
3」)で光を検出する場合を示す。画像計測の場合に
は、計測位置を特定しなければならない。光散乱体中例
えば生体中での光伝播については、例えば、エヌ・シー
・ブルース(N.C.Bruce)による「高散乱媒質中における
吸収性及び透過性含有物の効果の実験的検討(Experimen
tal study of the effect of absorbing and transmitt
ing inclusions in highly scattering media)」,19
94年10月1日,アプライドオプティクス,第33
巻,第28号,第6692〜6698項(Applied optic
s,33,28,6692(1994))により報告されており、その結果
を図3に示す。この図3より、光照射位置と検出位置の
中点近傍が、表面から深い場所の情報を多く有すること
が知られている。そこで、生体の深部、例えば皮膚や骨
のさらに深部を皮膚上から計測する場合、照射・検出位
置の中点が計測位置となる。このような計測には、照射
及び検出位置を対にして、個々の対ごとに特定される計
測位置での情報を求める必要がある。
However, the above-mentioned optical measurement technique using light can measure only a specific position of a living body or a limited narrow area, and does not consider image measurement in a wide spatial area of the living body. Here, regarding the light measurement method and the light irradiation / detection point arrangement, specific problems with the conventional method will be described below. First, the optical measurement method will be described. Image measurement in a wide space region requires light irradiation and detection at multiple points. An example of this multipoint measurement is shown in FIG.
I will briefly explain. In this example, light is irradiated from three positions (“irradiation position 1”, “irradiation position 2”, and “irradiation position 3”) on the surface of the subject, and reflected light is irradiated at three positions on the surface of the subject (“ The case where light is detected at "detection position 1", "detection position 2", and "detection position 3""is shown. In the case of image measurement, the measurement position must be specified. Regarding light propagation in a light scatterer, for example, in a living body, for example, NC Bruce describes “Experimental Study of Effects of Absorptive and Permeable Inclusions in Highly Scattering Media (Experimen
tal study of the effect of absorbing and transmitt
ing inclusions in highly scattering media) ", 19
October 1, 1994, Applied Optics, No. 33
Vol. 28, Nos. 6692-6698 (Applied optic
s, 33,28,6692 (1994)) and the results are shown in FIG. From FIG. 3, it is known that the vicinity of the midpoint of the light irradiation position and the detection position has a lot of information about a deep place from the surface. Therefore, when measuring a deep part of a living body, for example, a deeper part of the skin or bone from above the skin, the midpoint of the irradiation / detection position is the measurement position. For such measurement, it is necessary to pair the irradiation and detection positions and obtain information at the measurement position specified for each pair.

【0005】例えば図2の計測配置において、光を同時
にこれら3個所の照射位置から照射して、3個所の検出
位置で検出する場合を考える。この場合、「照射位置
2」と「検出位置2」の中点である「計測位置2」に対
する計測では、「検出位置2」で検出された光に対して
「照射位置2」で照射された光を正確に計測する必要が
ある。しかしこの場合、「検出位置2」で検出された光
は、「照射位置2」からだけではなく、「照射位置1」
及び「照射位置3」から照射された光も含むことにな
り、すなわちクロストークが生じる。従って、「照射位
置2」で照射された光の検出光量を正確に求めることが
できない。ここで、照射位置ごとにスイッチなどを用い
て時系列的に計測位置を順次切替えると、このようなク
ロストークは生じなくなるが、しかし多くの照射位置を
切替るためにはそれだけ切替えの時間を要し、そのため
時間的に非効率的になる。本発明の目的は、このような
問題点を改善し、光を用いた小型・簡便な装置であっ
て、生体内部の情報を広い空間領域で時間的及びシステ
ム的に効率良く画像計測する装置を提供することであ
る。
For example, in the measurement arrangement of FIG. 2, consider a case where light is emitted from these three irradiation positions at the same time and detected at three detection positions. In this case, in the measurement for the "measurement position 2" which is the midpoint between the "irradiation position 2" and the "detection position 2", the light detected at the "detection position 2" was irradiated at the "irradiation position 2". It is necessary to measure light accurately. However, in this case, the light detected at "detection position 2" is not limited to "irradiation position 2" but "irradiation position 1".
And the light emitted from the “irradiation position 3” is also included, that is, crosstalk occurs. Therefore, it is not possible to accurately obtain the detected light amount of the light emitted at the “irradiation position 2”. Here, if the measurement positions are sequentially switched using a switch or the like for each irradiation position, such crosstalk will not occur, but switching of many irradiation positions requires that much switching time. However, it becomes inefficient in time. An object of the present invention is to solve the above problems and to provide a small and simple apparatus using light, which is an apparatus for efficiently performing image measurement of information inside a living body in a wide space region in terms of time and system. Is to provide.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、本発明は、可視から赤外領域における複数波長の光
を散乱体の複数部位に照射し、散乱体内部を通過した光
を散乱体の複数部位から検出して画像化する装置におい
て、例えば発振器、半導体レーザ、光ファイバ等にて、
異なる変調周波数の光を発生させ複数部位ごとに照射
し、例えば光ファイバ、フォトダイオードを含む光検出
器、ロックインアンプ、A/D変換器等にて、複数検出
部位で得られた通過光に対し変調計測を行うことによ
り、個々の照射位置及び検出位置に対応する散乱体内部
の情報を画像化するように構成する。
In order to achieve the above object, the present invention irradiates a plurality of portions of a scatterer with light having a plurality of wavelengths in the visible to infrared region, and scatters light passing through the inside of the scatterer. In an apparatus for detecting and imaging from a plurality of parts of, for example, an oscillator, a semiconductor laser, an optical fiber,
Light with different modulation frequencies is generated and irradiated at each of multiple sites, and the transmitted light obtained at the multiple sites is detected by, for example, an optical fiber, a photodetector including a photodiode, a lock-in amplifier, an A / D converter, or the like. By performing modulation measurement, information on the inside of the scatterer corresponding to each irradiation position and detection position is imaged.

