JPH09142995A - Production of p-type single crystal silicon carbide - Google Patents

Production of p-type single crystal silicon carbide

Info

Publication number
JPH09142995A
JPH09142995A JP30461795A JP30461795A JPH09142995A JP H09142995 A JPH09142995 A JP H09142995A JP 30461795 A JP30461795 A JP 30461795A JP 30461795 A JP30461795 A JP 30461795A JP H09142995 A JPH09142995 A JP H09142995A
Authority
JP
Japan
Prior art keywords
silicon carbide
single crystal
sic
growth
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP30461795A
Other languages
Japanese (ja)
Inventor
Noboru Otani
昇 大谷
Kozo Onoe
浩三 尾上
Hirokatsu Yashiro
弘克 矢代
Masatoshi Kanetani
正敏 金谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP30461795A priority Critical patent/JPH09142995A/en
Publication of JPH09142995A publication Critical patent/JPH09142995A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a p-type SiC single crystal with high reproducibility at a low cost by using a mixture of SiC stock with Al2 O3 . SOLUTION: When an SiC single crystal is doped with Al in a sublimation- recrystallization method (Rayleigh method) by which SiC stock is sublimed and an SiC single crystal is grown on an SiC seed crystal substrate, the amt. of Al vaporized is reduced even at a high temp. of 2,000-2,500 deg.C by using a mixture of SiC powder with Al2 O3 as starting material in place of a mixture of SiC powder with Al power and uniform doping with Al is attained during growth. For example, a hexagonal SiC substrate 1 having <0001> direction as the orientation of a growth face is fixed as a seed crystal on the inside of the lid 4 of a graphite crucible 3, SiC power mixed with 1wt.% Al2 O3 is filled as starting material 2 into the crucible 3 and this crucible 3 is put in a double quartz tube 5. After evacuation, the tube 5 is heated to 2,000 deg.C, Ar is introduced and growth is carried out at 2,400 deg.C under 10Torr for 20hr.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、炭化珪素単結晶の
製造方法に係わり、特に、青色発光ダイオードや電子デ
バイスなどの基板ウェハとなる良質で大型の単結晶イン
ゴットの成長方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a silicon carbide single crystal, and more particularly to a method for growing a large-sized single crystal ingot of good quality which is used as a substrate wafer for blue light emitting diodes, electronic devices and the like.

【0002】[0002]

【従来の技術】炭化珪素(SiC)は耐熱性及び機械的
強度も優れ、放射線に強いなどの物理的、化学的性質か
ら耐環境性半導体材料として注目されている。特に6H
型の炭化珪素結晶は室温で約3eVの禁制帯幅を持ち、
青色発光ダイオード材料として用いられている。しかし
ながら、大面積を有する高品質の炭化珪素単結晶を、工
業的規模で安定に供給し得る結晶成長技術は、いまだ確
立されていない。それゆえ、炭化珪素は、上述のような
多くの利点及び可能性を有する半導体材料にもかかわら
ず、その実用化が阻まれていた。
2. Description of the Related Art Silicon carbide (SiC) has attracted attention as an environment-resistant semiconductor material due to its physical and chemical properties such as excellent heat resistance and mechanical strength and resistance to radiation. Especially 6H
Type silicon carbide crystal has a forbidden band width of about 3 eV at room temperature,
Used as a blue light emitting diode material. However, a crystal growth technique capable of stably supplying a high-quality silicon carbide single crystal having a large area on an industrial scale has not yet been established. Therefore, silicon carbide has been hampered in practical use despite the semiconductor material having many advantages and possibilities as described above.

【0003】従来、研究室程度の規模では、例えば昇華
再結晶法(レーリー法)で炭化珪素単結晶を成長させ、
半導体素子の作製が可能なサイズの炭化珪素単結晶を得
ていた。しかしながら、この方法では、得られた単結晶
の面積が小さく、その寸法及び形状を高精度に制御する
ことは困難である。また、炭化珪素が有する結晶多形及
び不純物キャリア濃度の制御も容易ではない。
Conventionally, on a laboratory scale, a silicon carbide single crystal is grown by, for example, a sublimation recrystallization method (Rayleigh method).
Thus, a silicon carbide single crystal having a size capable of manufacturing a semiconductor element has been obtained. However, in this method, the area of the obtained single crystal is small, and it is difficult to control the size and shape with high precision. Further, it is not easy to control the crystal polymorphism and impurity carrier concentration of silicon carbide.

