JPH09133585A - Optical pulse train measuring method - Google Patents

Optical pulse train measuring method

Info

Publication number
JPH09133585A
JPH09133585A JP29246895A JP29246895A JPH09133585A JP H09133585 A JPH09133585 A JP H09133585A JP 29246895 A JP29246895 A JP 29246895A JP 29246895 A JP29246895 A JP 29246895A JP H09133585 A JPH09133585 A JP H09133585A
Authority
JP
Japan
Prior art keywords
optical
light
frequency
interferometer
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29246895A
Other languages
Japanese (ja)
Inventor
Tatsuya Tomaru
辰也 戸丸
Shigeki Kitajima
茂樹 北島
Hiroaki Inoue
宏明 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP29246895A priority Critical patent/JPH09133585A/en
Publication of JPH09133585A publication Critical patent/JPH09133585A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for acquiring the phase information of autocorrelation with relatively high sensitivity even at the time of low intensity of light without substantially limiting the measurable wavelength range. SOLUTION: A light of frequency f0 emitted from a light source 1 is introduced to an interferometer 2 having two optical paths, e.g. a Mach-Zehnder(MZ) interferometer. The two optical path interferometer 2 has a roll of providing an optical path length difference and a roll for enabling heterodyne detection by imparting a frequency difference to the light between two optical paths. A light transmitted through the two optical path interferometer 2 is converted through a light receiver 3 into an electric signal which is then processed for each spectrum through an intensity analyzer 4 thus obtaining an autocorrelation. According to the method, not only a normal frequency difference component is taken out but the components, produced by adding the frequency difference to integer times of modulation frequency (repetitive frequency) of light source or subtracting the frequency difference therefrom, are measured simultaneously thus completing the information.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は光パルスまたは変調
光の自己相関測定法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an autocorrelation measuring method for optical pulses or modulated light.

【0002】[0002]

【従来の技術】光の自己相関の測定は非線形材料の第二
高調波を使った方法がよく知られており、パルス幅の評
価の標準的方法になっている(新版レ−ザ−ハンドブッ
ク、朝倉書店、p.298(1989年))。しかしな
がらこの方法はパルス幅をかなり正確に決定できる代わ
りに位相情報、即ちチャ−ピング等の情報は得られにく
い。また、非線形材料を必要とするために測定できない
波長域が存在し、加えて非線形効果を使っているために
低光強度のときに感度が悪い。
2. Description of the Related Art A method using the second harmonic of a non-linear material is well known for measuring the autocorrelation of light, and has become a standard method for evaluating the pulse width (new edition of Laser Handbook, Asakura Shoten, p. 298 (1989)). However, in this method, the pulse width can be determined fairly accurately, but phase information, that is, information such as chirping is difficult to obtain. In addition, there is a wavelength region that cannot be measured because a non-linear material is required, and since the non-linear effect is used, the sensitivity is low at low light intensity.

【0003】一方、自己ヘテロダイン法によるパルス波
形の評価が考えらている。この方法は二つの光路からな
る干渉計において、周波数変換器により2光路の光に周
波数差を与え、干渉信号中の差周波成分を測定すること
によりパルス幅を評価しようとするものであるが、正確
なパルス幅を求めることはできず一つの目安になるだけ
である。
On the other hand, evaluation of the pulse waveform by the self-heterodyne method is considered. This method, in an interferometer consisting of two optical paths, attempts to evaluate the pulse width by giving a frequency difference to the light in the two optical paths by a frequency converter and measuring the difference frequency component in the interference signal. It is not possible to obtain an accurate pulse width, but it is only a guide.

【0004】[0004]

【発明が解決しようとする課題】上記の問題点を整理す
ると、第二高調波を使った方法では位相情報が得られに
くいことであり、自己へテロダイン法では正確なパルス
幅が求まらないことである。
To summarize the above problems, it is difficult to obtain phase information by the method using the second harmonic, and the accurate pulse width cannot be obtained by the self-heterodyne method. That is.