【0007】[0007]

【発明の実施の形態】本発明においては、前記クロスト
ークの問題を解決するため、照射位置ごとに異なった変
調周波数の光を照射する。例えば、図2に示した「照射
位置1」、「照射位置2」、「照射位置3」において、
変調周波数f1、f2、f3の光をそれぞれ照射する。
この場合、「検出位置2」で光を検出した場合、検出光
を光検出器例えば光電子増倍管もしくはフォトダイオー
ドによって電気信号に変換した後、変調周波数と位相を
照射位置2で照射された周波数f2と同期させて検出す
ると(ロックイン検出)、「照射位置2」から照射され
た変調周波数f2の検出光量のみを、「照射位置1」及
び「照射位置3」から照射された変調周波数f1、f3
から分離して選択的に計測することが可能となる。さら
に、ヘモグロビン,チトクロームaa3,ミオグロビン
の色素濃度の定量計測のために、照射光として複数波長
を用いて分光計測する場合、用いる波長ごとに異なる変
調周波数を割り当てて照射する。そうすると、同一位置
に照射する異なった波長の光に対して、それぞれの変調
周波数ごとにロックイン検出を行うことにより、複数波
長の光を光学フィルタ、回折格子、プリズムなど、反
射、散乱等の光の損失を伴う光学的分光手段によらずに
電気的に分光計測することが可能となる。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, in order to solve the above-mentioned problem of crosstalk, light having a different modulation frequency is irradiated for each irradiation position. For example, in "irradiation position 1", "irradiation position 2", and "irradiation position 3" shown in FIG.
Light of modulation frequencies f1, f2, and f3 is emitted.
In this case, when the light is detected at the "detection position 2", the detection light is converted into an electric signal by a photodetector, for example, a photomultiplier tube or a photodiode, and then the modulation frequency and phase are the frequencies irradiated at the irradiation position 2. When the detection is performed in synchronization with f2 (lock-in detection), only the detected light amount of the modulation frequency f2 emitted from the “irradiation position 2”, the modulation frequency f1 emitted from the “irradiation position 1” and the “irradiation position 3”, f3
It becomes possible to separate from and to measure selectively. Further, in the case of performing spectroscopic measurement using a plurality of wavelengths as irradiation light for quantitatively measuring the pigment concentrations of hemoglobin, cytochrome aa 3 , and myoglobin, different modulation frequencies are assigned and irradiation is performed for each wavelength. By doing so, lock-in detection is performed for each of the modulation frequencies with respect to the light of different wavelengths that irradiate the same position, so that light of multiple wavelengths is reflected by the optical filter, diffraction grating, prism, etc. It becomes possible to perform spectroscopic measurement electrically without relying on the optical spectroscopic means accompanied by the loss of.

【0008】また、この変調方法を用いると、「検出位
置2」で検出された光に対して、「照射位置2」からの
光だけではなく、「照射位置1」及び「照射位置3」で
照射された光の検出光量も計測可能となる。この利点は
効率的な光照射・検出点配置に関連し、その詳細を次に
示す。複数の計測位置に対して、計測位置ごとに独占的
に特定の照射位置及び検出位置を割り当てた場合、すな
わち図2に示したように例えば計測位置が3個の場合、
照射位置及び検出位置がそれぞれ3個所必要になる。こ
こで、照射位置及び検出位置を図4に示すように、格子
状に交互に配置して複数の計測位置に対して共用可能に
すると、照射位置及び検出位置がそれぞれ2個所のみ
で、4個の計測位置を設定することが出来る。ここで、
前述の変調計測により、図4の「検出位置1」で計測さ
れた光に対して、異なった変調周波数による「照射位置
1」、「照射位置2」の光をそれぞれロックイン検出に
より独立に計測することで、「計測位置1」、「計測位
置2」について同時に計測することが可能となる。同様
にして、「検出位置2」で計測された光に対して、異な
った変調周波数による「照射位置1」、「照射位置2」
の光をそれぞれロックイン検出により計測することで、
「計測位置3」、「計測位置4」についても同時に計測
することが可能となる。以上より、照射位置数(すなわ
ち付随する光源数)及び検出位置(すなわち付随する検
出器数)を大幅に減ずることが可能となり、システム的
に効率が向上する。
Further, when this modulation method is used, not only the light from the "irradiation position 2" but also the "irradiation position 1" and the "irradiation position 3" are detected with respect to the light detected at the "detection position 2". It is also possible to measure the detected light amount of the emitted light. This advantage is related to efficient light irradiation / detection point arrangement, and details thereof will be given below. When a specific irradiation position and a detection position are exclusively assigned to a plurality of measurement positions for each measurement position, that is, when there are three measurement positions as shown in FIG. 2,
Three irradiation positions and three detection positions are required. Here, when the irradiation positions and the detection positions are alternately arranged in a grid pattern so as to be shared by a plurality of measurement positions as shown in FIG. 4, there are only two irradiation positions and two detection positions, and four irradiation positions are detected. The measurement position of can be set. here,
By the above-described modulation measurement, the light at the “irradiation position 1” and the “irradiation position 2” with different modulation frequencies are independently measured by the lock-in detection with respect to the light measured at the “detection position 1” in FIG. By doing so, it is possible to simultaneously measure “measurement position 1” and “measurement position 2”. Similarly, for the light measured at "detection position 2", "irradiation position 1" and "irradiation position 2" with different modulation frequencies are used.
By measuring the light of each by lock-in detection,
It is possible to simultaneously measure “measurement position 3” and “measurement position 4”. As described above, the number of irradiation positions (that is, the number of associated light sources) and the detection positions (that is, the number of associated detectors) can be significantly reduced, and the efficiency of the system is improved.

【0009】[0009]

【実施例】以下、本発明の実施例を詳細に説明する。 (第1の実施例)図1は、本発明の第1の実施例におけ
る画像化装置の要部を示す構成図である。本実施例で
は、例えば頭部の皮膚上から光を照射・検出することに
より大脳内部を画像化する実施形態を、計測チャンネル
の個数すなわち計測位置の数が64の場合で示す。光源
部1は、16個の光モジュール2から構成されている。
各光モジュールは、可視から赤外の波長領域中で複数の
波長、例えば770nm、805nm、830nmの三
波長の光をそれぞれ放射する三個の半導体レーザから構
成されている。この光源部1に含まれる全ての半導体レ
ーザ48個は、それぞれ発振周波数の異なる48個の発
振器で構成されている発振部3により、それぞれ異なる
周波数で変調される。
Embodiments of the present invention will be described below in detail. (First Embodiment) FIG. 1 is a block diagram showing the essential parts of an imaging apparatus according to the first embodiment of the present invention. In the present embodiment, for example, an embodiment in which the inside of the cerebrum is imaged by irradiating and detecting light from above the skin of the head is shown when the number of measurement channels, that is, the number of measurement positions is 64. The light source unit 1 is composed of 16 optical modules 2.
Each optical module is composed of three semiconductor lasers that respectively emit light of a plurality of wavelengths in the visible to infrared wavelength region, for example, three wavelengths of 770 nm, 805 nm, and 830 nm. All of the 48 semiconductor lasers included in the light source unit 1 are modulated at different frequencies by the oscillation unit 3 composed of 48 oscillators having different oscillation frequencies.

