JPH09135571A - Power converter for photovoltaic power generation - Google Patents

Power converter for photovoltaic power generation

Info

Publication number
JPH09135571A
JPH09135571A JP7314661A JP31466195A JPH09135571A JP H09135571 A JPH09135571 A JP H09135571A JP 7314661 A JP7314661 A JP 7314661A JP 31466195 A JP31466195 A JP 31466195A JP H09135571 A JPH09135571 A JP H09135571A
Authority
JP
Japan
Prior art keywords
voltage
smoothing capacitor
chopper
inverter
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7314661A
Other languages
Japanese (ja)
Inventor
Masahide Yamaguchi
雅英 山口
Takashi Takuma
隆史 詫間
Yoshihisa Ueda
芳久 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP7314661A priority Critical patent/JPH09135571A/en
Publication of JPH09135571A publication Critical patent/JPH09135571A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Photovoltaic Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)
  • Dc-Dc Converters (AREA)
  • Inverter Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a high efficiency power converter which facilitates the suppression of the voltage rise of a smoothing capacitor and the stable operation. SOLUTION: A power converter includes a stepup chopper 2 to which a DC voltage generated by a solar cell 1 is inputted, a smoothing capacitor 4 which is connected to the output of the stepup chopper 2 and an inverter 5 to which a DC voltage from the smoothing capacitor 4 is inputted and whose output is connected to a system. The DC voltage of the smoothing capacitor 4 is controlled by the control of the converted power of the inverter 5. The input voltage of the stepup chopper 2 is so controlled as to be a predetermined value beforehand by referring to the voltage of the smoothing capacitor 4 by feed-forward control to suppress the voltage rise of the smoothing capacitor 4 and prevent the decline of the conversion efficiency of the inverter 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、太陽電池が発電し
た直流電力を交流電力に変換し、系統に供給する太陽光
発電用電力変換装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solar power generation power converter for converting DC power generated by a solar cell into AC power and supplying the AC power to a grid.

【0002】[0002]

【従来の技術】内部に変圧器を有しない電力変換装置
を、系統と連系する太陽光発電システムに適用した場
合、一般に太陽電池の直流発電電圧が系統電圧の波高値
に対して低い場合が多いため、電力変換装置内になんら
かの昇圧手段が必要となり、通常昇圧チョッパが使用さ
れることが多い。
2. Description of the Related Art When a power converter having no internal transformer is applied to a solar power generation system that is interconnected with a grid, the DC power generation voltage of a solar cell is generally lower than the peak value of the grid voltage. Since there are many, a booster of some kind is required in the power converter, and a booster chopper is usually used.

【0003】図4はこのような電力変換装置の一例を示
したもので、1は太陽電池、2は昇圧チョッパ、3は昇
圧チョッパの制御回路、4は平滑コンデンサ、5はイン
バータ、6はインバータの制御回路、7は系統である。
図4において、太陽電池1はその発電電力が最大となる
最適電圧を有しており、太陽電池1から効率よく電力を
取り出すために、太陽電池1の直流電圧を温度や日射量
等の状態に応じて変化させてやる必要がある。図4に示
す従来の電力変換装置では、これをおこなうために、昇
圧チョッパの制御回路3にてインバータ5の出力電力が
常に最大となるように昇圧チョッパ2の入力電圧を制御
している。
FIG. 4 shows an example of such a power conversion device. 1 is a solar cell, 2 is a boost chopper control circuit, 3 is a boost chopper control circuit, 4 is a smoothing capacitor, 5 is an inverter, and 6 is an inverter. The control circuit 7 is a system.
In FIG. 4, the solar cell 1 has an optimum voltage at which the generated electric power becomes maximum, and in order to efficiently take out the electric power from the solar cell 1, the DC voltage of the solar cell 1 is changed to a state such as temperature and solar radiation. It needs to be changed accordingly. In the conventional power converter shown in FIG. 4, in order to do this, the control circuit 3 of the boost chopper controls the input voltage of the boost chopper 2 so that the output power of the inverter 5 is always maximized.

