JPH09126780A - Magnetic direction sensor - Google Patents

Magnetic direction sensor

Info

Publication number
JPH09126780A
JPH09126780A JP30827795A JP30827795A JPH09126780A JP H09126780 A JPH09126780 A JP H09126780A JP 30827795 A JP30827795 A JP 30827795A JP 30827795 A JP30827795 A JP 30827795A JP H09126780 A JPH09126780 A JP H09126780A
Authority
JP
Japan
Prior art keywords
magnetic
axis
sensor
bias
magnetoresistive element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP30827795A
Other languages
Japanese (ja)
Inventor
Naoki Wakao
直樹 若生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP30827795A priority Critical patent/JPH09126780A/en
Publication of JPH09126780A publication Critical patent/JPH09126780A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Hall/Mr Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the number of part items and the number of assembling steps by performing detection of the quantity of magnetism and the ratio of the amount of magnetism in X and Y axis directions of a three-dimensional stereoscopic space represented by X, Y and Z axes while taking the Z axis as the gravity direction of the earth, with one magnetoresistance element. SOLUTION: A bobbin is provided with a bias coil 4 and a bias coil 5 intersecting this coil and these coils are formed in such a manner that when currents are supplied to the coils 4 and 5, the directions of their biased magnetic fields take angles of 90 degrees to each other. The coil 4 is provided with an applied current oscillator 17, the coil 5 is provided with an applied current oscillator 18 and AC rectangular wave currents are supplied by one pulse alternately to the coils 4 and 5. Then, the output of a magnetoresistance element is detected in synchronization with the positive and negative timings of the AC rectangular wave currents, a difference between these is amplified by an amplifier circuit 10 including a bypass filter 9 and the magnetic sensor outputs of X and T axes are obtained. Each of these magnetic sensor output is inputted through an A/D converter 11 to a microcomputer 12, magnetic declination is calculated and a magnetic azimuth output 13 is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、磁気センサを用い
た磁気方位センサに関し、特に、部品点数の削減、及び
周囲温度の変化、又は経時変化に対して、安定な磁気方
位センサ及び磁気方位の測定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic azimuth sensor using a magnetic sensor, and more particularly to a magnetic azimuth sensor and a magnetic azimuth sensor which are stable against a reduction in the number of parts and a change in ambient temperature or a change over time. Regarding measurement method.

【0002】[0002]

【従来の技術】図3は、磁気方位センサの原理図であ
る。磁気方位センサによる方位は、地球上の重力方向を
Z軸とした場合のX軸及びY軸の磁気量比から求めるこ
とができる。即ち、図3において、X軸及びY軸と平行
で、かつ、磁気センサ7及び磁気センサ8を、それぞれ
直交するように配置し、互いに磁気センサの感度、及び
オフセット電圧が同一となるよう調整する。
2. Description of the Related Art FIG. 3 is a principle diagram of a magnetic bearing sensor. The azimuth obtained by the magnetic azimuth sensor can be obtained from the magnetic quantity ratio of the X axis and the Y axis when the gravity direction on the earth is the Z axis. That is, in FIG. 3, the magnetic sensor 7 and the magnetic sensor 8 are arranged so as to be parallel to the X-axis and the Y-axis and orthogonal to each other, and the sensitivity and the offset voltage of the magnetic sensor are adjusted to be the same. .

【0003】この時、X軸の磁気センサの出力が最大値
1となるところを原点とし(方位角度θ=0度)、X
Y平面上で2個の磁気センサを角度θ回転させた場合、
X軸及びY軸のそれぞれの磁気センサ7及び磁気センサ
8のセンサ出力をVX及びVYで示すと、下式で表され
る。
At this time, a point where the output of the X-axis magnetic sensor reaches the maximum value V 1 is set as an origin (azimuth angle θ = 0 degree), and X
When two magnetic sensors are rotated by an angle θ on the Y plane,
The sensor outputs of the magnetic sensor 7 and the magnetic sensor 8 on the X-axis and the Y-axis are represented by V X and V Y , respectively, and are expressed by the following equation.