【0004】また、化学気相成長法(CVD法)を用い
て珪素(Si)等などの異種基板上にヘテロエピタキシ
ャル成長させることにより立方晶の炭化珪素単結晶を成
長させることも行われている。この方法では、大面積の
単結晶は得られるが、基板との格子不整合が約20%も
あること等により多くの欠陥を含む(〜107 cm-2
炭化珪素単結晶しか成長させることができず、高品質の
炭化珪素単結晶を得ることは容易でない。
In addition, a cubic silicon carbide single crystal is also grown by performing heteroepitaxial growth on a heterogeneous substrate such as silicon (Si) using a chemical vapor deposition method (CVD method). Although a large area single crystal can be obtained by this method, many defects are included due to the lattice mismatch with the substrate of about 20% (-10 7 cm -2 ).
Only a silicon carbide single crystal can be grown, and it is not easy to obtain a high quality silicon carbide single crystal.

【0005】これらの問題点を解決するために、種結晶
を用いて昇華再結晶を行う改良型のレーリー法が提案さ
れている(Yu.M. Tairov and V.F. Tsvetkov, Journal
of Crystal Growth vol.52(1981) pp.146-150 )。この
方法を用いれば、結晶多形及び形状を制御しながら、炭
化珪素単結晶を成長させることができる。
In order to solve these problems, an improved Rayleigh method of sublimation recrystallization using a seed crystal has been proposed (Yu.M. Tairov and VF Tsvetkov, Journal.
of Crystal Growth vol.52 (1981) pp.146-150). By using this method, a silicon carbide single crystal can be grown while controlling the crystal polymorphism and shape.

【0006】炭化珪素単結晶においては、N型の不純物
として窒素(N)が、またP型の不純物としてはホウ素
(B)とアルミニウム(Al)が良く知られている。B
は炭化珪素単結晶に取り込まれ易いが、その活性化エネ
ルギーが大きいために、あまり実用的でなく、通常、P
型ドーピングにはAlが使われている。
In the silicon carbide single crystal, nitrogen (N) is well known as an N type impurity, and boron (B) and aluminum (Al) are well known as P type impurities. B
Is easily incorporated into a silicon carbide single crystal, but its activation energy is large, so that it is not very practical.
Al is used for the type doping.

【0007】昇華再結晶法によって炭化珪素単結晶にA
lをドープする方法としては、従来、(1)Al(アル
ミニウム)粉末を炭化珪素粉末と混合したもの(「物
性」1970年5月号pp.263-269)、(2)事前に炭化
珪素粉末とAlの混合物を摂氏1800度程度の高温で
熱処理したもの(特公平6−45520号公報)、ある
いは(3)事前にAlを不純物としてドープした炭化珪
素粉末(G.Ziegler, etal., IEEE Transactions on Ele
ctron Devices vol.ED-30 (1983) pp.277-281)を原材
料として、1〜100Torrの低圧下で加熱昇華させ
ることにより気化したAlを、炭化珪素単結晶成長時に
ドープする方法があった。
A silicon carbide single crystal was obtained by sublimation recrystallization.
As a method of doping l, conventionally, (1) a mixture of Al (aluminum) powder and silicon carbide powder (“Physical properties” May 1970 issue pp. 263-269), (2) silicon carbide powder in advance Obtained by heat-treating a mixture of Al and Al at a high temperature of about 1800 degrees Celsius (Japanese Patent Publication No. 6-45520), or (3) silicon carbide powder previously doped with Al as an impurity (G.Ziegler, et al., IEEE Transactions). on Ele
ctron Devices vol.ED-30 (1983) pp.277-281) was used as a raw material, and Al vaporized by heating and subliming under a low pressure of 1 to 100 Torr was doped during the growth of a silicon carbide single crystal.

【0008】[0008]

【発明が解決しようとする課題】上記(1)の従来方法
では炭化珪素単結晶の成長温度は摂氏2000〜250
0度とAlの沸点(摂氏1500〜1600度)に比べ
非常に高いため、上記成長温度まで昇温する間にAlの
みが気化してしまう。このため、炭化珪素単結晶の成長
初期ではAlの濃度が非常に高く、成長が進むにつれて
Alの濃度が低くなり、遂にはAlの含有しないN型の
炭化珪素単結晶が成長する結果となっていた。さらに
は、成長温度達成前に気化したAlが種結晶表面に付着
するため、その表面に成長する炭化珪素単結晶の結晶性
を低下させるという問題もあった。
In the conventional method of the above (1), the growth temperature of the silicon carbide single crystal is 2000 to 250 degrees Celsius.
Since it is 0 ° C., which is much higher than the boiling point of Al (1,500 ° C. to 1,600 ° C.), only Al vaporizes while the temperature is raised to the growth temperature. Therefore, the concentration of Al is very high in the initial stage of growth of the silicon carbide single crystal, and the concentration of Al decreases as the growth progresses, and finally an N-type silicon carbide single crystal containing no Al grows. It was Furthermore, since vaporized Al adheres to the seed crystal surface before the growth temperature is reached, there is a problem that the crystallinity of the silicon carbide single crystal growing on the surface is lowered.