【0005】したがって、本発明では光パルスの自己相
関の位相に関する情報を取り出す方法と、自己ヘテロダ
イン法において正確にパルス幅を求める方法を得ること
を目的とする。
Therefore, it is an object of the present invention to provide a method for extracting information on the phase of the autocorrelation of an optical pulse and a method for accurately determining the pulse width in the self-heterodyne method.

【0006】[0006]

【課題を解決するための手段】位相情報を取り出すこと
を目的とするため、電場の自己相関を測定することを特
徴とする。(第二高調波を使った方法では光強度の自己
相関を測定している。)測定系は、光パルスまたは変調
された光を発生する光源と、2光路からなる干渉計と、
受光器と、周波数別に信号を検出する装置を直列に接続
した系で、2光路からなる干渉計の少なくとも一方の光
路に光遅延器を有し、また干渉計の少なくとも一方の光
路に周波数変換器を有し、その周波数変換器により二つ
の光路の光に周波数差を与える。検出される信号成分の
中にはその差周波成分が存在し、その成分の振幅が電場
の自己相関を与える(自己ヘテロダイン法)。しかしな
がら、差周波成分だけでは自己相関の全情報が取り出せ
ない。そこで本発明では、その差周波数に光源の変調周
波数の整数倍を加えた周波数成分または減じた周波数成
分をも取り出すことによって自己相関の情報を十分にす
る。
Since the purpose is to extract phase information, it is characterized by measuring the autocorrelation of the electric field. (The method using the second harmonic measures the autocorrelation of the light intensity.) The measurement system consists of a light source that emits light pulses or modulated light, an interferometer consisting of two optical paths,
A system in which a light receiver and a device for detecting a signal for each frequency are connected in series, and an optical delay device is provided in at least one optical path of an interferometer consisting of two optical paths, and a frequency converter is provided in at least one optical path of the interferometer. And the frequency converter gives a frequency difference to the light in the two optical paths. The difference frequency component exists in the detected signal component, and the amplitude of the component gives the autocorrelation of the electric field (self-heterodyne method). However, it is not possible to extract all the information of the autocorrelation only with the difference frequency component. Therefore, in the present invention, the autocorrelation information is made sufficient by taking out the frequency component obtained by adding the difference frequency to an integer multiple of the modulation frequency of the light source or the frequency component subtracted therefrom.

【0007】[0007]

【発明の実施の形態】以下に図を参照して本発明の実施
の形態を示す。図1が基本的な測定系で、光源1から出
た周波数f0の光はマッハ・ツェンダ−(MZ)干渉計
等の2つの光路を有する干渉計2に導かれる。2光路干
渉計2は光路差を与えることと2つの光路の光に周波数
差を与えヘテロダイン検出を可能にすることが役割であ
る。2光路干渉計2を通過した光は受光器3において電
気信号に変換され、周波数別強度分析器4においてスペ
クトル別に信号処理され、自己相関が得られる。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a basic measurement system. Light having a frequency f 0 emitted from a light source 1 is guided to an interferometer 2 having two optical paths such as a Mach-Zehnder (MZ) interferometer. The two optical path interferometer 2 has a role to give an optical path difference and a frequency difference to the light in the two optical paths to enable heterodyne detection. The light that has passed through the two-optical path interferometer 2 is converted into an electric signal by the photodetector 3 and is subjected to signal processing for each spectrum by the frequency-specific intensity analyzer 4 to obtain an autocorrelation.

【0008】光源1は光パルスまたは変調された光を発
生するもので、モ−ド同期レ−ザ−・振幅変調されたレ
−ザ−・位相変調されたレ−ザ−等である。光源1はま
た、連続発信のレ−ザ−と振幅変調または位相変調する
外部変調器の組合せによっても達成される。
The light source 1 generates an optical pulse or modulated light, and is a mode-synchronized laser, an amplitude-modulated laser, a phase-modulated laser, or the like. The light source 1 is also achieved by a combination of a continuous wave laser and an external modulator for amplitude or phase modulation.

