JPH09141138A - Electronic cooling part structure of ultra-centrifugal separator - Google Patents

Electronic cooling part structure of ultra-centrifugal separator

Info

Publication number
JPH09141138A
JPH09141138A JP30608395A JP30608395A JPH09141138A JP H09141138 A JPH09141138 A JP H09141138A JP 30608395 A JP30608395 A JP 30608395A JP 30608395 A JP30608395 A JP 30608395A JP H09141138 A JPH09141138 A JP H09141138A
Authority
JP
Japan
Prior art keywords
radiator
cooling
peltier element
bottom plate
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP30608395A
Other languages
Japanese (ja)
Inventor
Tatsuya Konno
達也 今野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koki Holdings Co Ltd
Original Assignee
Hitachi Koki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Koki Co Ltd filed Critical Hitachi Koki Co Ltd
Priority to JP30608395A priority Critical patent/JPH09141138A/en
Publication of JPH09141138A publication Critical patent/JPH09141138A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Centrifugal Separators (AREA)

Abstract

PROBLEM TO BE SOLVED: To hold the radiation surface of a Peltier element by a small and simple radiation fin shape, by forming a plate being in contact with the Peltier element from a material high in heat conductivity and providing a radiator at a position separated from the Peltier element. SOLUTION: In a centrifugal separator used in a biochemical or medical field, a rotary body 2 housing a sample 1 is rotated within the cooling container 5 in a vacuum container 4 at a high speed by a drive motor 3 and a plurality of Peltier elements 6 are arranged to the periphery of the rotary shaft of the drive motor 3 so as to be positioned under the cooling container, the rotary body or the like. The cooling surfaces of the elements 6 are in contact with the cooling container 5 and the radiant surfaces thereof are in contact with a bottom plate 4b. A radiator 7 is attached to the bottom plate 4b on the side of the atmosphere and surrounded from the outside by a blow duct 8 to be cooled by a fan 9. At this time, the bottom plate 4b is composed of aluminum inexpensive as a heat conductor and the radiator of an extrusion material can be employed as it is.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、遠心分離機のよう
に回転体の温度を一定に保つ必要性のある機器における
電子冷却部の放熱構造に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat dissipating structure for an electronic cooling unit in a device such as a centrifuge that needs to keep the temperature of a rotating body constant.

【0002】[0002]

【従来の技術】生化学や医学分野等において使用されて
いる遠心分離機は、一般的に試料温度を一定に保つため
の冷却装置を有している。この冷却装置の一つとしてペ
ルチェ素子を用いているものがあり、これらは一般に放
熱器上にペルチェ素子を配し、その上に冷却容器を配す
ることで、ペルチェ素子への電流の断続供給または供給
電流の制御、転極により冷却容器の温度を一定に保って
いた。
2. Description of the Related Art Centrifuges used in the fields of biochemistry and medicine generally have a cooling device for keeping a sample temperature constant. There is one that uses a Peltier element as one of the cooling devices, and these generally have a Peltier element placed on a radiator and a cooling container placed on the radiator to intermittently supply current to the Peltier element or The temperature of the cooling container was kept constant by controlling the supply current and inverting the polarity.

【0003】[0003]