【0010】ここで、光モジュール2内の構成を、光モ
ジュール2(1)を例にして図5で説明する。光モジュー
ル2(1)内には、半導体レーザ3(1-a)、3(1-b)、3(1-
c)、及びこれらレーザの駆動回路4(1-a)、4(1-b)、4
(1-c)が含まれている。ここで、括弧内の文字について
は、数字は含まれる光モジュール番号を、a,b,cはそれ
ぞれ波長770nm、805nm、830nmを示して
いる。これらの半導体レーザ駆動回路4(1-a)、4(1-
b)、4(1-c)に対して、発振器3によりそれぞれ異なる
周波数f(1-a)、f(1-b)、f(1-c)を印加することで、
半導体レーザ3(1-a)、3(1-b)、3(1-c)から放射され
る光に変調を与える。これら半導体レーザから放射され
る光は、それぞれの半導体レーザごとに集光レンズ5に
より光ファイバ6に個々に導入される。個々の光ファイ
バに導入された三波長の光は、各光モジュールごとに光
ファイバ結合器7により1本の光ファイバ、たとえば照
射用光ファイバ8−1内に導入される。各光モジュール
ごとに、三波長の光が照射用光ファイバ8−1から8−
16内に導入され、これら照射用光ファイバの他端から
被検体9の表面上の異なる16個所から被検体に光が照
射される。被検体から反射された光は、被検体表面上の
25個所に配置されている検出光ファイバ10−1〜1
0−25で検出される。
Here, the internal structure of the optical module 2 will be described with reference to FIG. 5 by taking the optical module 2 (1) as an example. In the optical module 2 (1), semiconductor lasers 3 (1-a), 3 (1-b), 3 (1-
c), and drive circuits 4 (1-a), 4 (1-b), 4 for these lasers,
(1-c) is included. Here, regarding the characters in the parentheses, the numbers indicate the included optical module numbers, and a, b, and c indicate wavelengths of 770 nm, 805 nm, and 830 nm, respectively. These semiconductor laser drive circuits 4 (1-a), 4 (1-
b) By applying different frequencies f (1-a), f (1-b), and f (1-c) by the oscillator 3 to 4 (1-c),
The light emitted from the semiconductor lasers 3 (1-a), 3 (1-b) and 3 (1-c) is modulated. The light emitted from these semiconductor lasers is individually introduced into the optical fiber 6 by the condenser lens 5 for each semiconductor laser. The light of three wavelengths introduced into each optical fiber is introduced into one optical fiber, for example, the irradiation optical fiber 8-1 by the optical fiber coupler 7 for each optical module. For each optical module, three wavelengths of light are emitted from the optical fibers 8-1 to 8-
The light is introduced into the optical fiber 16 and the subject is irradiated with light from the other end of these irradiation optical fibers from 16 different positions on the surface of the subject 9. The light reflected from the subject is detected by the detection optical fibers 10-1 to 10-1 arranged at 25 locations on the surface of the subject.
It is detected at 0-25.

【0011】ここで、被検体表面上における、照射位置
1−16及び検出位置1−25の幾何学的配置を図6に
示す。本実施例では、照射・検出位置を交互に正方格子
上に配置する。この時、隣接する照射・検出位置の中点
を計測位置とすると、この場合、隣接する照射・検出位
置の組合せが64通り存在するため、計測位置数すなわ
ち計測チャンネルが64個となる。ここで、隣接する照
射及び検出位置間隔を3cmに設定すると、各検出位置
で検出された光は、皮膚、頭蓋骨を通過して大脳の情報
を有していることが、例えばピィー・ダブル・マコーミ
ック(P.W.McCormic)他による「赤外光の大脳内部の浸透
(Intracerebral penetration of infrared light)」,
1992年,ジャーナルオブニューロサージェリ,第7
6巻,第315〜318項(J.Neurosurg.,33,315(199
2))により報告されている。そのため、この照射検出位
置の配置で64計測チャンネルを設定すれば、全体とし
て15cm×15cmの広い領域において大脳の計測が
可能となる。それぞれの検出光ファイバ10−1〜10
−25で捕らえられた反射光は、検出位置ごと、すなわ
ち検出光ファイバごとに独立に25個の光検出器たとえ
ばフォトダイオード11−1〜11−25で検出する。
これらのフォトダイオードで光信号が電気信号に変換さ
れた後、複数のロックインアンプから構成されるロック
インアンプモジュール12で、照射位置かつ波長に対応
した変調信号を選択的に検出する。
Here, FIG. 6 shows a geometrical arrangement of irradiation positions 1-16 and detection positions 1-25 on the surface of the subject. In this embodiment, the irradiation / detection positions are alternately arranged on a square lattice. At this time, assuming that the midpoint of the adjacent irradiation / detection positions is the measurement position, in this case, there are 64 combinations of the adjacent irradiation / detection positions, and therefore the number of measurement positions, that is, 64 measurement channels. If the distance between adjacent irradiation and detection positions is set to 3 cm, the light detected at each detection position may have cerebral information after passing through the skin and the skull, for example, Pee Double McCormick. (PWMcCormic) et al. "Infrared penetration of cerebral light
(Intracerebral penetration of infrared light) ",
1992, Journal of Neurosurgery, 7th
Volume 6, Items 315-318 (J. Neurosurg., 33,315 (199
2)). Therefore, if 64 measurement channels are set in this irradiation detection position arrangement, the cerebrum can be measured in a wide area of 15 cm × 15 cm as a whole. Each detection optical fiber 10-1 to 10
The reflected light captured by −25 is detected by 25 photodetectors, for example, photodiodes 11-1 to 11-25 independently for each detection position, that is, for each detection optical fiber.
After the optical signal is converted into an electric signal by these photodiodes, the lock-in amplifier module 12 including a plurality of lock-in amplifiers selectively detects the modulation signal corresponding to the irradiation position and the wavelength.