【0009】干渉計2内の基本的構成を点線内に示す。
ハ−フミラ−26により光路を2つに分ける。周波数変
換器21により2つの光路の光に周波数差f1を与え
る。周波数変換器21は音響光学素子により実現される
が、非線形光学素子・半波長板回転方式による素子・波
長変換半導体レ−ザ−素子等によっても達成される。2
2は光遅延器で光路長差を調整するためのもので遅延時
間τを与える。2つの光路23,24を通って来た光は
ハ−フミラ−27により再合成され受光器3へ導かれ
る。
The basic structure of the interferometer 2 is shown within a dotted line.
The optical path is divided into two by the Harm mirror 26. The frequency converter 21 gives a frequency difference f 1 to the light in the two optical paths. The frequency converter 21 is realized by an acousto-optic element, but can also be realized by a non-linear optical element, an element by a half-wave plate rotation system, a wavelength conversion semiconductor laser element, or the like. 2
Reference numeral 2 is an optical delay device for adjusting the difference in optical path length and gives a delay time τ. The light that has passed through the two optical paths 23 and 24 is recombined by the half mirror 27 and guided to the light receiver 3.

【0010】2光路干渉計2は様々な変形が可能でその
1つを図2に示す。図2では周波数変換器21を2つ使
って、周波数変換器21で発生する分散の効果を2つの
光路で等しくなるようにしている。図3も同様に周波数
変換器21Bで発生する分散の効果が2つの光路で等し
くなるようになっており、周波数変換器21Bから出て
くる光ビ−ムの方向が、光の周波数によって異なること
を利用して、ハ−フミラ−26の役割と周波数変換器2
1の役割を同時に持たせている。
The two-path interferometer 2 can be modified in various ways, one of which is shown in FIG. In FIG. 2, two frequency converters 21 are used so that the effect of dispersion generated in the frequency converter 21 is equalized in the two optical paths. Similarly in FIG. 3, the effect of dispersion generated in the frequency converter 21B is equalized in the two optical paths, and the direction of the optical beam emitted from the frequency converter 21B is different depending on the frequency of light. By utilizing the role of the Haugh Mira-26 and the frequency converter 2
It has one role at the same time.

【0011】周波数別強度分析器4の構成を図4に示
す。バンドパスフィルタ−41A,B,C,Dにより、
2光路の光の周波数差のf1成分、f1に光源1の変調
(繰り返し)周波数f2の整数倍nf2を加えた(f1
nf2)成分を独立に取り出し、検出器42A,B,
C,Dにより各成分の強度を取り出す。ここでnは任意
の整数を表す。求めたい自己相関の情報は検出器42
A,B,C,Dの出力を演算器43で処理することによ
り得られる。
The structure of the intensity analyzer for each frequency 4 is shown in FIG. Bandpass filter-41A, B, C, D,
An integral multiple nf 2 of the modulation (repetition) frequency f 2 of the light source 1 is added to the f 1 component of the frequency difference of the light on the two optical paths, f 1 (f 1 +
nf 2 ) component is taken out independently, and detectors 42A, B,
The strength of each component is extracted by C and D. Here, n represents an arbitrary integer. The information of the autocorrelation to be obtained is the detector 42
It is obtained by processing the outputs of A, B, C and D by the arithmetic unit 43.

【0012】上記の実施形態では光路は空気中であり光
の分割・合成はハ−フミラ−26・27により実施され
ているが、光路に光ファイバ−を用いることも可能でそ
の場合ハ−フミラ−26・27は光カプラ−に代える。
In the above-mentioned embodiment, the optical path is in the air and the splitting / combining of light is performed by the Hafmirers 26 and 27. However, it is also possible to use an optical fiber in the optical path. -26 and 27 are replaced with optical couplers.