【0004】[0004]

【発明が解決しようとする課題】このような電力変換装
置では、昇圧チョッパ2の入力電圧制御とインバータ5
の電力制御を個別におこなっているので、制御回路の構
成が複雑となるうえ、両者の制御が干渉し電力変換装置
の動作が不安定になることがあるという欠点があった。
In such a power converter, the input voltage control of the step-up chopper 2 and the inverter 5 are performed.
Since the power control is separately performed, the control circuit has a complicated configuration, and the control of the both interferes with each other, which may cause unstable operation of the power conversion device.

【0005】この問題を避ける方法のひとつとして、昇
圧チョッパ2を無制御とし、インバータ5にて平滑コン
デンサ4の電圧を制御する方法がある。この方法による
と、昇圧チョッパ2の昇圧比が固定されているので、平
滑コンデンサ4の電圧を制御することにより、間接的に
昇圧チョッパ2の入力電圧を最適電圧に制御することが
できる。この場合、昇圧チョッパ2の制御をおこなって
いないので、前記のような不安定動作は発生しない。
As one of the methods for avoiding this problem, there is a method in which the boost chopper 2 is uncontrolled and the voltage of the smoothing capacitor 4 is controlled by the inverter 5. According to this method, since the boosting ratio of the boosting chopper 2 is fixed, the input voltage of the boosting chopper 2 can be indirectly controlled to the optimum voltage by controlling the voltage of the smoothing capacitor 4. In this case, since the boost chopper 2 is not controlled, the unstable operation as described above does not occur.

【0006】しかし、昇圧チョッパ2の昇圧比が固定さ
れているので、太陽電池1の出力電圧が高い場合に平滑
コンデンサ4の電圧が非常に高くなるという問題が発生
する。例えば太陽電池1の最適電圧の最小値を160
V、開放電圧の最大値を340Vに選定し、平滑コンデ
ンサ4の電圧を交流200V連系に必要な320Vに制
御したとすると、必要となる昇圧比は最適電圧の最小値
と平滑コンデンサ4の電圧関係から2倍となるが、この
ままの昇圧比で入力電圧が開放電圧の最大値である34
0Vとなった場合は、平滑コンデンサ4の電圧が680
Vまで上昇してしまう。平滑コンデンサ4およびインバ
ータ5の変換素子はこの電圧に耐えるものを使用する必
要があるが、通常これらは大型かつ高価となるばかりで
なく、高い電圧をスイッチングすることにより損失が増
加し、インバータ5の変換効率が大幅に低下するという
欠点があった。
However, since the boosting ratio of the boosting chopper 2 is fixed, there arises a problem that the voltage of the smoothing capacitor 4 becomes very high when the output voltage of the solar cell 1 is high. For example, the minimum value of the optimum voltage of the solar cell 1 is 160
Assuming that the maximum value of V and the open circuit voltage is 340V and the voltage of the smoothing capacitor 4 is controlled to 320V which is necessary for the AC 200V interconnection, the required boosting ratio is the minimum value of the optimum voltage and the voltage of the smoothing capacitor 4. Although it is doubled from the relationship, the input voltage is the maximum value of the open circuit voltage with this boost ratio.
When it becomes 0V, the voltage of the smoothing capacitor 4 is 680
It will rise to V. It is necessary to use the smoothing capacitor 4 and the conversion element of the inverter 5 that can withstand this voltage. However, in general, these are not only large and expensive, but the loss increases due to switching of a high voltage, and There is a drawback that the conversion efficiency is significantly reduced.

【0007】本発明の目的は、平滑コンデンサ4の電圧
上昇を抑制でき、かつ安定に動作する高効率の太陽光発
電用電力変換装置を提供することにある。
An object of the present invention is to provide a high-efficiency power converter for photovoltaic power generation, which can suppress the voltage rise of the smoothing capacitor 4 and operates stably.

【0008】[0008]

【課題を解決するための手段】前述の目的を達成するた
め、本発明では太陽電池が発電した直流電圧を入力電圧
とする昇圧チョッパと、この昇圧チョッパの出力に接続
した平滑コンデンサと、この平滑コンデンサの直流電圧
を入力電圧とし、出力を系統に接続したインバータとを
含む太陽光発電用電力変換装置において、インバータの
変換電力を制御することにより平滑コンデンサの直流電
圧を制御し、昇圧チョッパの入力電圧の制御は、平滑コ
ンデンサの電圧を参照することにより、あらかじめ設定
された値となるようにフィードフォワード制御をおこな
うようにした。
In order to achieve the above-mentioned object, according to the present invention, a step-up chopper having a DC voltage generated by a solar cell as an input voltage, a smoothing capacitor connected to the output of the step-up chopper, and a smoothing capacitor In a power conversion device for photovoltaic power generation that includes a DC voltage of a capacitor as an input voltage and an inverter whose output is connected to a grid, the DC voltage of a smoothing capacitor is controlled by controlling the conversion power of the inverter, and the input of a boost chopper is controlled. The voltage control is performed by referring to the voltage of the smoothing capacitor so that the feedforward control is performed so that the voltage becomes a preset value.