【0009】また、上記(2)あるいは(3)の従来法
では、原料となる市販の炭化珪素粉末には、Alとの混
合物を熱処理したもの、あるいはAlを充分な量ドープ
したものはなく、それぞれ実際の単結晶成長前に作製す
る必要がある。このため、これらの方法では、P型炭化
珪素単結晶の製造コスト低下は極めて困難である。
In the conventional method of (2) or (3), there is no commercially available silicon carbide powder as a raw material, which is obtained by heat-treating a mixture with Al, or is not sufficiently doped with Al. It is necessary to produce each before actual single crystal growth. Therefore, it is extremely difficult to reduce the manufacturing cost of the P-type silicon carbide single crystal by these methods.

【0010】本発明は上記事情に鑑みてなされたもので
あり、P型の炭化珪素単結晶を、再現性良く低コストで
製造し得るP型炭化珪素単結晶の製造方法を提供するも
のである。
The present invention has been made in view of the above circumstances, and provides a method for producing a P-type silicon carbide single crystal capable of producing a P-type silicon carbide single crystal with good reproducibility and at low cost. .

【0011】[0011]

【課題を解決するための手段】本発明の単結晶炭化珪素
の製造方法は、炭化珪素からなる原材料を加熱昇華さ
せ、炭化珪素単結晶からなる種結晶上に供給し、この種
結晶上に炭化珪素単結晶を成長する方法において、上記
原材料にAl2 3 を混合させたものを用いる。すなわ
ち、本発明は請求項1記載のごとく、炭化珪素原材料を
昇華させて炭化珪素種結晶基板上に炭化珪素単結晶を成
長させる昇華再結晶法において、上記原材料にAl2
3 を混合させたものを用いることを特徴とするP型炭化
珪素単結晶の製造方法である。
In the method for producing single crystal silicon carbide of the present invention, a raw material made of silicon carbide is heated and sublimated and supplied onto a seed crystal made of a silicon carbide single crystal, and carbonized on the seed crystal. In the method of growing a silicon single crystal, a mixture of the above raw materials with Al 2 O 3 is used. That is, according to the present invention, as described in claim 1, in the sublimation recrystallization method of sublimating a silicon carbide raw material to grow a silicon carbide single crystal on a silicon carbide seed crystal substrate, Al 2 O is added to the raw material.
A method for producing a P-type silicon carbide single crystal, characterized in that a mixture of 3 is used.

【0012】[0012]

【発明の実施の形態】本発明の製造方法では、Al2
3 を混合した炭化珪素粉末を原料として用いることによ
り、従来法(1)の製造方法で問題となっていたAlの
気化量を摂氏2000〜2500度の高温でも低く抑え
ることができ、成長中を通じて均一なAlドープが実現
できる。また従来法(2)、(3)の製造法と比較した
場合、Al2 3 の粉末は高純度のものが廉価に容易に
入手できるため結晶の製造コストを低く抑えることがで
きる。
BEST MODE FOR CARRYING OUT THE INVENTION In the manufacturing method of the present invention, Al 2 O
By using the silicon carbide powder mixed with 3 as a raw material, the vaporization amount of Al, which has been a problem in the manufacturing method of the conventional method (1), can be suppressed to a low level even at a high temperature of 2000 to 2500 ° C. Uniform Al doping can be realized. Further, when compared with the production methods of the conventional methods (2) and (3), the powder of Al 2 O 3 having high purity can be easily obtained at a low price, so that the production cost of the crystal can be suppressed low.

【0013】[0013]

【実施例】以下に、本発明の詳細を実施例に基づき述べ
る。
EXAMPLES The details of the present invention will be described below based on examples.

【0014】図1は、本発明に用いられる製造装置であ
り、種結晶を用いた改良型レーリー法によって単結晶炭
化珪素を成長させる装置の一例である。
FIG. 1 shows a manufacturing apparatus used in the present invention, which is an example of an apparatus for growing single crystal silicon carbide by an improved Rayleigh method using a seed crystal.