【0013】(実施例1)光源1としてモ−ド同期レ−
ザ−(繰り返しf2=1/T)を用いた場合の光路23
及び24での光パルス列101及び102を図5に示
す。ここでTは光パルス列の周期を表す。光路25での
光パルス列は101と102を加え合わせたものであ
る。遅延時間τは光遅延器22で調整する。
(Embodiment 1) As a light source 1, a mode synchronization laser is used.
Optical path 23 when using the- (repetition f 2 = 1 / T)
Optical pulse trains 101 and 102 at and 24 are shown in FIG. Here, T represents the period of the optical pulse train. The optical pulse train on the optical path 25 is a combination of 101 and 102. The delay time τ is adjusted by the optical delay device 22.

【0014】周波数別強度分析器4の出力波形を図6に
示す。光遅延器22により遅延時間τを変化させると、
2つの光パルス列の重なりの程度は変化し、それを反映
した自己相関波形が得られる。自己相関波形は検出器4
2A,B,C,Dのいずれの出力からも得られる。検出
器42A,B,C,Dの出力からは信号のf1・(f1
2)(f1+2f2)(f1+nf2)成分が得られる。
ここでnは任意の整数を表す。もしモ−ド同期が完全で
あれば上記のいずれの成分の波形も規格化したものは一
致する。しかしながらモ−ド同期が不完全でチャ−ピン
グが存在する場合には各成分ごとにピ−ク位置が異なり
(Δτ≠0)、この差よりチャ−プ量を評価することが
できる。
FIG. 6 shows the output waveform of the intensity analyzer for each frequency 4. When the delay time τ is changed by the optical delay device 22,
The degree of overlap between the two optical pulse trains changes, and an autocorrelation waveform that reflects this is obtained. Autocorrelation waveform is detected by detector 4
2A, B, C, D output. From the outputs of the detectors 42A, B, C and D, the signal f 1 · (f 1 +
The f 2 ) (f 1 + 2f 2 ) (f 1 + nf 2 ) component is obtained.
Here, n represents an arbitrary integer. If the mode synchronization is perfect, the normalized waveforms of any of the above components are in agreement. However, when the mode synchronization is incomplete and chirping is present, the peak position is different for each component (Δτ ≠ 0), and the chirp amount can be evaluated from this difference.

【0015】さて、モ−ド同期レ−ザ−光のパルス幅
は、上記各成分の自己相関波形をパワ−・スペクトル強
度に応じた重みで足し合わせた波形から求めることがで
きる。モ−ド同期が完全であればf1成分を測定するだ
けでパルス幅を決定することができる。
The pulse width of the mode-synchronized laser light can be obtained from a waveform obtained by adding the autocorrelation waveforms of the above components with weights according to the power spectrum intensity. If the mode synchronization is perfect, the pulse width can be determined only by measuring the f 1 component.

【0016】(実施例2)単一モ−ドレ−ザ−に位相変
調が加わったものを光源1とした場合のf1成分の自己
相関波形を図7に示す。図7の振動波形は0次のベッセ
ル関数により記述され、振動周期より位相変調度、即ち
チャ−プ量が求まる。同様に(f1+nf2)成分の自己
相関波形はn次のベッセル関数により記述される。図7
は変調周波数1.5GHz、チャ−プ量22GHzの場
合である。
(Embodiment 2) FIG. 7 shows the autocorrelation waveform of the f 1 component when the light source 1 is a single mode laser to which phase modulation is applied. The vibration waveform in FIG. 7 is described by the Bessel function of order 0, and the phase modulation degree, that is, the amount of chirp is obtained from the vibration period. Similarly, the autocorrelation waveform of the (f 1 + nf 2 ) component is described by the n-th order Bessel function. FIG.
Shows the case where the modulation frequency is 1.5 GHz and the chirp amount is 22 GHz.