【0004】 VX=V1cosθ ・・・・・・・・・・・ VY=V1sinθ ・・・・・・・・・・・ 従って、角度θを求めるには、以下に示す演算を行う。 θ=tan-1(VY/VX) ・・・・・・・・・・・ なお、角度θは、表1に示す範囲で分類される。V X = V 1 cos θ ····· V Y = V 1 sin θ ········· Therefore, in order to obtain the angle θ, the following calculation I do. θ = tan −1 (V Y / V X ) ... The angle θ is classified in the range shown in Table 1.

【0005】 [0005]

【0006】以上のように、従来の磁気方位センサは、
X軸及びY軸に磁気センサをそれぞれ1個配置し、互い
の磁気センサの感度及びオフセット電圧を同一に調整し
た後に使用され、方位計算は、回路処理にて行われてい
た。
As described above, the conventional magnetic direction sensor is
One magnetic sensor is arranged on each of the X-axis and the Y-axis, and the magnetic sensors are used after the sensitivity and the offset voltage of each magnetic sensor are adjusted to the same value. The azimuth calculation is performed by a circuit process.

【0007】[0007]

【発明が解決しようとする課題】しかし、従来の磁気方
位センサは、上記に示したように、2個の磁気センサを
必要とし、更に、互いの磁気センサの感度及びオフセッ
ト電圧を同一に調整しなければ使用できないものであ
り、組立工程の煩雑さを伴うものである。又、温度ドリ
フトや経時変化等、信頼性に関しても、個々にばらつき
があり、そのばらつきの差が方位角度の誤差として現れ
る欠点を有している。従って、本発明は、部品点数を削
減し、組立工程を簡略化した、安価で、かつ、方位角度
の誤差のない、信頼性の高い磁気方位センサを提供する
ことにある。
However, the conventional magnetic azimuth sensor requires two magnetic sensors as described above, and the sensitivity and offset voltage of each magnetic sensor are adjusted to the same value. It cannot be used unless it is used, and the assembly process is complicated. Further, there is a drawback that the reliability such as a temperature drift and a change with time also varies, and the difference in the variation appears as an error in the azimuth angle. Therefore, it is an object of the present invention to provide a magnetic azimuth sensor which has a reduced number of parts, has a simplified assembly process, is inexpensive, has no error in azimuth angle, and has high reliability.

【0008】[0008]

【課題を解決するための手段】本発明は、地球上の重力
方向をZ軸とし、X,Y,Zの3軸で示される3次元立
体空間のX軸及びY軸の磁気量を磁気センサで検出し、
前記磁気センサの出力を増幅する増幅回路とX軸及びY
軸の出力比(Y/X)を演算する演算回路を備え、前記
出力比から方位を求める磁気センサにおいて、X軸及び
Y軸の磁気量及び磁気量比検出を1個の磁気抵抗素子で
行うことを特徴とする磁気方位センサである。
According to the present invention, a magnetic sensor detects the magnetic quantities of the X-axis and the Y-axis of a three-dimensional space represented by the three axes of X, Y and Z, where the direction of gravity on the earth is the Z-axis. Detected by
An amplifier circuit for amplifying the output of the magnetic sensor, an X-axis and a Y-axis
In a magnetic sensor having an arithmetic circuit for calculating the output ratio (Y / X) of the axes, and detecting the azimuth from the output ratio, the magnetic quantity and the magnetic quantity ratio of the X axis and the Y axis are detected by one magnetoresistive element. The magnetic azimuth sensor is characterized in that

【0009】本発明は、磁気抵抗素子には、バイアス磁
界を印加させるためのバイアスコイルが二つ存在し、前
記バイアスコイルによって生じるバイアス磁界は、互い
に90度の角度となるように、二つのバイアスコイルを
配置してあることを特徴とする上記磁気方位センサであ
る。
According to the present invention, the magnetoresistive element has two bias coils for applying a bias magnetic field, and the two bias magnetic fields generated by the bias coils have an angle of 90 degrees with each other. In the above magnetic azimuth sensor, a coil is arranged.

【0010】本発明は、増幅回路はハイパスフィルタを
含む増幅回路で構成されていることを特徴とする上記磁
気方位センサである。
The present invention is the above magnetic azimuth sensor, wherein the amplifier circuit is composed of an amplifier circuit including a high-pass filter.