【0015】まず、この単結晶成長装置について簡単に
説明する。結晶成長は、種結晶として用いた炭化珪素単
結晶基板1の上に、原料である炭化珪素粉末2を昇華再
結晶させることにより行われる。種結晶の炭化珪素結晶
基板1は、黒鉛製坩堝3の蓋4の内面に取り付けられ
る。原料の炭化珪素粉末2は、黒鉛製坩堝3の内部に充
填されている。このような黒鉛製坩堝3は、二重石英管
5の内部に、黒鉛の支持棒6により設置される。黒鉛製
坩堝3の周囲には、熱シールドのための黒鉛製フェルト
7が設置されている。二重石英管5は、真空排気装置1
1により高真空排気(10-5Torr以下)でき、かつ
内部雰囲気を、Arガス供給源(不図示)から配管9に
より導きArガス用マスフローコントローラ10によっ
て制御されたArガスにより圧力制御することができ
る。また、二重石英管5の外周には、ワークコイル8が
設置されており、高周波電流を流すことにより黒鉛製坩
堝3を加熱し、原料及び種結晶を所望の温度に加熱する
ことができる。坩堝温度の計測は、坩堝上部及び下部を
覆うフェルトの中央部に直径2〜4mmの光路を設け坩
堝上部及び下部からの光を取りだし、二色温度計を用い
て行う。坩堝下部の温度を原料温度、坩堝上部の温度を
種温度とする。
First, the single crystal growth apparatus will be briefly described. Crystal growth is performed by sublimating and recrystallizing silicon carbide powder 2 as a raw material on silicon carbide single crystal substrate 1 used as a seed crystal. Seed silicon carbide crystal substrate 1 is attached to the inner surface of lid 4 of crucible 3 made of graphite. Silicon carbide powder 2 as a raw material is filled in a crucible 3 made of graphite. Such a graphite crucible 3 is installed inside a double quartz tube 5 by a graphite support rod 6. Around the graphite crucible 3, a graphite felt 7 for heat shielding is provided. The double quartz tube 5 is a vacuum exhaust device 1.
1, high vacuum exhaust (10 -5 Torr or less) can be performed, and the internal atmosphere can be guided from a Ar gas supply source (not shown) by a pipe 9 and pressure controlled by Ar gas controlled by the Ar gas mass flow controller 10. it can. A work coil 8 is provided around the outer periphery of the double quartz tube 5, and the graphite crucible 3 can be heated by flowing a high-frequency current to heat the raw material and the seed crystal to desired temperatures. The temperature of the crucible is measured by using a two-color thermometer by providing an optical path with a diameter of 2 to 4 mm at the center of the felt that covers the upper and lower parts of the crucible and extracting light from the upper and lower parts of the crucible. The temperature at the bottom of the crucible is the raw material temperature, and the temperature at the top of the crucible is the seed temperature.

【0016】次に、この結晶成長装置を用いた炭化珪素
単結晶の製造について実施例を説明する。
Next, an example of the production of a silicon carbide single crystal using this crystal growth apparatus will be described.

【0017】まず、種結晶として、成長面方位が<00
01>方向である六方晶系の炭化珪素からなる基板1を
用意した。そして、この基板1を黒鉛製坩堝3の蓋4の
内面に取り付けた。また、黒鉛製坩堝3の内部には、炭
化珪素粉末中にAl2 3 を1重量%混合したものを原
料2として充填した。
First, as a seed crystal, the growth plane orientation is <00.
A substrate 1 made of hexagonal silicon carbide having a 01> direction was prepared. Then, the substrate 1 was attached to the inner surface of the lid 4 of the graphite crucible 3. Further, the graphite crucible 3 was filled as a raw material 2 with 1% by weight of Al 2 O 3 mixed in silicon carbide powder.