【0012】ここで、図6の検出位置7における検出信
号すなわちフォトダイオード11−7における検出信号
を例にして変調信号分離の具体例を図7を用いて説明す
る。「検出位置7」では、隣接した「光照射位置1」、
「光照射位置2」、「光照射位置5」、「光照射位置
6」から照射された光、すなわち「計測位置10」、
「計測位置11」、「計測位置18」、「計測位置1
9」を計測対象とする。ここで、フォトダイオード11
−7で検出された光は主に、「照射位置1」、「照射位
置2」、「照射位置5」、「照射位置6」で照射された
変調周波数f(1-a)、f(1-b)、f(1-c)、f(2-a)、f(2
-b)、f(2-c)、f(5-a)、f(5-b)、f(5-c)、f(6-a)、
f(6-b)、f(6-c)の12の変調周波数信号を含んでい
る。そこで、フォトダイオード11−7の出力信号を1
2個所に分配し、それぞれ、これら12個の変調周波数
を参照信号としている12個のロックインアンプ13−
31〜13−42で計測する。その結果、例えばロック
インアンプ13−31では参照信号の周波数がf(1-a)
のため、フォトダイオード11−7で検出された光に対
して、「照射位置1」で照射された波長770nmの
光、すなわち光の変調周波数がf(1-a)の光のみを選択
的に検出することが出来る。同様に他のロックインアン
プにおいても、特定の照射位置かつ波長の光をそれぞれ
選択的に検出することが出来る。このようにして、他の
検出位置で検出された光、すなわち他のフォトダイオー
ドからの検出信号についても、それぞれの隣接した照射
位置及び波長に対応する変調周波数に対して個々にロッ
クイン検出を行うことにより、全ての計測位置及び波長
に対する検出光量を計測することが可能となる。この実
施例で示している三波長及び64個の計測位置の場合、
ロックインモジュール12では合計192個のロックイ
ンアンプを含むことになる。
Here, a concrete example of the modulation signal separation will be described with reference to FIG. 7 by taking the detection signal at the detection position 7 in FIG. 6, that is, the detection signal at the photodiode 11-7 as an example. In the "detection position 7", the adjacent "light irradiation position 1",
Light emitted from "light irradiation position 2", "light irradiation position 5", "light irradiation position 6", that is, "measurement position 10",
"Measurement position 11", "Measurement position 18", "Measurement position 1"
9 ”is the measurement target. Here, the photodiode 11
The light detected at -7 is mainly the modulation frequencies f (1-a), f (1) irradiated at "irradiation position 1", "irradiation position 2", "irradiation position 5", and "irradiation position 6". -b), f (1-c), f (2-a), f (2
-b), f (2-c), f (5-a), f (5-b), f (5-c), f (6-a),
It contains twelve modulation frequency signals f (6-b) and f (6-c). Therefore, the output signal of the photodiode 11-7 is set to 1
Twelve lock-in amplifiers 13- each of which is divided into two parts and uses these twelve modulation frequencies as reference signals.
31 to 13-42. As a result, for example, in the lock-in amplifier 13-31, the frequency of the reference signal is f (1-a)
Therefore, with respect to the light detected by the photodiode 11-7, only the light having the wavelength of 770 nm emitted at the “irradiation position 1”, that is, the light having the modulation frequency of f (1-a) is selectively selected. Can be detected. Similarly, in other lock-in amplifiers, it is possible to selectively detect light of a specific irradiation position and wavelength. In this way, even for light detected at other detection positions, that is, detection signals from other photodiodes, lock-in detection is individually performed for modulation frequencies corresponding to adjacent irradiation positions and wavelengths. As a result, it becomes possible to measure the amount of detected light at all measurement positions and wavelengths. In the case of three wavelengths and 64 measurement positions shown in this embodiment,
The lock-in module 12 includes a total of 192 lock-in amplifiers.

【0013】これらロックインアンプ13−1から13
−192のアナログ出力信号は、192チャンネルのA
/D変換器14によりそれぞれデジタル信号に変換され
て、データ記録部15で記録される。また、これら記録
された信号はデータ処理部16において、各計測位置ご
とに三波長の検出光量を用いて、酸素化ヘモグロビン濃
度及び脱酸素化ヘモグロビン濃度さらにはこれらヘモグ
ロビン濃度総量としての全ヘモグロビン濃度を、例え
ば、講談社、1979年発行の柴田正三等編集による著
書「二波長分光光度法とその応用」記載の方法で求め
る。各計測位置で求められた酸素化ヘモグロビン、脱酸
素化ヘモグロビン、及び全ヘモグロビン濃度を、表示部
17において例えばトポグラフィ画像として表示する。
このトポグラフィ画像は、例えば各計測位置における各
ヘモグロビン濃度を計測位置間で補間例えば線形補間に
より求める。以上の計測は、制御部18により制御され
ている。
These lock-in amplifiers 13-1 to 13
-192 analog output signal is 192 channel A
The signals are converted into digital signals by the / D converter 14 and recorded in the data recording unit 15. Further, these recorded signals are used in the data processing unit 16 to detect the oxygenated hemoglobin concentration and the deoxygenated hemoglobin concentration, and the total hemoglobin concentration as the total hemoglobin concentration, by using the detection light amounts of the three wavelengths for each measurement position. For example, it is determined by the method described in "Two-wavelength spectrophotometric method and its application" written by Shozo Shibata, etc., published by Kodansha, 1979. The oxygenated hemoglobin, deoxygenated hemoglobin, and total hemoglobin concentration obtained at each measurement position are displayed on the display unit 17 as, for example, a topography image.
In this topography image, for example, each hemoglobin concentration at each measurement position is obtained by interpolating between measurement positions, for example, linear interpolation. The above measurement is controlled by the control unit 18.

【0014】また、被検体への光照射及び光検出には、
たとえば、図8に示すようなヘルメットもしくはキャッ
プ形状のプローブ21を用いる。このプローブ21は、
例えば厚さ3mm程度の熱可塑性プラスティクシートを
基盤として用いる。この基盤を用いて、あらかじめ被検
体の測定領域において型、すなわちモールドを作成して
おき、被検体には例えばゴムひも22で装着する。この
プローブの構造を図9を用いて説明する。プローブ基盤
23には、被検体に光を照射・検出する複数の位置ごと
に穴を作成しておく。この穴に光ファイバホルダ24を
配置する。この光ファイバホルダ24は、中空状のホル
ダ本体24、ナットネジ25、光ファイバ固定ネジ26
から構成され、このナットネジ25によりプローブ基盤
23にホルダ本体23を固定して取り付ける。このホル
ダ本体23の内部に、照射用光ファイバもしくは検出用
光ファイバを挿入し、被検体表面に光ファイバを軽く接
触させて光ファイバ固定ネジ26で固定する。本実施例
では計測チャンネル数が64の場合を示したが、もちろ
ん本発明の実施においてはチャンネル数は限定されたも
のではない。なお本実施例は、光を用いて人体内部の断
層撮影を行い、得られたデータを計算機にて画像処理す
る光CT装置にも容易に適用することができる。
Further, for the light irradiation and the light detection on the subject,
For example, a probe 21 having a helmet or cap shape as shown in FIG. 8 is used. This probe 21
For example, a thermoplastic plastic sheet having a thickness of about 3 mm is used as a base. A mold, that is, a mold is created in advance in the measurement region of the subject using this substrate, and the subject is attached with, for example, a rubber strap 22. The structure of this probe will be described with reference to FIG. Holes are formed in the probe board 23 at each of a plurality of positions for irradiating and detecting light on the subject. The optical fiber holder 24 is placed in this hole. The optical fiber holder 24 includes a hollow holder body 24, a nut screw 25, and an optical fiber fixing screw 26.
The holder main body 23 is fixedly attached to the probe base 23 by the nut screw 25. An irradiation optical fiber or a detection optical fiber is inserted into the inside of the holder body 23, and the optical fiber is lightly contacted with the surface of the subject and fixed by the optical fiber fixing screw 26. Although the number of measurement channels is 64 in the present embodiment, the number of channels is not limited in the implementation of the present invention. It should be noted that this embodiment can be easily applied to an optical CT apparatus in which tomography of the inside of a human body is performed using light and the obtained data is image-processed by a computer.