【0011】本発明は、演算回路は、マイクロコンピュ
ータを含む回路で構成されていることを特徴とする上記
磁気方位センサである。
The present invention is the above magnetic bearing sensor, wherein the arithmetic circuit is composed of a circuit including a microcomputer.

【0012】本発明は、同一の磁気抵抗素子を用い、該
磁気抵抗素子に互いに90度の角度となるようなバイア
ス磁界を時分割して加え、磁気抵抗素子の出力を前記バ
イアス磁界と同期させて処理することにより行うことを
特徴とする磁気方位の測定方法である。
The present invention uses the same magnetoresistive element and time-divisionally applies a bias magnetic field having an angle of 90 degrees to each other to synchronize the output of the magnetoresistive element with the bias magnetic field. The magnetic azimuth measuring method is characterized in that the magnetic azimuth is measured by performing the following processing.

【0013】(作用)本発明においては、磁気センサと
して1個の磁気抵抗素子を使用し、前記磁気抵抗素子に
印加するバイアス磁界の方向を互いに90度の角度とな
るように、二つのバイアスコイルを配置し、2個のバイ
アスコイルに交互に1パルスの交流矩形波電流を加え、
前記交流矩形波電流の正、及び負のタイミングと同期し
て、前記磁気抵抗素子の出力を検出し、その差をハイパ
スフィルタを含む増幅回路で増幅して、1軸の磁気セン
サ出力とし、二つのバイアスコイルに交互に交流矩形波
電流を加えることにより、2軸の磁気センサを構成し、
前記2軸の磁気センサの出力をマイクロコンピュータに
入力し、方位角度の計算を行う。このことにより、比較
的簡単に組立工程を簡素化し、各軸の磁気センサ出力の
ばらつきや経時変化を除去することが可能となる。
(Operation) In the present invention, one magnetoresistive element is used as the magnetic sensor, and two bias coils are arranged so that the directions of the bias magnetic fields applied to the magnetoresistive element are at 90 ° to each other. , And alternately apply one pulse of AC rectangular wave current to the two bias coils,
The output of the magnetoresistive element is detected in synchronism with the positive and negative timings of the AC rectangular wave current, and the difference is amplified by an amplifier circuit including a high-pass filter to obtain a uniaxial magnetic sensor output. A biaxial magnetic sensor is constructed by alternately applying an alternating rectangular wave current to the two bias coils.
The outputs of the biaxial magnetic sensors are input to a microcomputer to calculate the azimuth angle. As a result, the assembly process can be simplified relatively easily, and variations in the magnetic sensor output of each axis and changes over time can be eliminated.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施例を図面に基
づいて説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0015】図1は、本発明の磁気方位センサの磁気抵
抗素子の構成図であり、図1(a)は、磁気抵抗素子に
コイルを巻線する前の状態を示す平面図、図1(b)
は、磁気抵抗素子にコイルを巻線した後の状態を示す平
面図である。
FIG. 1 is a configuration diagram of a magnetoresistive element of a magnetic bearing sensor of the present invention. FIG. 1A is a plan view showing a state before winding a coil around the magnetoresistive element. b)
FIG. 4 is a plan view showing a state after winding a coil around a magnetoresistive element.

【0016】図1(a)に示すように、磁気抵抗素子1
を巻線用のボビン2の中に挿入し、磁気抵抗素子1用の
磁気抵抗素子端子3をボビン2の外部に引き出してい
る。又、図1(b)に示すように、ボビン2には、バイ
アスコイル4及びこれと直交するバイアスコイル5用の
端子ピン6が配置されており、バイアスコイル4及びバ
イアスコイル5を、巻線後に終端を前記端子ピン6に半
田絡げしている。
As shown in FIG. 1A, the magnetoresistive element 1
Is inserted into the bobbin 2 for winding, and the magnetoresistive element terminal 3 for the magnetoresistive element 1 is drawn out of the bobbin 2. Further, as shown in FIG. 1 (b), the bobbin 2 is provided with a bias coil 4 and a terminal pin 6 for the bias coil 5 which is orthogonal to the bias coil 4. Later, the terminal ends are soldered to the terminal pins 6.