【0018】Al2 3 は、市販の粒状のものを粉砕し
数十ミクロン程度の粗さの粉にしてから原料に均一に混
合した。次いで、原料を充填した黒鉛製坩堝3を、種結
晶を取り付けた蓋4で閉じ、黒鉛製フェルト7で被覆し
た後、黒鉛製支持棒6の上に乗せ、二重石英管5の内部
に設置した。そして、石英管の内部を真空排気した後、
ワークコイルに電流を流し原料温度を摂氏2000度ま
で上げた。その後、雰囲気ガスとしてArガスを流入さ
せ、石英管内圧力を約600Torrに保ちながら、原
料温度を目標温度である摂氏2400度まで上昇させ
た。成長圧力である10Torrには約30分かけて減
圧し、その後約20時間成長を続けた。この際の成長速
度は約1mm毎時であった。
Al 2 O 3 was obtained by pulverizing a commercially available granular material into powder having a roughness of about several tens of microns and then uniformly mixing it with the raw materials. Next, the graphite crucible 3 filled with the raw material is closed with a lid 4 fitted with a seed crystal, covered with a graphite felt 7, placed on a graphite support rod 6, and set inside a double quartz tube 5. did. And after evacuating the inside of the quartz tube,
An electric current was applied to the work coil to raise the raw material temperature to 2000 degrees Celsius. After that, Ar gas was introduced as an atmosphere gas, and the raw material temperature was raised to 2400 degrees Celsius which is a target temperature while maintaining the internal pressure of the quartz tube at about 600 Torr. The pressure was reduced to 10 Torr, which is the growth pressure, over about 30 minutes, and then the growth was continued for about 20 hours. The growth rate at this time was about 1 mm per hour.

【0019】こうして得られた炭化珪素単結晶をX線回
折及びラマン散乱により分析したところ、六方晶系の炭
化珪素単結晶が成長したことを確認できた。また、結晶
を二次イオン質量分析法により調べたところ、種結晶付
近から成長上部までほぼ均一にAlが1.2×1018
-3ドープされていることがわかった。上部と下部でド
ープ量の差は、最大で30%以下であった。原料中のA
2 3 の仕込量を0.27〜2.7%の範囲で変化さ
せ、結晶中への取り込み量を調べたところ、仕込量の平
方根にほぼ比例して取込み量が増えているのがわかっ
た。さらに電気測定(ホール測定)により、結晶がP型
になっていることを確認した。
The silicon carbide single crystal thus obtained was analyzed by X-ray diffraction and Raman scattering, and it was confirmed that a hexagonal system silicon carbide single crystal had grown. Further, when the crystal was examined by secondary ion mass spectrometry, it was found that Al was approximately 1.2 × 10 18 c from the seed crystal to the upper part of the growth.
It was found to be m −3 doped. The maximum difference in the amount of doping between the upper part and the lower part was 30% or less. A in raw material
When the amount of l 2 O 3 charged was changed in the range of 0.27 to 2.7% and the amount of incorporation into the crystal was examined, it was found that the amount of incorporation increased almost in proportion to the square root of the amount of incorporation. all right. Furthermore, it was confirmed by electrical measurement (Hall measurement) that the crystal was P-type.

【0020】[0020]

【発明の効果】以上説明したように、本発明によれば、
種結晶を用いた改良型レーリー法により、P型の炭化珪
素単結晶を、再現性及び均一性良く成長させることがで
きる。このような炭化珪素単結晶を成長用基板として用
い、気相エピタキシャル成長法により、この基板上に炭
化珪素単結晶薄膜を成長させれば、光学的特性の優れた
青色発光素子、電気的特性の優れた高耐圧・耐環境性電
子デバイスを製作することができる。
As described above, according to the present invention,
By the improved Rayleigh method using a seed crystal, a P-type silicon carbide single crystal can be grown with good reproducibility and uniformity. If such a silicon carbide single crystal is used as a growth substrate and a silicon carbide single crystal thin film is grown on the substrate by a vapor phase epitaxial growth method, a blue light emitting device having excellent optical characteristics and an excellent electrical characteristic can be obtained. A high withstand voltage and environmental resistance electronic device can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の製造方法に用いられる単結晶成長装
置の一例を示す構成図である。
FIG. 1 is a configuration diagram showing an example of a single crystal growth apparatus used in a manufacturing method of the present invention.

【符号の説明】[Explanation of symbols]

1…炭化珪素単結晶基板(種結晶) 2…炭化珪素粉末原料 3…黒鉛製坩堝 4…黒鉛製坩堝蓋 5…二重石英管 6…支持棒 7…黒鉛製フェルト 8…ワークコイル 9…Arガス配管 10…Arガス用マスフローコントローラ 11…真空排気装置 1 ... Silicon carbide single crystal substrate (seed crystal) 2 ... Silicon carbide powder raw material 3 ... Graphite crucible 4 ... Graphite crucible lid 5 ... Double quartz tube 6 ... Support rod 7 ... Graphite felt 8 ... Work coil 9 ... Ar Gas pipe 10 ... Mass flow controller for Ar gas 11 ... Vacuum exhaust device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 金谷 正敏 神奈川県川崎市中原区井田1618番地 新日 本製鐵株式会社技術開発本部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masatoshi Kanaya 1618 Ida, Nakahara-ku, Kawasaki-shi, Kanagawa Inside Nippon Steel Co., Ltd. Technology Development Division

