JPH09116127A - Solid-state image sensor - Google Patents

Solid-state image sensor

Info

Publication number
JPH09116127A
JPH09116127A JP7275298A JP27529895A JPH09116127A JP H09116127 A JPH09116127 A JP H09116127A JP 7275298 A JP7275298 A JP 7275298A JP 27529895 A JP27529895 A JP 27529895A JP H09116127 A JPH09116127 A JP H09116127A
Authority
JP
Japan
Prior art keywords
chip
layer
color filter
solid
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7275298A
Other languages
Japanese (ja)
Inventor
Hiromi Nishi
弘美 西
Kazuji Wada
和司 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP7275298A priority Critical patent/JPH09116127A/en
Publication of JPH09116127A publication Critical patent/JPH09116127A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • H01L27/14806Structural or functional details thereof
    • H01L27/14812Special geometry or disposition of pixel-elements, address lines or gate-electrodes
    • H01L27/14818Optical shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • H01L27/14868CCD or CID colour imagers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/10Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
    • H04N25/11Arrangement of colour filter arrays [CFA]; Filter mosaics
    • H04N25/13Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements
    • H04N25/134Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements based on three different wavelength filter elements

Abstract

PROBLEM TO BE SOLVED: To set the balance of light quantity entering the light sensing parts for respective colors within a desired range by varying the input light quantity for the light sensing parts corresponding to the respective colors of on-chip color filter layer by using a light shielding layer, a protection layer and an on-chip micro lens. SOLUTION: As for the plane shape of an on-chip micro lens 9, that corresponding to a G on-chip color filter layer 8 is the largest and those corresponding to R and B on-chip color filters 8 become smaller in order. Such a shape of the lens 9 makes it possible to change the plane shape of a resist pattern formed on the organic polymeric material layer for on-chip micro lens formation to be smaller or large, and it can be formed easily through reflow. Thus, the quantity of light transmitted through the lens 9 corresponding to the layers 8 can be changed so as to control the incident light quantity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は固体撮像装置に関
し、さらに詳しくは、各色に対応する光センサ部への入
射光量バランスが高度に制御された、色再現性にすぐれ
たカラー固体撮像装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid-state image pickup device, and more particularly, to a color solid-state image pickup device having high color reproducibility in which the balance of the amount of light incident on the photosensor portion corresponding to each color is highly controlled.

【0002】[0002]

【従来の技術】CCD(Charge Coupled
Device)をはじめとする固体撮像装置は、ビデ
オカメラやカメラ一体型ビデオテープレコーダ等に用い
るエリアセンサと、ファクシミリやバーコードリーダ等
に用いるラインセンサとに大別されるが、いずれも情報
化社会における電子の目として必要不可欠のデバイスと
なっている。CCDに対する小型化と高解像度化の要請
は高く、高集積化の進展にともない単位画素あたりの占
有面積は縮小され、同時にセンサ部の開口面積も縮小の
方向にある。
2. Description of the Related Art CCD (Charge Coupled)
Solid-state image pickup devices such as devices are roughly classified into area sensors used for video cameras and camera-integrated video tape recorders, and line sensors used for facsimiles and bar code readers. Has become an indispensable device for the electronic eyes of. There is a strong demand for miniaturization and high resolution of the CCD, and the occupied area per unit pixel is reduced with the progress of high integration, and at the same time, the opening area of the sensor portion is also being reduced.

【0003】かかるセンサ部の開口面積の縮小により、
センサ部に採り込まれる光量が不足し、S/N比を確保
するのに充分な光誘起電荷を発生させることが困難とな
ってきた。そこで、高集積度と高感度の両特性をともに
満たす要求に鑑みて採用されている構造がオンチップマ
イクロレンズである。オンチップマイクロレンズを採用
した単板式カラー固体撮像装置の画素部の垂直レジスタ
方向の概略断面図を、図6(a)を参照して説明する。
Due to the reduction of the opening area of the sensor section,
The amount of light taken into the sensor section is insufficient, and it has become difficult to generate sufficient photo-induced charges to secure the S / N ratio. Therefore, an on-chip microlens is a structure adopted in view of the requirements of satisfying both the characteristics of high integration and high sensitivity. A schematic cross-sectional view in the vertical register direction of a pixel portion of a single-plate type color solid-state imaging device that employs an on-chip microlens will be described with reference to FIG.