【0015】(第2の実施例)本発明による第2の実施
例を図10で説明する。この実施例では、基本的な計測
系の構造は第1の実施例と同様であり、光源部1の構造
が異なる場合を示す。図10にこの第2の実施例の光源
部1を示す。波長770nmの光源、例えば半導体レー
ザ31はレーザ駆動回路41により駆動され、変調が印
加されない連続した光を放射する。この光は、光ファイ
バ6に導入され、光ファイバ結合器51により、16本
の光ファイバ61−1〜61−16に分配される。これ
ら光ファイバはその経路中に光変調器71−1〜71−
16を含んでいる。これらの光変調器の構造を光変調器
71−1を例にして図11に示す。この光変調器内に
は、例えば液晶フィルタ101が内蔵されており、発振
部3内の発振器からの変調電圧信号により、この液晶フ
ィルタを周期的にオンオフを繰り返すようにする。例え
ば、光変調器71−1では変調周波数f(1-a)を液晶フ
ィルタ101に印加する。光ファイバ61−1からの光
はレンズ5を介して液晶フィルタ101に照射され、こ
の液晶フィルタを透過した光はレンズ5により集光され
再び光ファイバ81−1に導入される。ここで、光変調
器71−1〜71−16はお互いに異なる変調周波数、
例えばf(1-a)、f(2-a)、からf(16-a)で、液晶フィル
タをオンオフされる。なお、この光変調器としては、液
晶フィルタの他に回転式の機械的光チョッパを用いても
よい。
(Second Embodiment) A second embodiment according to the present invention will be described with reference to FIG. In this embodiment, the basic structure of the measurement system is similar to that of the first embodiment, and the structure of the light source unit 1 is different. FIG. 10 shows the light source unit 1 of the second embodiment. A light source having a wavelength of 770 nm, for example, a semiconductor laser 31 is driven by a laser driving circuit 41 and emits continuous light to which no modulation is applied. This light is introduced into the optical fiber 6 and distributed by the optical fiber coupler 51 to the 16 optical fibers 61-1 to 61-16. These optical fibers have optical modulators 71-1 to 71-in their paths.
16 is included. The structures of these optical modulators are shown in FIG. 11 using the optical modulator 71-1 as an example. A liquid crystal filter 101, for example, is built in the optical modulator, and the liquid crystal filter is periodically turned on and off by a modulation voltage signal from an oscillator in the oscillator 3. For example, the optical modulator 71-1 applies the modulation frequency f (1-a) to the liquid crystal filter 101. The light from the optical fiber 61-1 is irradiated onto the liquid crystal filter 101 via the lens 5, and the light transmitted through this liquid crystal filter is condensed by the lens 5 and is introduced again into the optical fiber 81-1. Here, the optical modulators 71-1 to 71-16 have different modulation frequencies,
For example, the liquid crystal filter is turned on / off at f (1-a), f (2-a) to f (16-a). As the light modulator, a rotary mechanical optical chopper may be used instead of the liquid crystal filter.

【0016】同様にして、光源部内部の他の波長の光
源、例えば波長805及び830nmの半導体レーザ3
2、33についても、それぞれレーザ駆動回路42、4
3により駆動され、おのおのの波長ごとに光ファイバ結
合器52、53にそれぞれ16本の光ファイバ、62−
1から62−16及び63−1〜63−16に分配され
る。ここで、これらの光ファイバを伝達する光にに対し
て、それぞれ異なる変調周波数を光変調器72−1〜7
2−16及び73−1〜73−16により印加する。こ
こで、光変調器72−1〜72−16では、それぞれ変
調周波数f(1-b)からf(16-b)を、光変調器73−1〜
73−16では、それぞれ変調周波数f(1-c)からf(16
-c)を印加する。ここで、光変調器72−1〜72−1
6を透過した光はそれぞれ光ファイバ82−1から82
−16へ、また、光変調器73−1〜73−16を透過
した光はそれぞれ光ファイバ83−1〜83−16へ再
び導入される。ここで、合計48個の光変調器を通過し
た光がおのおの含まれる48本の光ファイバは、以下の
要領で三波長ごとに1本の光ファイバに導入される。例
えば、光ファイバ81−1、82−1、83−1は光フ
ァイバ結合器91−1により1本の照射用光ファイバ8
−1に導入される。同様にして、光ファイバ81−1
6、82−16、83−16の光ファイバまで、光ファ
イバ結合器91−16によってり1本の照射用光ファイ
バ8−16に導入する。それぞれ三波長ずつ、すべてお
互いに異なった変調周波数を有する光を含む照射用光フ
ァイバ8−1〜8−16は、第1の実施例と同様に被検
体に照射される。また、これらの光を用いた計測も第1
の実施例と同様である。
Similarly, a light source of another wavelength inside the light source section, for example, a semiconductor laser 3 having wavelengths of 805 and 830 nm is used.
The laser drive circuits 42, 4 are also provided for the reference numerals 2, 33, respectively.
And 16 optical fibers in each of the optical fiber couplers 52 and 53 for each wavelength.
1 to 62-16 and 63-1 to 63-16. Here, the optical modulators 72-1 to 7-7 are provided with different modulation frequencies for the lights transmitted through these optical fibers.
2-16 and 73-1 to 73-16. Here, in the optical modulators 72-1 to 72-16, the modulation frequencies f (1-b) to f (16-b) are respectively changed to the optical modulators 73-1 to 7-16.
73-16, modulation frequencies f (1-c) to f (16
-c) is applied. Here, the optical modulators 72-1 to 72-1
The light transmitted through the optical fiber 6 is the optical fibers 82-1 to 82
The light transmitted through the optical modulators 83-1 to 83-16 is re-introduced into the optical fibers 83-1 to 83-16. Here, forty-eight optical fibers each containing light that has passed through a total of forty-eight optical modulators are introduced into one optical fiber for every three wavelengths in the following manner. For example, the optical fibers 81-1, 82-1 and 83-1 are connected to one irradiation optical fiber 8 by the optical fiber coupler 91-1.
-1 is introduced. Similarly, the optical fiber 81-1
The optical fibers up to 6, 82-16, 83-16 are introduced into one irradiation optical fiber 8-16 by the optical fiber coupler 91-16. The irradiation optical fibers 8-1 to 8-16 containing lights each having three wavelengths and different modulation frequencies from each other irradiate the subject in the same manner as in the first embodiment. In addition, the measurement using these lights is also the first
This is the same as the embodiment.

【0017】[0017]

【発明の効果】本発明により、生体内部の情報を広い空
間領域で時間的及びシステム的に効率良く、かつ小型・
簡便に画像計測することが可能となる。
As described above, according to the present invention, information in the living body can be efficiently processed in a wide space region in terms of time and system, and can be miniaturized.
The image can be easily measured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による第1の実施例の画像化装置の構成
を示すブロック図である。
FIG. 1 is a block diagram showing a configuration of an imaging device according to a first exemplary embodiment of the present invention.

【図2】光計測における照射位置、検出位置、計測位置
の配置を説明する図である。
FIG. 2 is a diagram illustrating an arrangement of an irradiation position, a detection position, and a measurement position in optical measurement.

【図3】光計測における散乱体中での光伝播を示す図で
ある。
FIG. 3 is a diagram showing light propagation in a scatterer in optical measurement.

【図4】本発明における効率的な光照射・検出位置配置
を示す図である。
FIG. 4 is a diagram showing an efficient light irradiation / detection position arrangement in the present invention.