【0017】二つのバイアスコイルは、十字型に配置さ
れ、それぞれのバイアスコイル4及びバイアスコイル5
に電流を流した際に、バイアス磁界の方向が互いに90
度の角度となるよう構成している。
The two bias coils are arranged in a cross shape, and each bias coil 4 and bias coil 5 are arranged.
When a current is applied to the
It is configured to have an angle of degrees.

【0018】図2は、本発明に基づく磁気方位センサの
回路ブロック図である。図2に示すように、まず、互い
に発生するバイアス磁界の方向が90度の角度となるよ
うに配置されているバイアスコイル4の印加電流発振器
17、及びバイアスコイル5の印加電流発振器18が存
在し、交流矩形波電流を1パルスずつ交互に前記バイア
スコイル4及びバイアスコイル5に流す。次に、前記交
流矩形波電流の正、及び負のタイミングと同期して、前
記磁気抵抗素子の出力を検出し、その差をハイパスフィ
ルタ9を含む増幅回路10で増幅して、X軸及びY軸の
磁気センサ出力を得る。前記X軸及びY軸の磁気センサ
出力をA/Dコンバータ11を通してマイクロコンピュ
ータ12に入力し、方位角度の計算を行い、磁気方位出
力13を得る。
FIG. 2 is a circuit block diagram of a magnetic direction sensor according to the present invention. As shown in FIG. 2, first, there are an applied current oscillator 17 of the bias coil 4 and an applied current oscillator 18 of the bias coil 5 which are arranged such that the directions of the bias magnetic fields generated with each other are 90 degrees. An alternating rectangular wave current is alternately passed through the bias coil 4 and the bias coil 5 pulse by pulse. Next, in synchronization with the positive and negative timings of the AC rectangular wave current, the output of the magnetoresistive element is detected, the difference is amplified by an amplifier circuit 10 including a high-pass filter 9, and the X-axis and Y-axis are detected. Obtain the magnetic sensor output of the shaft. The X-axis and Y-axis magnetic sensor outputs are input to the microcomputer 12 through the A / D converter 11, the azimuth angle is calculated, and the magnetic azimuth output 13 is obtained.

【0019】[0019]

【発明の効果】以上、説明したように、本発明の磁気方
位センサによれば、従来、磁気センサが2個必要であっ
たのが、1個に削減され、又、増幅回路等も磁気センサ
1個相当の部品点数に削減されるため、部品点数及び組
立工数の簡素化を図ることができる。更に、磁気センサ
の感度及びオフセット電圧調整等が不必要となるため、
調整工数の削減を図ることができる。
As described above, according to the magnetic azimuth sensor of the present invention, two magnetic sensors are conventionally required, but the number is reduced to one, and the amplifier circuit and the like are also magnetic sensors. Since the number of parts is reduced to one, the number of parts and the number of assembling steps can be simplified. Furthermore, since it is unnecessary to adjust the sensitivity and offset voltage of the magnetic sensor,
The number of adjustment steps can be reduced.

【0020】又、別々の磁気センサを使用することによ
って生じる個々の経時変化等による方位誤差が、本発明
では、同一の磁気センサで2軸の出力を得るために、互
いにキャンセルされ、経時変化等による方位計算誤差を
考慮する必要がなくなる利点を有しており、各軸の磁気
センサ出力のばらつきや経時変化を除去することが可能
となる。
Further, in the present invention, azimuth errors due to individual changes over time caused by using separate magnetic sensors are canceled by each other in order to obtain biaxial outputs with the same magnetic sensor. It has an advantage that it is not necessary to consider the azimuth calculation error due to, and it becomes possible to eliminate the variation of the magnetic sensor output of each axis and the change over time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の磁気方位センサの磁気抵抗素子の構成
図。図1(a)は、磁気抵抗素子にコイルを巻線する前
の状態を示す平面図。図1(b)は磁気抵抗素子にコイ
ルを巻線した後の状態を示す平面図。
FIG. 1 is a configuration diagram of a magnetoresistive element of a magnetic direction sensor of the present invention. FIG. 1A is a plan view showing a state before winding a coil around a magnetoresistive element. FIG. 1B is a plan view showing a state after winding a coil around the magnetoresistive element.