【0009】[0009]

【発明の実施の形態】本発明による太陽光発電用電力変
換装置では、インバータの変換電力を制御することによ
り平滑コンデンサの直流電圧を制御し、昇圧チョッパの
入力電圧の制御は、平滑コンデンサの電圧を参照するこ
とにより、あらかじめ設定された値となるようにフィー
ドフォワード制御をおこない、平滑コンデンサの電圧上
昇を抑制し、インバータの変換効率低下を防止するよう
にした。
BEST MODE FOR CARRYING OUT THE INVENTION In the power converter for photovoltaic power generation according to the present invention, the DC voltage of the smoothing capacitor is controlled by controlling the converted power of the inverter, and the input voltage of the step-up chopper is controlled by the voltage of the smoothing capacitor. By referring to, the feedforward control is performed so that the value becomes a preset value, the voltage rise of the smoothing capacitor is suppressed, and the conversion efficiency of the inverter is prevented from lowering.

【0010】[0010]

【実施例】以下本発明の実施例について図面を参照して
説明する。図1は本発明を実施した電力変換装置の構成
で、図4と共通するものについては同じ符号を付し説明
を省略する。図1において、8は平滑コンデンサ4の電
圧と昇圧チョッパ2の入力電圧の関係、すなわち昇圧比
を記憶したデータテーブルである。また図2はデータテ
ーブル8に記憶されている両者の電圧関係をグラフで示
したものである。本実施例では、インバータ5は出力電
力に応じて平滑コンデンサ4の電圧を制御する。昇圧チ
ョッパの制御回路3はこの平滑コンデンサ4の電圧を参
照し、図2に示した関係となるように昇圧チョッパ2の
入力電圧を制御する。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a configuration of a power conversion device embodying the present invention. Components common to those in FIG. In FIG. 1, reference numeral 8 is a data table that stores the relationship between the voltage of the smoothing capacitor 4 and the input voltage of the boost chopper 2, that is, the boost ratio. FIG. 2 is a graph showing the relationship between the voltages stored in the data table 8. In this embodiment, the inverter 5 controls the voltage of the smoothing capacitor 4 according to the output power. The control circuit 3 of the step-up chopper refers to the voltage of the smoothing capacitor 4 and controls the input voltage of the step-up chopper 2 so as to have the relationship shown in FIG.

【0011】図2の電圧関係によると、平滑コンデンサ
4の電圧が320Vの場合に入力電圧が160Vである
ので、このときの昇圧比は2倍、平滑コンデンサ4の電
圧が410Vの場合に入力電圧が340Vであるので、
このときの昇圧比は約1.2倍となる。すなわち昇圧チ
ョツパの制御回路3は、平滑コンデンサ4の電圧に応じ
て昇圧比を変化させ、昇圧チョッパ2の入力電圧が図2
に示した関係となるようにフィードフォワード制御して
いる。
According to the voltage relationship of FIG. 2, since the input voltage is 160 V when the voltage of the smoothing capacitor 4 is 320 V, the step-up ratio at this time is 2 times, and the input voltage when the voltage of the smoothing capacitor 4 is 410 V. Is 340V,
The boost ratio at this time is about 1.2 times. That is, the control circuit 3 of the step-up chopper changes the step-up ratio according to the voltage of the smoothing capacitor 4, so that the input voltage of the step-up chopper 2 is as shown in FIG.
Feedforward control is performed so that the relationship shown in (1) is established.