【図5】本発明の第1の実施例における光モジュールの
構成を示すブロック図である。
FIG. 5 is a block diagram showing a configuration of an optical module according to the first embodiment of the present invention.

【図6】本発明の第1の実施例における照射検出位置配
置を示す図である。
FIG. 6 is a diagram showing an irradiation detection position arrangement in the first embodiment of the present invention.

【図7】本発明の第1の実施例におけるロックインアン
プモジュールの構成を示すブロック図である。
FIG. 7 is a block diagram showing a configuration of a lock-in amplifier module according to the first embodiment of the present invention.

【図8】本発明の第1の実施例におけるプローブの形状
を示す図である。
FIG. 8 is a diagram showing a shape of a probe according to the first embodiment of the present invention.

【図9】本発明の第1の実施例におけるプローブの構造
を示す図である。
FIG. 9 is a diagram showing a structure of a probe in the first embodiment of the present invention.

【図10】本発明の第2の実施例における光源部の構成
を示すブロック図である。
FIG. 10 is a block diagram showing a configuration of a light source section in a second embodiment of the present invention.

【図11】本発明の第2の実施例における光変調器の構
造を示す図である。
FIG. 11 is a diagram showing a structure of an optical modulator according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1:光源部,2:光モジュール,3:発振部、3(1-a)
〜3(1-c):半導体レーザ,4(1-a)〜4(1-c):レーザ
駆動回路,5:集光レンズ,6:光ファイバ,7:光フ
ァイバ結合器,8−1〜8−16:照射用光ファイバ,
9:被検体,10−1〜10−25:検出用光ファイ
バ,11−1〜11−25:フォトダイオード,12:
ロックインアンプモジュール,13−1〜13−19
2:ロックインアンプ,14:A/D変換器,15:記
憶部,16:処理部,17:表示部,18:制御部,2
1:プローブ,22:ゴムひも,23:プローブ基盤,
24:光ファイバホルダ本体,25:ナット,26:光
ファイバ固定ネジ,31,32,33:半導体レーザ,
41,42,43:半導体レーザ駆動回路,51,5
2,53:光ファイバ結合器,61−1〜61−16,
62−1〜62−16,63−1〜63−16,81−
1〜81−16,82−1〜82−16,83−1〜8
3−16:光ファイバ,71−1〜71−16,72−
1〜72−16,73−1〜73−16:光変調器,9
1−1〜91−16:光ファイバ結合器,101:液晶
フィルタ。
1: Light source part, 2: Optical module, 3: Oscillation part, 3 (1-a)
3 (1-c): semiconductor laser, 4 (1-a) to 4 (1-c): laser drive circuit, 5: condenser lens, 6: optical fiber, 7: optical fiber coupler, 8-1 ~ 8-16: Optical fiber for irradiation,
9: subject, 10-1 to 10-25: optical fiber for detection, 11-1 to 11-25: photodiode, 12:
Lock-in amplifier module, 13-1 to 13-19
2: Lock-in amplifier, 14: A / D converter, 15: Storage unit, 16: Processing unit, 17: Display unit, 18: Control unit, 2
1: probe, 22: elastic band, 23: probe base,
24: optical fiber holder body, 25: nut, 26: optical fiber fixing screw, 31, 32, 33: semiconductor laser,
41, 42, 43: Semiconductor laser drive circuit, 51, 5
2, 53: optical fiber couplers, 61-1 to 61-16,
62-1 to 62-16, 63-1 to 63-16, 81-
1-81-16, 82-1-82-16, 83-1-8
3-16: Optical fiber, 71-1 to 71-16, 72-
1 to 72-16, 73-1 to 73-16: Optical modulator, 9
1-1 to 91-16: Optical fiber coupler, 101: Liquid crystal filter.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 可視から赤外領域における複数波長の光
を散乱体の複数部位に照射し、散乱体内部を通過した光
を散乱体の複数部位から検出して画像化する装置におい
て、 異なる変調周波数の光を発生させ複数部位ごとに照射す
る手段と、複数検出部位で得られた通過光に対し変調計
測を行う手段とを備え、個々の照射位置及び検出位置に
対応する散乱体内部の情報を画像化するように構成した
ことを特徴とする、光による散乱体内部画像化装置。
1. A device for irradiating light having a plurality of wavelengths in the visible to infrared region to a plurality of portions of a scatterer and detecting the light passing through the inside of the scatterer from the plurality of portions of the scatterer to form an image, with different modulations. Information about the inside of the scatterer corresponding to each irradiation position and detection position is provided, which is provided with a means for generating light of a frequency and irradiating it for each of a plurality of sites, and a means for performing modulation measurement on the passing light obtained at a plurality of detection sites. A scatterer internal imaging device by light, characterized in that it is configured to image.
【請求項2】 請求項1記載の画像化装置において、 散乱体に照射する複数波長の光に対し、それぞれ異なる
変調周波数を印加するように構成したことを特徴とす
る、光による散乱体内部画像化装置。
2. The imager according to claim 1, wherein the scatterer internal image is formed by applying different modulation frequencies to light of a plurality of wavelengths with which the scatterer is irradiated. Device.
【請求項3】 請求項1、2記載の画像化装置におい
て、 複数の光検出器で検出された信号から、波長及び光照射
位置に対応した変調周波数を分離するように構成したこ
とを特徴とする、光による散乱体内部画像化装置。
3. The imaging device according to claim 1, wherein the modulation frequency corresponding to the wavelength and the light irradiation position is separated from the signals detected by the plurality of photodetectors. A light scatterer internal imaging device.
【請求項4】 請求項1乃至3記載の画像化装置におい
て、 光を光ファイバにより散乱体に照射し、散乱体内部を通
過した光を光ファイバで捕捉して検出するように構成し
たことを特徴とする、光による散乱体内部画像化装置。
4. The imaging device according to claim 1, wherein the scatterer is irradiated with light by an optical fiber, and the light passing through the inside of the scatterer is captured and detected by the optical fiber. Characterized by a light scatterer internal imaging device.
【請求項5】 請求項1乃至4記載の画像化装置におい
て、 光源として複数の半導体レーザを用い、これら半導体レ
ーザを変調電流か変調電圧で駆動するように構成したこ
とを特徴とする、光による散乱体内部画像化装置。
5. The imaging device according to claim 1, wherein a plurality of semiconductor lasers are used as a light source, and these semiconductor lasers are driven by a modulation current or a modulation voltage. Scatterer internal imaging device.
【請求項6】 請求項1乃至5記載の画像化装置におい
て、 光源からの光を複数の光ファイバに分配し、散乱体の複
数照射部位までの光経路において光を直接的に変調する
ように構成したことを特徴とする、光による散乱体内部
画像化装置。
6. The imaging device according to claim 1, wherein the light from the light source is distributed to a plurality of optical fibers, and the light is directly modulated in a light path to a plurality of irradiation sites of the scatterer. A scatterer internal imaging device by light, characterized by being configured.
【請求項7】 請求項6記載の画像化装置において、 液晶フィルタか光チョッパで光を直接的に変調するよう
に構成したことを特徴とする、光による散乱体内部画像
化装置。
7. The imager according to claim 6, wherein the liquid scatterer internal imager is configured to directly modulate light with a liquid crystal filter or an optical chopper.
【請求項8】 請求項1乃至7記載の画像化装置におい
て、 散乱体表面で格子を形成する位置で光を照射及び検出す
るように構成したことを特徴とする、光による散乱体内
部画像化装置。
8. The imaging device according to any one of claims 1 to 7, wherein light is irradiated and detected at a position where a grating is formed on the surface of the scatterer, to image the inside of the scatterer by light. apparatus.
【請求項9】 請求項8記載の画像化装置において、 散乱体表面における正方格子状の格子点で光を照射及び
検出し、照射及び検出位置を交互に配置するように構成
したことを特徴とする、光による散乱体内部画像化装
置。
9. The imaging device according to claim 8, wherein light is irradiated and detected at lattice points of a square lattice on the surface of the scatterer, and irradiation and detection positions are alternately arranged. A light scatterer internal imaging device.
【請求項10】 請求項1乃至9記載の画像化装置にお
いて、 散乱体への複数光照射位置及び散乱体からの複数光検出
位置が配置されたプローブを備えたことを特徴とする、
光による散乱体内部画像化装置。
10. The imaging apparatus according to claim 1, further comprising a probe in which a plurality of light irradiation positions on the scatterer and a plurality of light detection positions from the scatterer are arranged.
Light scatterer internal imaging device.
【請求項11】 請求項10記載の画像化装置におい
て、 プローブの基盤として熱可塑性樹脂を用いることを特徴
とする、光による散乱体内部画像化装置。
11. The imager according to claim 10, wherein a thermoplastic resin is used as a base of the probe, and an imager for scatterer inside light is used.
JP31199395A 1995-10-06 1995-11-30 Light scattering device internal imaging device Expired - Lifetime JP3682793B2 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP31199395A JP3682793B2 (en) 1995-11-30 1995-11-30 Light scattering device internal imaging device
US08/875,081 US6240309B1 (en) 1995-10-06 1996-11-15 Optical measurement instrument for living body
DE19681107T DE19681107B4 (en) 1995-11-17 1996-11-15 Instrument for optical measurement in a living body
CA002210703A CA2210703C (en) 1995-11-17 1996-11-15 Optical measurement instrument for living body
GB9713004A GB2311854B (en) 1995-11-17 1996-11-15 Optical measurement instrument for living body
PCT/JP1996/003365 WO1997018755A1 (en) 1995-11-17 1996-11-15 Instrument for optical measurement of living body
US09/849,409 US6640133B2 (en) 1995-10-06 2001-05-07 Optical measurement instrument for living body
US10/689,760 US7142906B2 (en) 1995-10-06 2003-10-22 Optical measurement instrument for living body
US11/371,916 US7774047B2 (en) 1995-10-06 2006-03-10 Optical measurement instrument for living body
US11/371,918 US20060184046A1 (en) 1995-10-06 2006-03-10 Optical measurement instrument for living body
US11/371,919 US20060184047A1 (en) 1995-11-17 2006-03-10 Optical measurement instrument for living body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31199395A JP3682793B2 (en) 1995-11-30 1995-11-30 Light scattering device internal imaging device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005000063A Division JP3909713B2 (en) 2005-01-04 2005-01-04 Probe for measuring biological light