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 炭化珪素原材料を昇華させて炭化珪素種
結晶基板上に炭化珪素単結晶を成長させる昇華再結晶法
において、上記原材料にAl2 3 を混合させたものを
用いることを特徴とするP型炭化珪素単結晶の製造方
法。
1. A sublimation recrystallization method in which a silicon carbide raw material is sublimated to grow a silicon carbide single crystal on a silicon carbide seed crystal substrate, wherein the raw material is mixed with Al 2 O 3. A method for producing a P-type silicon carbide single crystal.
JP30461795A 1995-11-22 1995-11-22 Production of p-type single crystal silicon carbide Withdrawn JPH09142995A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30461795A JPH09142995A (en) 1995-11-22 1995-11-22 Production of p-type single crystal silicon carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30461795A JPH09142995A (en) 1995-11-22 1995-11-22 Production of p-type single crystal silicon carbide

Publications (1)

Publication Number Publication Date
JPH09142995A true JPH09142995A (en) 1997-06-03

Family

ID=17935182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30461795A Withdrawn JPH09142995A (en) 1995-11-22 1995-11-22 Production of p-type single crystal silicon carbide

Country Status (1)

Country Link
JP (1) JPH09142995A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6773505B2 (en) 1999-07-07 2004-08-10 Siemens Aktiengesellschaft Method for the sublimation growth of an SiC single crystal, involving heating under growth pressure
JP2013133234A (en) * 2011-12-26 2013-07-08 Sumitomo Electric Ind Ltd Ingot, substrate, and substrate group
CN106591952A (en) * 2016-12-09 2017-04-26 河北同光晶体有限公司 Preparation method of SiC wafer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6773505B2 (en) 1999-07-07 2004-08-10 Siemens Aktiengesellschaft Method for the sublimation growth of an SiC single crystal, involving heating under growth pressure
JP2013133234A (en) * 2011-12-26 2013-07-08 Sumitomo Electric Ind Ltd Ingot, substrate, and substrate group
CN106591952A (en) * 2016-12-09 2017-04-26 河北同光晶体有限公司 Preparation method of SiC wafer

Similar Documents

Publication Publication Date Title
JP3165685B2 (en) Sublimation growth of silicon carbide single crystal
US6391109B2 (en) Method of making SiC single crystal and apparatus for making SiC single crystal
US6136093A (en) Method of making GaN single crystal and apparatus for making GaN single crystal
JP2004099340A (en) Seed crystal for silicon carbide single crystal growth, silicon carbide single crystal ingot and method of manufacturing the same
JP2009256155A (en) Silicon carbide single crystal ingot and production method of the same
JP3637157B2 (en) Method for producing silicon carbide single crystal and seed crystal used therefor
JP3590485B2 (en) Single crystal silicon carbide ingot and method for producing the same
US5288365A (en) Method for growing a silicon carbide single crystal
JPH09157092A (en) Production of silicon carbide single crystal
JP3662694B2 (en) Method for producing single crystal silicon carbide ingot
JP3590464B2 (en) Method for producing 4H type single crystal silicon carbide
JP2003226600A (en) Seed crystal for growing silicon carbide single crystal, silicon carbide single crystal ingot, and methods of producing them
JPH11209198A (en) Synthesis of silicon carbide single crystal
JPH0977594A (en) Production of low resistance single crystal silicon carbide
Savkina et al. New results in sublimation growth of the SiC epilayers
JPH09142995A (en) Production of p-type single crystal silicon carbide
JP3823345B2 (en) Single crystal growth method and single crystal growth apparatus
JPH0412096A (en) Method for growing 6h-type and 4h-type silicon carbide single crystal
JP4053125B2 (en) Method for synthesizing SiC single crystal
JPH08208380A (en) Production of single-crystalline silicon carbide
JPH06298600A (en) Method of growing sic single crystal
JPH06191998A (en) Method for growing silicon carbide single crystal and device for growing the same
JP2003137694A (en) Seed crystal for growing silicon carbide single crystal, silicon carbide single crystal ingot and method of producing the same
JP2680617B2 (en) Method for growing silicon carbide single crystal
JPH0416597A (en) Production of silicon carbide single crystal

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030204