【発明が解決しようとする課題】従来の分離用超遠心分
離機における機体及び回転室は、図3〜図6に示すよう
に放熱系容積の大きい複数の放熱器や放熱ファンを完備
することができた。また小形超遠心分離機に較べて回転
体も大きく放熱能力が高いため、冷却容器の温度をそれ
ほど低温にする要求がなされていなかった。近年、主流
になりつつある小形超遠心分離機において、回転室を構
成する冷却容器や回転体の大きさは従来の1/2以下に
小形化しており、真空中輻射電熱を利用して回転体の冷
却、加熱を行っていた。このような温度制御を行ってい
る超遠心分離機では、回転体の小形化は回転体の表面積
の減少につながっており、結果的に冷却時の被冷却物た
る回転体の放熱能力が著しく減少してしまっていた。こ
れを補うために冷却容器を従来より低温に維持すること
が要求されるが、電子冷却を用いた場合、冷却面の温度
を下げるには素子への入力を増すか、放熱側の温度を下
げるしか方法がなかった。しかし、素子入力を増やせば
増加した分だけ排熱が増加してしまい結果的に放熱能力
の負荷となり、放熱側温度を下げるにしても強制空冷に
よるため、機体内スペース、通風量及び騒音等の問題で
限界があった。従来の小形超遠心分離機では、図5及び
図6に示すようにペルチェ素子の直下にボトムプレート
を挾んで放熱器を配置し、更にペルチェ素子放熱面と放
熱器間の熱抵抗を極力減らすためのボトムプレートに直
接放熱器を形成して冷却能力を得る構成となっていた。
しかし、この方法では、次のような問題があった。冷却
容器の小形化によりペルチェ素子は駆動部の回転軸付近
に設置せざるおえないため、安価な押し出し材放熱フィ
ンを採用しても、図5に示すようにペルチェ素子直下の
放熱器部分は駆動部を避けるために切削加工が必要とな
り高価なものとなっていた。また前述したボトムプレー
トと放熱器の一体成形は、切削加工によるか、高価な型
を必要とする鋳造であるためコスト高となっていた。更
にペルチェ素子の冷却面と冷却容器をアルミのような高
熱電動体で接続し、ペルチェ素子直下に放熱器を設置し
て駆動部と干渉しないようにしても、真空容器及びプロ
テクタが大きくなり、本体の小形化に逆行する上、真空
容器容積が増大するので真空ポンプ等の能力向上が必要
となりコストアップにつながっていた。以上、前述した
ペルチェ素子直下に放熱器を取付ける方法では、中心部
を駆動部に隔てられた複雑な変形風路となり、風路抵抗
が高くなったり、風路抵抗のアンバランスが発生し送風
ファンの大形化、騒音の増大、またそれらの対策による
送風ダクトのコスト高を招いてしまっていた。また送風
ダクトを用いないものもあるが、駆動部の排熱が放熱器
側に侵入し放熱効率を低下させるため送風ファンの強化
が必要になっていた。
As shown in FIGS. 3 to 6, the airframe and the rotating chamber of the conventional ultracentrifuge for separation may be equipped with a plurality of radiators and radiator fans having a large radiator system volume. did it. Moreover, since the rotating body is larger and the heat dissipation capacity is higher than that of the small ultracentrifuge, there has been no demand for the temperature of the cooling container to be so low. In recent years, in small ultracentrifuges that are becoming mainstream, the size of the cooling container and the rotating body that make up the rotating chamber has been reduced to less than half of the conventional size, and the rotating body using radiant heat in vacuum is used. Was being cooled and heated. In an ultracentrifuge that performs such temperature control, miniaturization of the rotating body leads to a decrease in the surface area of the rotating body, and as a result, the heat dissipation capacity of the rotating body, which is the object to be cooled during cooling, is significantly reduced. I had done it. In order to compensate for this, it is required to maintain the cooling container at a lower temperature than before, but when using electronic cooling, increase the input to the element or lower the heat radiation side temperature to lower the temperature of the cooling surface. There was no other way. However, if the element input is increased, the increased amount of exhaust heat will result in a load on the heat dissipation capacity, and even if the temperature on the heat dissipation side is lowered, forced air cooling will cause a decrease in space inside the machine, ventilation, noise, etc. There was a limit because of the problem. In the conventional small ultracentrifuge, the bottom plate is sandwiched between the Peltier element and the radiator is arranged as shown in FIG. 5 and FIG. The radiator is directly formed on the bottom plate to obtain the cooling capacity.
However, this method has the following problems. Due to the downsizing of the cooling container, the Peltier element must be installed near the rotation axis of the drive unit. Therefore, even if an inexpensive extrusion material heat radiation fin is used, the radiator section directly below the Peltier element is driven as shown in FIG. It was expensive because it required cutting to avoid parts. In addition, the above-described integral molding of the bottom plate and the radiator has been costly because it is a cutting process or is a casting that requires an expensive mold. Furthermore, even if the cooling surface of the Peltier element and the cooling container are connected by a high-heat electric body such as aluminum and a radiator is installed directly under the Peltier element so that it does not interfere with the drive unit, the vacuum container and protector become large, and the main body In addition to the reduction in size, the volume of the vacuum container is increased, so that it is necessary to improve the capacity of the vacuum pump and the like, leading to an increase in cost. As described above, in the method of mounting the radiator directly below the Peltier element, a complicated deformed air passage with the central portion separated by the drive portion causes a high air passage resistance or an unbalanced air passage resistance, which causes a blower fan. Of the air duct, increase of noise, and the cost of the air duct due to the countermeasures. In addition, although there are some that do not use a ventilation duct, it is necessary to strengthen the ventilation fan because the exhaust heat of the drive unit enters the radiator side and reduces the heat radiation efficiency.