Publications (2)

Publication Number Publication Date
JPH09149903A true JPH09149903A (en) 1997-06-10
JP3682793B2 JP3682793B2 (en) 2005-08-10

Family

ID=18023920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31199395A Expired - Lifetime JP3682793B2 (en) 1995-10-06 1995-11-30 Light scattering device internal imaging device

Country Status (1)

Country Link
JP (1) JP3682793B2 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999056108A1 (en) * 1998-04-28 1999-11-04 Hitachi, Ltd. Optical measurement instrument and optical measurement method
WO2000022415A1 (en) * 1998-10-13 2000-04-20 Hitachi, Ltd. Optical measuring method and device
WO2000034761A1 (en) * 1998-12-07 2000-06-15 Hitachi, Ltd. Optical measurement device
WO2000057793A1 (en) * 1999-03-29 2000-10-05 Hitachi Medical Corporation Biological optical measuring instrument
JP2001286449A (en) * 2000-04-10 2001-10-16 Hitachi Medical Corp Probe device
WO2002080777A1 (en) * 2001-04-02 2002-10-17 Hitachi, Ltd. Biophotometer
JP2002323444A (en) * 2001-04-26 2002-11-08 Hitachi Medical Corp Organism light measurement apparatus
JP2003322612A (en) * 2002-04-30 2003-11-14 Communication Research Laboratory Brain-activity measuring apparatus and head mounting implement for brain-activity measurement
JP2004534934A (en) * 2000-08-04 2004-11-18 フォトニフィー テクノロジーズ,インコーポレーテッド System and method for providing information about chromophores in physiological media
WO2005041771A1 (en) * 2003-11-04 2005-05-12 Hitachi, Ltd. Biological photometric equipment
US7065392B2 (en) 2002-02-14 2006-06-20 Toshinori Kato Apparatus for evaluating biological function
JP2006524343A (en) * 2003-04-22 2006-10-26 アイティーティー マニュファクチャリング エンタープライジーズ, インコーポレイテッド Active remote sensing using spectrum lock-in technology
JP2006325659A (en) * 2005-05-23 2006-12-07 Hitachi Medical Corp Biophotonics measurement device
JP2007130038A (en) * 2005-11-08 2007-05-31 Hitachi Medical Corp Bio-optical measurement instrument
US7228166B1 (en) 1999-09-14 2007-06-05 Hitachi Medical Corporation Biological light measuring instrument
JPWO2005053543A1 (en) * 2003-12-02 2007-06-28 株式会社日立メディコ Probe device for biological light measurement device
JP2007236963A (en) * 2007-04-25 2007-09-20 Hitachi Medical Corp Probe system
EP1949848A1 (en) 2007-01-25 2008-07-30 Hitachi, Ltd. Optical measurement instrument for living body
JP2009240414A (en) * 2008-03-28 2009-10-22 Akita Univ Optical measurement apparatus
JP4678976B2 (en) * 2000-04-05 2011-04-27 株式会社日立メディコ Biological light measurement device
US7974671B2 (en) 2003-09-19 2011-07-05 Hitachi Medical Corporation Living body information signal processing system combining living body optical measurement apparatus and brain wave measurement apparatus and probe device used for the same
US8229531B2 (en) 2005-05-18 2012-07-24 Hitachi Medical Corporation Optical bioinstrumentation devices
US8406838B2 (en) 2004-07-20 2013-03-26 Toshinori Kato Apparatus for evaluating biological function, a method for evaluating biological function, a living body probe, a living body probe mounting device, a living body probe support device and a living body probe mounting accessory
WO2017138656A1 (en) 2016-02-10 2017-08-17 株式会社日立ハイテクノロジーズ Living-body light measuring device and living-body light measuring method