【0012】このように制御をおこなうと、昇圧チョッ
パ2の入力電圧が340Vであったとしても、平滑コン
デンサ4の電圧は410V程度に抑制することができ、
平滑コンデンサ4やインバータ5の変換素子に高耐圧の
ものを使用する必要がない。また平滑コンデンサ4の電
圧と昇圧チョッパ2の入力電圧の関係は図2のごとく線
形関係となっているので、平滑コンデンサ4の電圧を制
御すれば昇圧チョッパ2の入力電圧が制御でき、太陽電
池1を最適電圧で動作させることができる。
With this control, even if the input voltage of the boost chopper 2 is 340V, the voltage of the smoothing capacitor 4 can be suppressed to about 410V.
It is not necessary to use high voltage capacitors for the smoothing capacitor 4 and the converter 5. Further, since the relationship between the voltage of the smoothing capacitor 4 and the input voltage of the boost chopper 2 is a linear relationship as shown in FIG. 2, if the voltage of the smoothing capacitor 4 is controlled, the input voltage of the boost chopper 2 can be controlled and the solar cell 1 Can be operated at the optimum voltage.

【0013】さらに、昇圧チョッパ2の入力電圧は平滑
コンデンサ4の電圧により一義的にきまるので、昇圧チ
ョッパ2とインバータ5の制御の干渉がなく電力変換装
置を安定に動作させることができる。また昇圧チョッパ
の制御回路3は、平滑コンデンサ4の電圧に応じてデー
タテーブル8による昇圧比を出力するだけでよく、その
構成は非常に簡単なものとなる。
Further, since the input voltage of the step-up chopper 2 is uniquely determined by the voltage of the smoothing capacitor 4, there is no interference between the control of the step-up chopper 2 and the inverter 5, and the power converter can be operated stably. Further, the control circuit 3 of the step-up chopper only needs to output the step-up ratio by the data table 8 according to the voltage of the smoothing capacitor 4, and the configuration thereof is very simple.

【0014】なお図2によると、平滑コンデンサ4の電
圧変化に対する昇圧チョッパ2の入力電圧の変化の割合
は2倍となっているが、太陽電池1の最適電圧の追跡に
支障のない範囲で、変化の割合を増加させれば、平滑コ
ンデンサ4の電圧上昇をさらに抑制することができる。
According to FIG. 2, the ratio of the change in the input voltage of the boost chopper 2 to the change in the voltage of the smoothing capacitor 4 is double, but within the range that does not hinder the tracking of the optimum voltage of the solar cell 1. If the rate of change is increased, the voltage rise of the smoothing capacitor 4 can be further suppressed.

【0015】また、データテーブルの電圧関係を図3に
示したように変更し、昇圧チョッパ2の入力電圧が太陽
電池1の最適電圧にある間は変化率を2倍のままとし、
それ以上の電圧では10倍となるようにすれば、最適電
圧の追跡になんら影響を与えることなく、平滑コンデン
サ4の電圧上昇を一層効果的に抑制することができる。
Further, the voltage relation of the data table is changed as shown in FIG. 3, and while the input voltage of the step-up chopper 2 is at the optimum voltage of the solar cell 1, the rate of change remains double.
If the voltage is higher than 10 times, the voltage increase of the smoothing capacitor 4 can be more effectively suppressed without affecting the tracking of the optimum voltage.

【0016】[0016]

【発明の効果】以上のように本発明によれば、インバー
タの変換電力を制御することにより平滑コンデンサの直
流電圧を制御し、昇圧チョッパの入力電圧の制御は、平
滑コンデンサの電圧を参照することにより、あらかじめ
設定された値となるようにフィードフォワード制御をお
こなうようにしたので、昇圧チョッパの入力電圧が上昇
した場合でも平滑コンデンサの電圧上昇を抑制すること
ができ、平滑コンデンサおよびインバータの変換素子の
耐電圧を低減することができるほか、インバータの効率
低下を防止できるという効果がある。
As described above, according to the present invention, the DC voltage of the smoothing capacitor is controlled by controlling the conversion power of the inverter, and the voltage of the smoothing capacitor is referred to for controlling the input voltage of the boost chopper. As a result, the feedforward control is performed so that the value becomes a preset value, so even if the input voltage of the boost chopper rises, the voltage rise of the smoothing capacitor can be suppressed, and the smoothing capacitor and the conversion element of the inverter can be suppressed. In addition to being able to reduce the withstand voltage of, it is possible to prevent the efficiency of the inverter from decreasing.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を実施した太陽光発電用電力変換装置の
構成図
FIG. 1 is a configuration diagram of a power conversion device for photovoltaic power generation according to the present invention.