【0004】シリコン等の半導体基板1上に第1層ポリ
シリコンゲート3および第2層ポリシリコンゲート4を
形成し、これらゲート電極をマスクとしてセルフアライ
ンでイオン注入および活性化熱処理等を施すことによ
り、光センサ部2を形成する。つぎに全面にアルミニウ
ム等の金属膜を堆積し、光センサ部2上部を開口して遮
光層5を形成する。遮光層の開口平面形状は一例として
1.5μm×2.5μmの長方形である。この後Si3
4 等の保護層6を全面に均一厚さに形成し、さらに第
1層ポリシリコンゲート3および第2層ポリシリコンゲ
ート4により形成された段差を埋めるためにアクリル樹
脂やSiO2 等による平坦化層7を形成し、さらに各色
に対応したオンチップカラーフィルタ層8を形成する。
オンチップカラーフィルタ層8の各色の平面配列につい
ては後述する。この後光センサ部2上部に位置するよう
に、光センサ部2の平面形状より大面積のオンチップマ
イクロレンズ9を形成する。かかる構造により、オンチ
ップマイクロレンズ9への入射光はセンサ部2に集光さ
れ、入射光の利用効率を数倍以上に向上して固体撮像装
置のS/N比を確保することが可能となる。
By forming a first-layer polysilicon gate 3 and a second-layer polysilicon gate 4 on a semiconductor substrate 1 made of silicon or the like, and performing self-aligned ion implantation and activation heat treatment using these gate electrodes as a mask. The optical sensor unit 2 is formed. Next, a metal film such as aluminum is deposited on the entire surface, and the upper portion of the optical sensor portion 2 is opened to form the light shielding layer 5. The opening plane shape of the light shielding layer is, for example, a rectangle of 1.5 μm × 2.5 μm. After this Si 3
A protective layer 6 such as N 4 is formed on the entire surface to have a uniform thickness, and is further flattened with acrylic resin or SiO 2 to fill the step formed by the first-layer polysilicon gate 3 and the second-layer polysilicon gate 4. The conversion layer 7 is formed, and the on-chip color filter layer 8 corresponding to each color is further formed.
The planar arrangement of each color of the on-chip color filter layer 8 will be described later. After that, the on-chip microlens 9 having a larger area than the planar shape of the optical sensor unit 2 is formed so as to be located above the optical sensor unit 2. With such a structure, the light incident on the on-chip microlens 9 is condensed on the sensor unit 2, and the utilization efficiency of the incident light can be improved several times or more to secure the S / N ratio of the solid-state imaging device. Become.

【0005】オンチップマイクロレンズ9の製造方法と
しては、本願出願人が先に出願した特開平1−1066
6号公報で開示したように、オンチップカラーフィルタ
層8上に有機高分子材料層を形成し、有機高分子材料層
上に選択的にレジストパターンを形成した後、熱処理を
加えてこのレジストパターンをリフローし、略球面の一
部をなす表面形状を有するリフローレジストパターンを
形成する。この段階でオンチップマイクロレンズの形状
は確定するのであるが、後に述べる理由によりリフロー
レジストパターンと有機高分子材料層をともに全面エッ
チバックし、リフローレジストパターンをエッチオフす
るとともにリフローレジストパターンの形状をオンチッ
プマイクロレンズ材料層である有機高分子材料層に転写
し、オンチップマイクロレンズ9を完成する。
As a method of manufacturing the on-chip microlens 9, the applicant of the present invention has previously filed Japanese Patent Application Laid-Open No. 1-1066.
As disclosed in Japanese Patent Publication No. 6, an organic polymer material layer is formed on the on-chip color filter layer 8, a resist pattern is selectively formed on the organic polymer material layer, and then heat treatment is applied to this resist pattern. Is reflowed to form a reflow resist pattern having a surface shape forming a part of a substantially spherical surface. At this stage, the shape of the on-chip microlens is determined, but for the reason described later, the reflow resist pattern and the organic polymer material layer are both etched back over the entire surface, the reflow resist pattern is etched off, and the shape of the reflow resist pattern is changed. Transfer to the organic polymer material layer, which is the on-chip microlens material layer, to complete the on-chip microlens 9.