【0017】レ−ザ−に位相変調を加えた場合、一般に
振幅変調が同時に発生する。このとき振幅変調度を測定
しておくと、上記の位相変調度と合わせることにより半
導体レ−ザ−におけるαパラメタを決定することができ
る。
When phase modulation is applied to the laser, amplitude modulation generally occurs at the same time. If the amplitude modulation degree is measured at this time, the α parameter in the semiconductor laser can be determined by combining it with the phase modulation degree.

【0018】振幅変調度が大きい場合レ−ザ−光はパル
スとなるがパルス幅は、すべての(f1+nf2)成分の
自己相関波形を測定し、それらをスペクトル強度に応じ
た重みで足し合わせた波形の幅から求めることができ
る。
When the amplitude modulation degree is large, the laser light becomes a pulse, but the pulse width is measured by measuring the autocorrelation waveforms of all (f 1 + nf 2 ) components and adding them with weights according to the spectrum intensity. It can be obtained from the width of the combined waveform.

【0019】(実施例3)実施例1・2では光源自体の
性質に関する測定を示したが、光源以外の素子について
も同様に測定することができる。図8に分散媒体51を
加えた測定系を示す。光源としてモ−ド同期レ−ザ−を
用いた場合、媒体51の分散のために光パルスにチャ−
ピングが発生し、(f1+nf2)次の自己相関波形はn
に依存したピ−クシフトを生じる。この現象は非常に高
精度な分散測定法を提供する。
(Embodiment 3) In Embodiments 1 and 2, the measurement concerning the property of the light source itself was shown, but the same measurement can be carried out for elements other than the light source. FIG. 8 shows a measurement system to which the dispersion medium 51 is added. When a mode synchronous laser is used as a light source, the light pulse is chased due to the dispersion of the medium 51.
Ping occurs, and the (f 1 + nf 2 ) -order autocorrelation waveform is n
Causes a peak shift depending on. This phenomenon provides a very accurate dispersion measurement method.

【0020】(実施例4)分散媒体51を干渉計2の中
にセットした測定系を図9に示す。この系は非常に高精
度な分散測定法を提供する。光源としてモ−ド同期レ−
ザ−を用いた場合、媒体51の分散のために光パルスに
チャ−ピングが発生し、(f1+nf2)次の自己相関波
形にnに依存したピ−クシフトが生じ、分散を測定でき
る。
(Embodiment 4) FIG. 9 shows a measurement system in which the dispersion medium 51 is set in the interferometer 2. This system provides a very accurate dispersion measurement method. Mode synchronization laser as a light source
When the laser is used, chirping occurs in the optical pulse due to the dispersion of the medium 51, and a peak shift depending on n occurs in the (f 1 + nf 2 ) -order autocorrelation waveform, and the dispersion can be measured. .

【0021】また2つのレ−ザ−(中心波長λ1、λ2
を使った方法もある。これらのレ−ザ−は周波数f2
変調されているものとし、モ−ド同期はされていてもさ
れていなくてもよい。まず光源1として中心波長λ1
レ−ザ−を用いて自己相関波形を測定する。次に光源1
を中心波長λ2のレ−ザ−に取替え同様な自己相関波形
を測定する。自己相関波形のピ−ク位置は波長がλ1
λ2の時とでは異なり、この差より分散を測定できる。
Two lasers (center wavelengths λ 1 and λ 2 )
There is also a method using. These lasers are assumed to be modulated at the frequency f 2 and may or may not be mode-synchronized. First center wavelength lambda 1 of les as the light source 1 - The - measuring the autocorrelation waveform using. Next light source 1
Is replaced with a laser having a center wavelength λ 2 and a similar autocorrelation waveform is measured. The peak position of the autocorrelation waveform differs when the wavelength is λ 1 and λ 2 , and the dispersion can be measured from this difference.