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999056108A1 (en) * 1998-04-28 1999-11-04 Hitachi, Ltd. Optical measurement instrument and optical measurement method
US7359825B2 (en) 1998-04-28 2008-04-15 Hitachi, Ltd. Optical measurement instrument and optical measurement method
US7047149B1 (en) 1998-04-28 2006-05-16 Hitachi, Ltd. Optical measurement instrument and optical measurement method
EP1076236A4 (en) * 1998-04-28 2001-10-17 Hitachi Ltd Optical measurement instrument and optical measurement method
US6611698B1 (en) 1998-10-13 2003-08-26 Hitachi, Ltd. Optical measuring instrument
WO2000022415A1 (en) * 1998-10-13 2000-04-20 Hitachi, Ltd. Optical measuring method and device
US6947779B2 (en) 1998-12-07 2005-09-20 Hitachi, Ltd. Optical measurement device
WO2000034761A1 (en) * 1998-12-07 2000-06-15 Hitachi, Ltd. Optical measurement device
US7778694B2 (en) 1999-03-29 2010-08-17 Hitachi Medical Corporation Biological optical measurement instrument
WO2000057793A1 (en) * 1999-03-29 2000-10-05 Hitachi Medical Corporation Biological optical measuring instrument
US7228166B1 (en) 1999-09-14 2007-06-05 Hitachi Medical Corporation Biological light measuring instrument
JP4678976B2 (en) * 2000-04-05 2011-04-27 株式会社日立メディコ Biological light measurement device
JP2001286449A (en) * 2000-04-10 2001-10-16 Hitachi Medical Corp Probe device
JP4846181B2 (en) * 2000-08-04 2011-12-28 フォトニフィー テクノロジーズ,インコーポレーテッド System and method for providing information about chromophores in physiological media
JP2004534934A (en) * 2000-08-04 2004-11-18 フォトニフィー テクノロジーズ,インコーポレーテッド System and method for providing information about chromophores in physiological media
WO2002080777A1 (en) * 2001-04-02 2002-10-17 Hitachi, Ltd. Biophotometer
US7139600B2 (en) 2001-04-02 2006-11-21 Hitachi, Ltd. Biophotometer
JP2002323444A (en) * 2001-04-26 2002-11-08 Hitachi Medical Corp Organism light measurement apparatus
JP4603718B2 (en) * 2001-04-26 2010-12-22 株式会社日立メディコ Biological light measurement device
CN1298284C (en) * 2002-02-14 2007-02-07 加藤俊德 Apparatus for evaluating biological function
US7065392B2 (en) 2002-02-14 2006-06-20 Toshinori Kato Apparatus for evaluating biological function
JP2003322612A (en) * 2002-04-30 2003-11-14 Communication Research Laboratory Brain-activity measuring apparatus and head mounting implement for brain-activity measurement
JP2006524343A (en) * 2003-04-22 2006-10-26 アイティーティー マニュファクチャリング エンタープライジーズ, インコーポレイテッド Active remote sensing using spectrum lock-in technology
US7974671B2 (en) 2003-09-19 2011-07-05 Hitachi Medical Corporation Living body information signal processing system combining living body optical measurement apparatus and brain wave measurement apparatus and probe device used for the same
WO2005041771A1 (en) * 2003-11-04 2005-05-12 Hitachi, Ltd. Biological photometric equipment
JPWO2005053543A1 (en) * 2003-12-02 2007-06-28 株式会社日立メディコ Probe device for biological light measurement device
JP4699213B2 (en) * 2003-12-02 2011-06-08 株式会社日立メディコ Probe device for biological light measurement device
US8406838B2 (en) 2004-07-20 2013-03-26 Toshinori Kato Apparatus for evaluating biological function, a method for evaluating biological function, a living body probe, a living body probe mounting device, a living body probe support device and a living body probe mounting accessory
US8229531B2 (en) 2005-05-18 2012-07-24 Hitachi Medical Corporation Optical bioinstrumentation devices
JP4722556B2 (en) * 2005-05-23 2011-07-13 株式会社日立メディコ Biological light measurement device
JP2006325659A (en) * 2005-05-23 2006-12-07 Hitachi Medical Corp Biophotonics measurement device
JP2007130038A (en) * 2005-11-08 2007-05-31 Hitachi Medical Corp Bio-optical measurement instrument
EP1949848A1 (en) 2007-01-25 2008-07-30 Hitachi, Ltd. Optical measurement instrument for living body
US8244324B2 (en) 2007-01-25 2012-08-14 Hitachi, Ltd. Optical measurement instrument for living body
JP4504993B2 (en) * 2007-04-25 2010-07-14 株式会社日立メディコ Probe device
JP2007236963A (en) * 2007-04-25 2007-09-20 Hitachi Medical Corp Probe system
JP2009240414A (en) * 2008-03-28 2009-10-22 Akita Univ Optical measurement apparatus
WO2017138656A1 (en) 2016-02-10 2017-08-17 株式会社日立ハイテクノロジーズ Living-body light measuring device and living-body light measuring method

Also Published As

Publication number Publication date
JP3682793B2 (en) 2005-08-10

Similar Documents

Publication Publication Date Title
JP3682793B2 (en) Light scattering device internal imaging device
US7142906B2 (en) Optical measurement instrument for living body
US20060184047A1 (en) Optical measurement instrument for living body
CA2319456C (en) Imaging and characterization of brain tissue
JP3599426B2 (en) Biological light measurement device
JP4055266B2 (en) Optical measuring device
JP3839202B2 (en) Biological light measuring device and program for causing this device to function
JP3593764B2 (en) Biological light measurement device
WO1997043950A1 (en) Apparatus for imaging microvascular blood flow
US7228166B1 (en) Biological light measuring instrument
JP4299965B2 (en) Biological optical measurement device and optical waveguide means holding device
JP2006297125A (en) Biological optical measurement apparatus
CA2210703C (en) Optical measurement instrument for living body
JP3977947B2 (en) Optical measurement method and apparatus
JP2002000586A (en) Optical measurement instrument for living-body
JP3909713B2 (en) Probe for measuring biological light
JP4266453B2 (en) Biological light measurement device
Ishikawa et al. Development of double density whole brain fNIRS with EEG system for brain machine interface
JP2001198112A (en) Organismic light measuring device
JP4551414B2 (en) Biological light measurement device
JP4892624B2 (en) Biological optical measurement device and subject mounting tool used therefor
JPH11169361A (en) Biological photometer
JP2006187306A (en) Biological signal processor
JP3260539B2 (en) Biological measurement device
JP2003075331A (en) Biological light measuring unit and image formation method therein

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050506

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050519

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090603

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090603

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100603

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110603

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110603

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120603

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120603

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130603

Year of fee payment: 8

EXPY Cancellation because of completion of term