【0006】リフローレジストパターンを直接オンチッ
プマイクロレンズとして用いない理由は、下層のオンチ
ップカラーフィルタ層8を熱退色させない例えば180
℃以下でリフロー可能な性質と、後処理工程でワイアボ
ンディングや樹脂モールド工程時に加わる150℃程度
の温度では逆にリフローしない性質とを合わせ持つレジ
スト材料の選択が困難であることによる。また150℃
から180℃の狭い温度範囲でリフロー可能なレジスト
材料が選択できたとしても、温度管理の点から実際のプ
ロセスウィンドウが狭く、使用には困難が伴うことによ
る。そこで低温リフロー性に優れたレジスト材料と、耐
熱性や光学特性に優れた有機高分子材料層を個別に材料
選択して使用するのである。
The reason why the reflow resist pattern is not directly used as an on-chip microlens is that the lower on-chip color filter layer 8 is not thermally fading, for example, 180.
This is because it is difficult to select a resist material having both the property of being reflowable at a temperature of not higher than 0 ° C. and the property of not being reflowed at a temperature of about 150 ° C. which is applied during wire bonding or resin molding in the post-treatment process. Also 150 ℃
Even if a resist material that can be reflowed in a narrow temperature range from 1 to 180 ° C. can be selected, the actual process window is narrow in terms of temperature control, and it is difficult to use. Therefore, a resist material having excellent low temperature reflow properties and an organic polymer material layer having excellent heat resistance and optical characteristics are individually selected and used.

【0007】このように形成され形状にすぐれたオンチ
ップマイクロレンズ9の平面形状を図6(b)に示す。
図6(b)は被写体側からCCD固体撮像装置の表面に
形成されたオンチップマイクロレンズ9群を見たもので
あり、同図のA−A断面が図6(a)に相当する。同図
に見られるように各オンチップマイクロレンズ9の平面
形状および断面形状は全て同一となるように形成され、
各色の光センサ部2への入射光量が一定となるように設
計されている。
The plane shape of the on-chip microlens 9 thus formed and having an excellent shape is shown in FIG. 6 (b).
FIG. 6B is a view of the on-chip microlens group 9 formed on the surface of the CCD solid-state imaging device from the object side, and the AA cross section of FIG. 6A corresponds to FIG. 6A. As shown in the figure, the on-chip microlenses 9 are formed to have the same planar shape and sectional shape.
It is designed so that the amount of light incident on the optical sensor unit 2 of each color is constant.

【0008】ところで、オンチップカラーフィルタ層8
は、原色系であればR(赤)、G(緑)およびB(青)
の組み合わせを、補色系であればMg(マゼンタ)、C
y(シアン)、G(緑)およびY(黄色)の組み合わせ
を構成単位とし、これを周期的に例えば市松模様に配列
した構成となっている。構成単位中の各色の配置は、フ
レーム読み出しあるいはフィールド読み出しのカラーコ
ーディングにより異なるが、本発明の主旨には直接関係
しないので詳細な記述は省略する。RGB3原色系フィ
ールド読み出しの固体撮像装置のカラーコーディングに
ついては、例えば特公平5−72796号公報に詳述さ
れている。
By the way, the on-chip color filter layer 8
Is R (red), G (green) and B (blue) for primary colors
Is a complementary color system, Mg (magenta), C
A combination of y (cyan), G (green) and Y (yellow) is used as a structural unit, and this is periodically arranged in, for example, a checkered pattern. The arrangement of each color in the structural unit differs depending on the color coding of frame reading or field reading, but since it is not directly related to the gist of the present invention, detailed description thereof will be omitted. The color coding of the solid-state image pickup device of the RGB three-primary color field read is described in detail in, for example, Japanese Patent Publication No. 5-72796.