【図2】平滑コンデンサの電圧と昇圧チョッパの入力電
圧の関係の一例を示す図
FIG. 2 is a diagram showing an example of a relationship between a voltage of a smoothing capacitor and an input voltage of a boost chopper.

【図3】平滑コンデンサの電圧と昇圧チョッパの入力電
圧の関係の他の例を示す図
FIG. 3 is a diagram showing another example of the relationship between the voltage of the smoothing capacitor and the input voltage of the boost chopper.

【図4】従来の太陽光発電用電力変換装置の構成図FIG. 4 is a configuration diagram of a conventional power conversion device for photovoltaic power generation.

【符号の説明】[Explanation of symbols]

1 太陽電池 2 昇圧チョッパ 3 昇圧チョッパの制御回路 4 平滑コンデンサ 5 インバータ 6 インバータの制御回路 7 系統 8 データテーブル 1 Solar cell 2 Step-up chopper 3 Control circuit for step-up chopper 4 Smoothing capacitor 5 Inverter 6 Inverter control circuit 7 System 8 Data table

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H02N 6/00 H02N 6/00 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication H02N 6/00 H02N 6/00

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 太陽電池が発電した直流電圧を入力電圧
とする昇圧チョッパと、この昇圧チョッパの出力に接続
した平滑コンデンサと、この平滑コンデンサの直流電圧
を入力電圧とし、出力を系統に接続したインバータとを
含む太陽光発電用電力変換装置において、前記インバー
タの変換電力を制御することにより前記平滑コンデンサ
の直流電圧を制御し、前記昇圧チョッパの入力電圧の制
御は、前記平滑コンデンサの電圧を参照することによ
り、あらかじめ設定された値となるようにフィードフォ
ワード制御をおこなうことを特徴とする太陽光発電用電
力変換装置。
1. A step-up chopper having a DC voltage generated by a solar cell as an input voltage, a smoothing capacitor connected to an output of the step-up chopper, and a DC voltage of the smoothing capacitor as an input voltage, and an output connected to a grid. In a power conversion device for photovoltaic power generation including an inverter, the DC voltage of the smoothing capacitor is controlled by controlling the converted power of the inverter, and the input voltage of the boost chopper is controlled by referring to the voltage of the smoothing capacitor. By doing so, the feed-forward control is performed so that the value becomes a preset value.
JP7314661A 1995-11-07 1995-11-07 Power converter for photovoltaic power generation Pending JPH09135571A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7314661A JPH09135571A (en) 1995-11-07 1995-11-07 Power converter for photovoltaic power generation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7314661A JPH09135571A (en) 1995-11-07 1995-11-07 Power converter for photovoltaic power generation

Publications (1)

Publication Number Publication Date
JPH09135571A true JPH09135571A (en) 1997-05-20

Family

ID=18056025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7314661A Pending JPH09135571A (en) 1995-11-07 1995-11-07 Power converter for photovoltaic power generation

Country Status (1)

Country Link
JP (1) JPH09135571A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008144548A2 (en) * 2007-05-17 2008-11-27 Larankelo, Inc. Photovoltaic module-mounted ac inverter
US8435056B2 (en) 2009-04-16 2013-05-07 Enphase Energy, Inc. Apparatus for coupling power generated by a photovoltaic module to an output
US8581441B2 (en) 2007-05-17 2013-11-12 Enphase Energy, Inc. Distributed inverter and intelligent gateway
JP5373609B2 (en) * 2007-07-26 2013-12-18 芝浦メカトロニクス株式会社 Piezoelectric element driving device and coating device
JP2015057005A (en) * 2013-09-13 2015-03-23 シャープ株式会社 Photovoltaic power generation system
AU2012203475B2 (en) * 2007-05-17 2015-05-14 Enphase Energy, Inc. Photovoltaic module-mounted AC inverter
USD734653S1 (en) 2012-11-09 2015-07-21 Enphase Energy, Inc. AC module mounting bracket
US9118273B2 (en) 2011-07-18 2015-08-25 Enphase Energy, Inc. Resilient mounting assembly for photovoltaic modules
JP2021052483A (en) * 2019-09-24 2021-04-01 キヤノン株式会社 Electronic apparatus and control method