【0004】本発明の目的は、小形、且つ単純な放熱フ
ィン形状により、ペルチェ素子の放熱面を低温に維持す
ることのできる安価な放熱部構造を提供することであ
る。
An object of the present invention is to provide an inexpensive heat dissipating portion structure capable of keeping the heat dissipating surface of a Peltier element at a low temperature by using a small and simple heat dissipating fin shape.

【0005】[0005]

【課題を解決するための手段】上記目的は、真空容器底
面の部材にアルミのような熱伝導性の高い材質を採用す
ることにより、熱の搬送媒体としての能力を付与し、放
熱器をペルチェ素子の放熱面に真下以外に設置すること
により達成される。更に詳細には、真空容器底部部材を
熱伝導体とし、ペルチェ素子放熱面の真下である空間的
制約の覆い回転室直下の駆動部近傍に放熱器を設置しな
いため、放熱効率が良く、送風ファンの騒音の低い安価
な放熱系を得ることができる。
SUMMARY OF THE INVENTION The above object is to provide a member of the bottom surface of a vacuum container with a material having a high thermal conductivity, such as aluminum, so as to impart the ability as a heat transfer medium, and to use a Peltier heat radiator. This can be achieved by installing the element on the heat dissipation surface of the element other than directly below. More specifically, since the bottom member of the vacuum container is made of a heat conductor, and a radiator is not installed near the drive unit immediately below the rotation chamber that covers the space limitation directly below the heat dissipation surface of the Peltier element, the heat dissipation efficiency is good and the blower fan It is possible to obtain an inexpensive heat dissipation system with low noise.

【0006】[0006]

【発明の実施の形態】本発明になる電子冷却部構造の一
実施例を図1及び図2を用いて説明する。試料1を収容
する回転体2は、駆動モータ3によって真空容器4中の
回転室内で高速回転させられる。回転室は真空容器4を
構成するドア4aと冷却容器5によって構成されてい
る。冷却容器5の下部には駆動モータ3の回転軸周囲に
配置された複数のペルチェ素子6があり、その冷却面は
冷却容器5に、その逆の排熱面は真空容器4の底部を構
成するプレートであるボトムプレート4bに接してい
る。ボトムプレート4bの大気側には放熱器7が取付け
られており、その外部を送風ダクト8が囲みファン9に
よって放熱器7を冷却している。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the electronic cooling unit structure according to the present invention will be described with reference to FIGS. The rotating body 2 containing the sample 1 is rotated at a high speed in the rotating chamber in the vacuum container 4 by the drive motor 3. The rotation chamber is composed of a door 4 a that constitutes the vacuum container 4 and a cooling container 5. Below the cooling container 5 are a plurality of Peltier elements 6 arranged around the rotation axis of the drive motor 3, the cooling surface of which constitutes the cooling container 5, and the opposite heat exhaust surface thereof constitutes the bottom of the vacuum container 4. It is in contact with the bottom plate 4b which is a plate. A radiator 7 is attached to the atmosphere side of the bottom plate 4b, and a ventilation duct 8 surrounds the outside thereof to cool the radiator 7 with a fan 9.

【0007】ここで回転体2を冷却するため、ペルチェ
素子6に電流を与え冷却容器5を冷却すると、入力の全
てがジュール熱となり、冷却した熱量と共にペルチェ素
子6の排熱面側に発生する。発生した熱はボトムプレー
ト4bを熱導体として通過し放熱器7からファン9によ
って送られる冷却風により外部に放熱される。ボトムプ
レート4bを熱導体としたことにより、放熱器7及び送
風ダクト8は駆動モータ3を避けた複雑な形状にする必
要がなく、安価なアルミの引き抜きまたは押し出し材の
放熱器がそのまま採用可能となる。また放熱器の直線的
な構造は、冷却用送風ダクトの構造を容易で安価なもの
とし、且つ風路抵抗によるアンバランスの発生しにくい
ため、騒音の低減を図ることができる。
Here, in order to cool the rotating body 2, when a current is applied to the Peltier element 6 to cool the cooling container 5, all of the input becomes Joule heat, which is generated on the heat exhaust surface side of the Peltier element 6 together with the cooled heat amount. . The generated heat passes through the bottom plate 4b as a heat conductor and is radiated to the outside by the cooling air sent from the radiator 7 by the fan 9. By using the bottom plate 4b as a heat conductor, the radiator 7 and the air duct 8 do not need to have a complicated shape avoiding the drive motor 3, and an inexpensive aluminum radiator or extruded radiator can be used as it is. Become. Further, the linear structure of the radiator makes the structure of the cooling blower duct easy and inexpensive, and since the imbalance due to the airflow resistance is unlikely to occur, noise can be reduced.