【0022】(実施例5)図8及び図9において媒体5
1として非線形媒体を選べば、非線形効果によりもたら
される自己位相変調量、即ち高次の屈折率を測定でき
る。
(Embodiment 5) Medium 5 in FIGS. 8 and 9
If a non-linear medium is selected as 1, the amount of self-phase modulation caused by the non-linear effect, that is, the higher-order refractive index can be measured.

【0023】(実施例6)図10に変調器52を含む測
定系を示す。この系により変調器52で発生する分散・
チャ−ピングを測定できる。
(Embodiment 6) FIG. 10 shows a measurement system including a modulator 52. Dispersion generated in modulator 52 by this system
Chirping can be measured.

【0024】[0024]

【発明の効果】以上述べたように本発明により、光の自
己相関の位相情報、即ち光源自身・変調器・分散媒体・
非線形媒体のチャ−ピング・分散・位相のずれ・高次の
屈折率等の高精度な測定が可能になる。
As described above, according to the present invention, the phase information of the light autocorrelation, that is, the light source itself, the modulator, the dispersion medium,
It enables highly accurate measurement of chirping, dispersion, phase shift, high-order refractive index, etc. of nonlinear media.

【0025】また本発明により、光パルスの幅の測定を
ヘテロダイン法においても正確に行えるようになる。本
発明による方法は非線形効果を用いていないので測定可
能な波長域は検知器の感度域のみで決定され、極めて広
範囲な測定範囲を与える。また第2高調波を用いた方法
とは異なり、低光強度の時でも比較的高感度である。
Further, according to the present invention, the width of the optical pulse can be accurately measured even in the heterodyne method. Since the method according to the invention does not use non-linear effects, the measurable wavelength range is determined only by the sensitivity range of the detector, giving a very wide measuring range. Also, unlike the method using the second harmonic, the sensitivity is relatively high even at low light intensity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による自己相関測定法の基本的測定系。FIG. 1 shows a basic measuring system of an autocorrelation measuring method according to the present invention.

【図2】周波数変換器を2個使った2光路干渉計。FIG. 2 is a two-path interferometer using two frequency converters.

【図3】周波数変換器にハ−フミラ−の機能も合わせ持
たせた2光路干渉計。
FIG. 3 is a two-path interferometer in which a frequency converter also has a half mirror function.

【図4】周波数別強度分析器4の構成図。FIG. 4 is a configuration diagram of a frequency-specific intensity analyzer 4.

【図5】2光路干渉計内の2つの光路のパルス列。FIG. 5 is a pulse train of two optical paths in a two-path interferometer.

【図6】モ−ド同期パルス列の受光信号のf1成分と
(f1+nf2)成分の自己相関波形。
FIG. 6 is an autocorrelation waveform of the f 1 component and the (f 1 + nf 2 ) component of the received light signal of the mode synchronization pulse train.

【図7】単一モ−ドレ−ザ−に位相変調が加わった場合
の自己相関波形。
FIG. 7 is an autocorrelation waveform when phase modulation is applied to a single mode laser.

【図8】分散媒体を評価する測定系。FIG. 8: Measurement system for evaluating a dispersion medium.

【図9】分散媒体を2光路干渉計内に組み入れた場合の
測定系。
FIG. 9 shows a measurement system in which a dispersion medium is incorporated in a two-path interferometer.

【図10】変調器を評価する測定系。FIG. 10: Measurement system for evaluating a modulator.