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10468993B2 (en) 2007-05-17 2019-11-05 Enphase Energy, Inc. Inverter for use in photovoltaic module
US10892619B2 (en) 2007-05-17 2021-01-12 Enphase Energy, Inc. Distributed inverter and intelligent gateway
US11444549B2 (en) 2007-05-17 2022-09-13 Enphase Energy, Inc. Distributed inverter and intelligent gateway
WO2008144548A3 (en) * 2007-05-17 2009-03-12 Larankelo Inc Photovoltaic module-mounted ac inverter
AU2012203475B2 (en) * 2007-05-17 2015-05-14 Enphase Energy, Inc. Photovoltaic module-mounted AC inverter
WO2008144548A2 (en) * 2007-05-17 2008-11-27 Larankelo, Inc. Photovoltaic module-mounted ac inverter
US8659922B2 (en) 2007-05-17 2014-02-25 Enphase Energy, Inc. Photovoltaic module-mounted AC inverter
KR20150015548A (en) * 2007-05-17 2015-02-10 엔페이즈 에너지, 인코포레이티드 Photovoltaic module-mounted ac inverter
AU2008254822B2 (en) * 2007-05-17 2012-03-15 Enphase Energy, Inc. Photovoltaic module-mounted AC inverter
US8581441B2 (en) 2007-05-17 2013-11-12 Enphase Energy, Inc. Distributed inverter and intelligent gateway
JP5373609B2 (en) * 2007-07-26 2013-12-18 芝浦メカトロニクス株式会社 Piezoelectric element driving device and coating device
US8435056B2 (en) 2009-04-16 2013-05-07 Enphase Energy, Inc. Apparatus for coupling power generated by a photovoltaic module to an output
US9118273B2 (en) 2011-07-18 2015-08-25 Enphase Energy, Inc. Resilient mounting assembly for photovoltaic modules
US11515835B2 (en) 2011-07-18 2022-11-29 Enphase Energy, Inc. Resilient mounting assembly for photovoltaic modules
USD734653S1 (en) 2012-11-09 2015-07-21 Enphase Energy, Inc. AC module mounting bracket
JP2015057005A (en) * 2013-09-13 2015-03-23 シャープ株式会社 Photovoltaic power generation system
JP2021052483A (en) * 2019-09-24 2021-04-01 キヤノン株式会社 Electronic apparatus and control method

Similar Documents

Publication Publication Date Title
US6058035A (en) Method and apparatus for supplying AC power to commercial power line by using sunlight
US8461811B2 (en) Power capacitor alternative switch circuitry system for enhanced capacitor life
Enslin et al. Combined low-cost, high-efficient inverter, peak power tracker and regulator for PV applications
US5233509A (en) Switch-mode AC-to-DC converter
Ali et al. Disturbance-observer-based DC-bus voltage control for ripple mitigation and improved dynamic response in two-stage single-phase inverter system
CN110190766B (en) Model prediction control method for reducing switching frequency of quasi-Z-source inverter
Wu et al. Analysis and design of an isolated single-stage converter achieving power-factor correction and fast regulation
JP5349688B2 (en) Grid-connected inverter
CN105322777A (en) Power factor correction circuit for power electronic system
JPS59188347A (en) No-break power source
JPH09135571A (en) Power converter for photovoltaic power generation
JP4195948B2 (en) Grid interconnection inverter
JP2006101581A (en) System-interconnected inverter
JP3539455B2 (en) Power converter for photovoltaic power generation
Lopez-Santos et al. Sliding-mode control of a transformer-less dual-stage grid-connected photovoltaic micro-inverter
JP4259240B2 (en) Power converter
JP2005006383A (en) System interconnection inverter apparatus and its controlling method
JP7034230B1 (en) Power converter
EP3413454A1 (en) Method for operating inverter and inverter arrangement
JPH09135578A (en) Photovoltaic power generation system
JP3110294B2 (en) Buck-boost converter
JPH10155280A (en) Inverter, power conditioner and photovoltaic power generating system
KR102229146B1 (en) Uninterruptible Power Supply with Hysteresis Controller for Reducing Each Phase Current Harmonics
JP2708861B2 (en) Power converter
JP2888426B2 (en) converter