【0008】[0008]

【発明の効果】本発明によれば、真空容器の一部材を熱
導体として利用することにより、ペルチェ素子放熱面の
真下である空間的規制の多い回転室直下の駆動部近傍に
放熱器を設置しないことで、駆動部を避ける設計上の規
制がなく、単純形状の安価なアルミ等の押し出し部材フ
ィンが採用可能になるため、フィン部の切削加工が不要
となる。また放熱器は駆動部を避ける構造にならないた
め、冷却風路が単純な直線になり風路の抵抗を低するこ
とができ、しかも単純形状の安価なダクトが使用できる
ため、送風ファンも静圧の低い小形、且つ低騒音品が採
用できる。更に冷却効率においては、ペルチェ素子と放
熱器間で距離が大きくなるため熱抵抗が増加するが、放
熱器の効率が向上するため、結果的にペルチェ素子放熱
面温度が下がり全体における冷却効率の向上を図ること
ができる。
According to the present invention, by using one member of the vacuum container as a heat conductor, a radiator is installed in the vicinity of the drive unit directly below the Peltier element heat radiation surface and directly below the rotating chamber where there are many spatial restrictions. If this is not done, there is no design restriction to avoid the drive section, and a simple shape and inexpensive extruding member fins of aluminum or the like can be adopted, so that cutting of the fin section becomes unnecessary. In addition, since the radiator does not have a structure that avoids the drive part, the cooling air passage can be a simple straight line and the resistance of the air passage can be lowered. A small and low noise product with low noise can be used. In terms of cooling efficiency, the thermal resistance increases because the distance between the Peltier element and the radiator increases, but the efficiency of the radiator improves, resulting in a decrease in the temperature of the Peltier element radiator surface, improving overall cooling efficiency. Can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明になる電子冷却部構造の一実施例を示
す縦断側面図である。
FIG. 1 is a vertical sectional side view showing an embodiment of an electronic cooling unit structure according to the present invention.

【図2】 図1のA−A線断面図である。FIG. 2 is a sectional view taken along line AA of FIG.

【図3】 従来の冷却構造を示す縦断側面図である。FIG. 3 is a vertical cross-sectional side view showing a conventional cooling structure.

【図4】 図3のA−A線断面図である。4 is a cross-sectional view taken along the line AA of FIG.

【図5】 従来の小形化した超遠心機の冷却構造を示す
縦断側面図である。
FIG. 5 is a vertical sectional side view showing a cooling structure of a conventional miniaturized ultracentrifuge.

【図6】 図5のA−A線断面図である。FIG. 6 is a sectional view taken along line AA of FIG. 5;

【符号の説明】[Explanation of symbols]

1は試料、2は回転体、3は駆動モータ、4は真空容
器、4aは真空容器の一部材ドア、4bは真空容器の一
部材ボトムプレート、5は冷却容器、6はペルチェ素
子、7は放熱器、8は送風ダクト、9はファン、10は
プロテクタである。
DESCRIPTION OF SYMBOLS 1 is a sample, 2 is a rotating body, 3 is a drive motor, 4 is a vacuum vessel, 4a is a one-piece door of a vacuum vessel, 4b is a one-piece bottom plate of a vacuum vessel, 5 is a cooling vessel, 6 is a Peltier element, and 7 is A radiator, 8 is a ventilation duct, 9 is a fan, and 10 is a protector.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 モータによって回転駆動される回転体
と、該回転体を収容する冷却容器と、該冷却容器を冷却
するためのペルチェ素子と、該ペルチェ素子と接してい
るプレートと、該プレートに設けられている放熱器とを
備えた超遠心分離機の電子冷却部構造において、前記プ
レートを熱伝導率の高い材料によって形成すると共に、
前記放熱器を前記ペルチェ素子から離れた位置に設ける
ことを特徴とする超遠心分離機の電子冷却部構造。
1. A rotating body that is driven to rotate by a motor, a cooling container that houses the rotating body, a Peltier element for cooling the cooling container, a plate that is in contact with the Peltier element, and a plate In the electronic cooling unit structure of an ultracentrifuge having a heat radiator provided, the plate is made of a material having high thermal conductivity,
An electronic cooling unit structure of an ultracentrifuge, wherein the radiator is provided at a position apart from the Peltier element.
【請求項2】 前記プレートは、アルミによって形成さ
れていることを特徴とする請求項1記載の超遠心分離機
の電子冷却部構造。
2. The electronic cooling unit structure for an ultracentrifuge according to claim 1, wherein the plate is made of aluminum.
【請求項3】 前記放熱器は、前記ペルチェ素子の真下
以外の位置に設けられていることを特徴とする請求項1
記載の超遠心分離機の電子冷却部構造。
3. The heat radiator is provided at a position other than directly under the Peltier device.
Electronic cooling unit structure of the described ultracentrifuge.
【請求項4】 前記放熱器は、回転体の回転軸に対し
て、片側のみに設けられていることを特徴とする請求項
1又は請求項3記載の超遠心分離機の電子冷却部構造。
4. The electronic cooling unit structure for an ultracentrifuge according to claim 1, wherein the radiator is provided only on one side of the rotating shaft of the rotating body.
JP30608395A 1995-11-24 1995-11-24 Electronic cooling part structure of ultra-centrifugal separator Withdrawn JPH09141138A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30608395A JPH09141138A (en) 1995-11-24 1995-11-24 Electronic cooling part structure of ultra-centrifugal separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30608395A JPH09141138A (en) 1995-11-24 1995-11-24 Electronic cooling part structure of ultra-centrifugal separator