【図2】本発明の磁気方位センサの回路ブロック図。FIG. 2 is a circuit block diagram of a magnetic bearing sensor of the present invention.

【図3】磁気方位センサの原理図。FIG. 3 is a principle diagram of a magnetic direction sensor.

【符号の説明】[Explanation of symbols]

1 磁気抵抗素子 2 ボビン 3 磁気抵抗素子端子 4,5 バイアスコイル 6 端子ピン 7,8 磁気センサ 9 ハイパスフィルタ 10 増幅回路 11 A/Dコンバータ 12 マイクロコンピュータ 13 磁気方位出力 17 バイアスコイル4の印加電流発振器 18 バイアスコイル5の印加電流発振器 1 Magnetoresistive Element 2 Bobbin 3 Magnetoresistive Element Terminal 4, 5 Bias Coil 6 Terminal Pin 7, 8 Magnetic Sensor 9 High Pass Filter 10 Amplification Circuit 11 A / D Converter 12 Microcomputer 13 Magnetic Direction Output 17 Applied Current Oscillator of Bias Coil 4 18 Applied Current Oscillator of Bias Coil 5

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 43/08 G01R 33/06 R ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location H01L 43/08 G01R 33/06 R

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 地球上の重力方向をZ軸とし、X,Y,
Zの3軸で示される3次元立体空間のX軸及びY軸の磁
気量を磁気センサで検出し、前記磁気センサの出力を増
幅する増幅回路とX軸及びY軸の出力比(Y/X)を演
算する演算回路を備え、前記出力比から方位を求める磁
気センサにおいて、X軸及びY軸の磁気量及び磁気量比
検出を1個の磁気抵抗素子で行うことを特徴とする磁気
方位センサ。
1. The Z-axis is the direction of gravity on the earth, and X, Y,
An X-axis and Y-axis magnetic quantity in a three-dimensional space represented by the three axes of Z is detected by a magnetic sensor, and an amplifier circuit for amplifying the output of the magnetic sensor and an output ratio of the X-axis and the Y-axis (Y / X). In a magnetic sensor for obtaining a direction from the output ratio, a magnetic direction sensor for detecting the X-axis and Y-axis magnetic amounts and the magnetic amount ratio is performed by one magnetoresistive element. .
【請求項2】 磁気抵抗素子には、バイアス磁界を印加
させるためのバイアスコイルが二つ存在し、前記バイア
スコイルによって生じるバイアス磁界は、互いに90度
の角度となるように、二つのバイアスコイルを配置して
あることを特徴とする請求項1記載の磁気方位センサ。
2. The magnetoresistive element has two bias coils for applying a bias magnetic field, and the two bias coils are so arranged that the bias magnetic fields generated by the bias coils form an angle of 90 degrees with each other. The magnetic azimuth sensor according to claim 1, wherein the magnetic azimuth sensor is arranged.
【請求項3】 増幅回路はハイパスフィルタを含む増幅
回路で構成されていることを特徴とする請求項1記載の
磁気方位センサ。
3. The magnetic bearing sensor according to claim 1, wherein the amplifier circuit is composed of an amplifier circuit including a high-pass filter.
【請求項4】 演算回路は、マイクロコンピュータを含
む回路で構成されていることを特徴とする請求項1記載
の磁気方位センサ。
4. The magnetic direction sensor according to claim 1, wherein the arithmetic circuit is composed of a circuit including a microcomputer.
【請求項5】 同一の磁気抵抗素子を用い、該磁気抵抗
素子に互いに90度の角度となるようなバイアス磁界を
時分割して加え、磁気抵抗素子の出力を前記バイアス磁
界と同期させて処理することにより行うことを特徴とす
る磁気方位の測定方法。
5. The same magnetoresistive element is used, and a bias magnetic field having an angle of 90 degrees is time-divided to the magnetoresistive element, and the output of the magnetoresistive element is processed in synchronization with the bias magnetic field. A magnetic azimuth measuring method characterized by being carried out.
JP30827795A 1995-10-31 1995-10-31 Magnetic direction sensor Withdrawn JPH09126780A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30827795A JPH09126780A (en) 1995-10-31 1995-10-31 Magnetic direction sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30827795A JPH09126780A (en) 1995-10-31 1995-10-31 Magnetic direction sensor