【符号の説明】[Explanation of symbols]

1:光源 2:2光路干渉計 3:受光器 4:周波数別強度分析器 21:周波数変換器 21B:周波数変換器 2
2:光遅延器 23、24、25:光路 26、27:ハ−フミラ− 41A,B,C,D:バンドパスフィルタ− 42
A,B,C,D:検出器 43:演算器 51:分散媒体 52:変調器 53:発信器 101:光路23のパルス列 102:光路24のパ
ルス列。
1: Light source 2: 2 Optical path interferometer 3: Light receiver 4: Frequency intensity analyzer 21: Frequency converter 21B: Frequency converter 2
2: Optical delay device 23, 24, 25: Optical path 26, 27: Harm mirror 41A, B, C, D: Band pass filter 42
A, B, C, D: Detector 43: Operator 51: Dispersion medium 52: Modulator 53: Transmitter 101: Pulse train of optical path 23 102: Pulse train of optical path 24

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】光パルスまたは変調された光を発生する光
源と、2光路からなる干渉計と、受光器と、周波数別に
信号を検出する装置を直列に接続した系で、2光路から
なる干渉計の少なくとも一方の光路に光路長を変化させ
る光遅延器を有し、また干渉計の少なくとも一方の光路
に周波数変換器を有し、その周波数変換器により二つの
光路の光に周波数差を発生させ、受光信号の中でその差
周波成分及び、変調周波数の整数倍とその差周波数の和
または差の周波数成分を測定することによって、光の自
己相関を得る光パルス列測定方法。
1. A system in which a light source for generating an optical pulse or modulated light, an interferometer consisting of two optical paths, a light receiver, and a device for detecting a signal for each frequency are connected in series, and interference consisting of two optical paths. An optical delay device for changing the optical path length is provided in at least one optical path of the interferometer, and a frequency converter is provided in at least one optical path of the interferometer, and a frequency difference is generated between the light in the two optical paths by the frequency converter. An optical pulse train measuring method for obtaining an autocorrelation of light by measuring the difference frequency component of the received light signal and the frequency component of the sum or difference of the integer multiple of the modulation frequency and the difference frequency.
【請求項2】請求項1記載の光源は光源単体、または外
部変調器を含んだものより構成されることを特徴とする
光パルス列測定方法。
2. A method for measuring an optical pulse train, wherein the light source according to claim 1 is composed of a single light source or an external modulator.
【請求項3】請求項1記載の光の変調は、光源自身また
は請求項2記載の外部変調器において行うことを特徴と
する光パルス列測定方法。
3. A method of measuring an optical pulse train, wherein the light modulation according to claim 1 is performed by the light source itself or the external modulator according to claim 2.
【請求項4】請求項1から3記載のいずれかの光パルス
列測定方法において、得られた自己相関から算術により
光パルスのパルス幅を求めることを特徴とする光パルス
列測定方法。
4. The optical pulse train measuring method according to claim 1, wherein the pulse width of the optical pulse is obtained by arithmetic operation from the obtained autocorrelation.
【請求項5】請求項1から3記載のいずれかの光パルス
列測定方法において、得られた自己相関から光源で発生
するチャ−ピング・分散・位相のずれを求めることを特
徴とする光パルス列測定方法。
5. The optical pulse train measurement method according to any one of claims 1 to 3, wherein chirping, dispersion, and phase shift generated in the light source are obtained from the obtained autocorrelation. Method.
【請求項6】請求項1から3記載のいずれかの光パルス
列測定方法において、光源と2光路からなる干渉計の
間、または2光路からなる干渉計の内部にセットされた
光素子または光学試料で発生するチャ−ピング・分散・
位相のずれを測定することを特徴とする光パルス列測定
方法。
6. The optical pulse train measuring method according to claim 1, wherein the optical element or the optical sample is set between the light source and the interferometer consisting of two optical paths or inside the interferometer consisting of two optical paths. Chirping, dispersion,
A method for measuring an optical pulse train, which comprises measuring a phase shift.
JP29246895A 1995-11-10 1995-11-10 Optical pulse train measuring method Pending JPH09133585A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29246895A JPH09133585A (en) 1995-11-10 1995-11-10 Optical pulse train measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29246895A JPH09133585A (en) 1995-11-10 1995-11-10 Optical pulse train measuring method