Publications (1)

Publication Number Publication Date
JPH09141138A true JPH09141138A (en) 1997-06-03

Family

ID=17952832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30608395A Withdrawn JPH09141138A (en) 1995-11-24 1995-11-24 Electronic cooling part structure of ultra-centrifugal separator

Country Status (1)

Country Link
JP (1) JPH09141138A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100481600B1 (en) * 2002-07-24 2005-04-08 (주)앤틀 Turbo machine
US6953424B2 (en) * 2002-07-31 2005-10-11 Hitachi Koki Co., Ltd. Rotor driving apparatus with temperature adjustment of elastic supporting portion
JP2011017370A (en) * 2009-07-08 2011-01-27 Tiyoda Electric Co Ltd Pressure vessel
JP2011036735A (en) * 2009-08-06 2011-02-24 Panasonic Electric Works Co Ltd Electrostatic atomization apparatus
CN112460912A (en) * 2020-11-19 2021-03-09 闫海峰 Infant feeding bottle quick cooler for obstetrical nursing

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100481600B1 (en) * 2002-07-24 2005-04-08 (주)앤틀 Turbo machine
US6953424B2 (en) * 2002-07-31 2005-10-11 Hitachi Koki Co., Ltd. Rotor driving apparatus with temperature adjustment of elastic supporting portion
JP2011017370A (en) * 2009-07-08 2011-01-27 Tiyoda Electric Co Ltd Pressure vessel
JP2011036735A (en) * 2009-08-06 2011-02-24 Panasonic Electric Works Co Ltd Electrostatic atomization apparatus
CN112460912A (en) * 2020-11-19 2021-03-09 闫海峰 Infant feeding bottle quick cooler for obstetrical nursing

Similar Documents

Publication Publication Date Title
US6129524A (en) Motor-driven centrifugal air compressor with axial airflow
US5441102A (en) Heat exchanger for electronic equipment
US6118658A (en) Heat sink fan for cooling an electronic apparatus
US6107708A (en) Brushless motor
US8628309B2 (en) Turbomolecular pump device and controlling device thereof
US20040190261A1 (en) Cooler with blower between two heatsinks
JP5156640B2 (en) Vacuum pump
TW202007055A (en) Integrate motor drive
US20020057022A1 (en) Fan motor
US5551241A (en) Thermoelectric cooling centrifuge
JP6678302B2 (en) Temperature control unit, temperature control system, vehicle
US6568193B1 (en) Method and apparatus for cooling an electric motor
JP2548124B2 (en) Heat sink device
JPH09141138A (en) Electronic cooling part structure of ultra-centrifugal separator
EP3584442B1 (en) Controller and vacuum pump device
JPS6255000A (en) Heat sink apparatus
JP3830209B2 (en) Variable speed pump device
CN113711473A (en) Drive unit with cooling unit
JP4106164B2 (en) Blower device
JP2000104951A (en) Outdoor unit for air conditioner
JP3085294B2 (en) Cooling system
JP4757972B2 (en) Motor fan
CN219287998U (en) Actuator and actuator device
US20040085729A1 (en) Heat dissipating fan
CN217401215U (en) Cooling fan and inverter with same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030204