Publications (1)

Publication Number Publication Date
JPH09126780A true JPH09126780A (en) 1997-05-16

Family

ID=17979099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30827795A Withdrawn JPH09126780A (en) 1995-10-31 1995-10-31 Magnetic direction sensor

Country Status (1)

Country Link
JP (1) JPH09126780A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000017667A1 (en) * 1998-09-22 2000-03-30 Robert Bosch Gmbh Magnetoresistive sensor element with selective magnetization direction of the bias layer
US7304475B2 (en) * 2003-03-25 2007-12-04 Honeywell Federal Manufacturing & Technologies Mechanism for and method of biasing magnetic sensor
WO2008065574A3 (en) * 2006-11-27 2008-08-21 Nxp Bv A magnetic field sensor circuit
JP2013101116A (en) * 2011-11-04 2013-05-23 Honeywell Internatl Inc Device and method for determining magnetic field component in plane direction of magnetic field by using single magnetoresistive sensor
WO2020135137A1 (en) * 2018-12-29 2020-07-02 江苏多维科技有限公司 Magnetic navigation sensor and magnetic navigation system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000017667A1 (en) * 1998-09-22 2000-03-30 Robert Bosch Gmbh Magnetoresistive sensor element with selective magnetization direction of the bias layer
US6373247B1 (en) 1998-09-22 2002-04-16 Robert Bosch Gmbh Magnetoresistive sensor element with selective magnetization direction of the bias layer
US7304475B2 (en) * 2003-03-25 2007-12-04 Honeywell Federal Manufacturing & Technologies Mechanism for and method of biasing magnetic sensor
WO2008065574A3 (en) * 2006-11-27 2008-08-21 Nxp Bv A magnetic field sensor circuit
US7818890B2 (en) 2006-11-27 2010-10-26 Nxp B.V. Magnetic field sensor circuit
JP2013101116A (en) * 2011-11-04 2013-05-23 Honeywell Internatl Inc Device and method for determining magnetic field component in plane direction of magnetic field by using single magnetoresistive sensor
WO2020135137A1 (en) * 2018-12-29 2020-07-02 江苏多维科技有限公司 Magnetic navigation sensor and magnetic navigation system

Similar Documents

Publication Publication Date Title
JP6525336B2 (en) 3-axis digital compass
CN109459712A (en) Vector closed loop compensation formula triaxial magnetic field sensor probe based on Helmholtz coil
CN209432986U (en) Vector closed loop compensation formula triaxial magnetic field sensor probe based on Helmholtz coil
CN112130217A (en) System and method for electrically detecting included angle between geometric axis and magnetic axis of coil vector magnetometer
US11693067B2 (en) Magnetic sensor system
CN109307793A (en) The correcting device and current sensor of deviation estimating device and method, Magnetic Sensor
US20210116263A1 (en) Magnetic field sensor and method with reduced distortion measurement in sideshaft applications
JPH09126780A (en) Magnetic direction sensor
US11313922B2 (en) Signal processing circuit and magnetic sensor system
US3488579A (en) Magnetic gradiometer apparatus with misalignment compensation
CN111624531B (en) Component calculation method for TMR three-axis integrated magnetic sensor
JPH1164474A (en) Magnetic sensor and magnetic orientation sensor
JPS61108981A (en) Uniaxial differential type magnetism measuring instrument
JP3496655B2 (en) Compass
JPH1164473A (en) Magnetic sensor and magnetic orientation sensor
CN117054936B (en) Gradient sensor
JPH069306Y2 (en) Position detector
JPH05196711A (en) Magnetism measuring apparatus
US20220082640A1 (en) Method for determining a sensitivity of a hall sensor element, and hall sensor with at least one hall sensor element
JPS5871407A (en) Azimuth reading device
JP2576136B2 (en) Magnetic direction measurement device
RU1830493C (en) Way of determination of magnetic induction vector component
JP2002040043A (en) Acceleration sensor
JPH0229993B2 (en) JIKAIBEKUTORUKENSHUTSUSOCHI
JPH09311167A (en) Magnetism and magnetic direction sensor, and magnetism and magnetic direction measuring method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050906

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20051109