Publications (1)

Publication Number Publication Date
JPH09133585A true JPH09133585A (en) 1997-05-20

Family

ID=17782209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29246895A Pending JPH09133585A (en) 1995-11-10 1995-11-10 Optical pulse train measuring method

Country Status (1)

Country Link
JP (1) JPH09133585A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006013573A (en) * 2004-06-22 2006-01-12 Hitachi Ltd Quantum optical transmission apparatus
CN103557946A (en) * 2013-10-29 2014-02-05 中国工程物理研究院流体物理研究所 Method and device for measuring optical delay
CN103698025A (en) * 2013-12-30 2014-04-02 上海交通大学 Domain wall-based nonlinear impulse autocorrelation measuring method and measuring device
CN106855437A (en) * 2016-12-12 2017-06-16 西北大学 A kind of single-shot ultraviolet ultrashort-pulse pulse width measure device and method
CN111693156A (en) * 2020-05-22 2020-09-22 广州市固润光电科技有限公司 Ultrafast laser pulse width measuring device and control method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006013573A (en) * 2004-06-22 2006-01-12 Hitachi Ltd Quantum optical transmission apparatus
CN103557946A (en) * 2013-10-29 2014-02-05 中国工程物理研究院流体物理研究所 Method and device for measuring optical delay
CN103698025A (en) * 2013-12-30 2014-04-02 上海交通大学 Domain wall-based nonlinear impulse autocorrelation measuring method and measuring device
CN106855437A (en) * 2016-12-12 2017-06-16 西北大学 A kind of single-shot ultraviolet ultrashort-pulse pulse width measure device and method
CN111693156A (en) * 2020-05-22 2020-09-22 广州市固润光电科技有限公司 Ultrafast laser pulse width measuring device and control method thereof

Similar Documents

Publication Publication Date Title
US6057919A (en) Apparatus and method for measuring characteristics of optical pulses
JP6698164B2 (en) Optical frequency domain reflection method and system based on frequency synthesis
JP2017044504A (en) Optical fiber strain measurement device and method for measuring optical fiber strain
KR100216595B1 (en) Laser line width measurement apparatus using stimulated brillouin scattering
WO2017033491A1 (en) Optical fiber distortion measuring apparatus and optical fiber distortion measuring method
WO2015129118A1 (en) Characteristic measurement device, transient absorption response measurement device and transient absorption response measurement method
JPH09133585A (en) Optical pulse train measuring method
JP3306815B2 (en) Optical frequency domain reflectometer
JP2023131864A (en) Optical fiber sensor and method for measuring brillouin frequency shift
JP3496878B2 (en) Chromatic dispersion and loss wavelength dependence measuring device
US4859843A (en) Method and apparatus for optical signal analysis using a gated modulation source and an optical delay circuit to achieve a self-homodyne receiver
JP2717600B2 (en) Thin film evaluation equipment
Chen et al. Fading-suppressed distributed fiber-optic acoustic sensor with 0.8-m spatial resolution and 246-pε/√ Hz strain resolution
JPS63196829A (en) Method and apparatus for searching fault point of light waveguide
JP2923779B1 (en) Optical interference device for ultrasonic detection
JP2003270127A (en) Instrument for measuring light amplitude phase time response
JP2002509612A (en) Wavelength measurement system
JP2515018B2 (en) Backscattered light measurement method and device
JP3453745B2 (en) Optical fiber inspection equipment
JP7351365B1 (en) Optical fiber sensor and Brillouin frequency shift measurement method
JP3453746B2 (en) Optical fiber inspection equipment
JP3231117B2 (en) Measurement method of nonlinear refractive index of optical fiber
JPH08145846A (en) Method for measuring reflection at light frequency area and measuring circuit therefor
JP3424865B2 (en) Optical multipath measurement method
JPS6191537A (en) Method and apparatus for measuring dispersion of optical fiber wavelength