【0009】[0009]

【発明が解決しようとする課題】かかるオンチップカラ
ーフィルタ層を有する固体撮像装置においては、良好な
ホワイトバランスをとるためには、例えばBのカラーフ
ィルタ層を透過して光センサに入射する光量、Gのカラ
ーフィルタ層を透過して光センサに入射する光量および
Rのカラーフィルタ層を透過して光センサに入射する光
量の割合を、ある一定の範囲内におさめる必要がある。
これを図5(a)〜(c)を参照して説明する。
In a solid-state image pickup device having such an on-chip color filter layer, in order to obtain a good white balance, for example, the amount of light that passes through the B color filter layer and enters the photosensor, It is necessary to keep the ratio of the amount of light that passes through the G color filter layer and enters the photosensor and the amount of light that passes through the R color filter layer and enters the photosensor within a certain range.
This will be described with reference to FIGS.

【0010】まず、Si光電変換素子による光センサの
感度の分光感度特性は、図5(a)に示される。なお、
図5(a)に示した分光感度特性は、スミア防止等のた
めの赤外線カットフィルタ込みの特性である。
First, FIG. 5A shows the spectral sensitivity characteristic of the sensitivity of the optical sensor using the Si photoelectric conversion element. In addition,
The spectral sensitivity characteristic shown in FIG. 5A is a characteristic including an infrared cut filter for smear prevention and the like.

【0011】一方カラーテレビジョンのカラー画像は、
図5(c)に示すようにB:G:Rの各色のオンチップ
カラーフィルタ層搭載後の光センサ感度が、0.11:
0.59:0.30の割合となるときに正確なホワイト
バランスが得られるように設計されている。そこで固体
撮像装置のオンチップカラーフィルタ層の各色のフィル
タ特性に例えば図5(b)に示される光透過率特性を持
たせ、Si光電変換素子による光センサの分光感度特性
と併せて、各色の光センサからの出力電圧が丁度0.1
1:0.59:0.30の割合となるように設計するの
である。各色の光センサからの出力電圧の割合がこの値
からある範囲以上外れた場合にはホワイトバランスが崩
れ、被写体の忠実な色再現は電気回路的な補正のみでは
困難となる。
On the other hand, the color image of a color television is
As shown in FIG. 5C, the optical sensor sensitivity after mounting the on-chip color filter layers of B: G: R is 0.11:
It is designed so that an accurate white balance can be obtained at a ratio of 0.59: 0.30. Then, the filter characteristics of each color of the on-chip color filter layer of the solid-state image pickup device are given the light transmittance characteristics shown in FIG. 5B, for example, and the spectral sensitivity characteristics of the optical sensor by the Si photoelectric conversion element The output voltage from the optical sensor is just 0.1
It is designed to have a ratio of 1: 0.59: 0.30. When the ratio of the output voltage from the photosensor for each color deviates from this value by a certain range or more, the white balance is lost, and it is difficult to faithfully reproduce the color of the subject only by electrical circuit correction.

【0012】各色の光センサへの入射光量のバランスを
ある一定の範囲内におさめ、各色の光センサからの出力
電圧の割合を先述したような一定の値とする方法として
は、従来より例えばオンチップカラーフィルタ層の染色
条件により染色濃度を選択する方法が採られている。す
なわち、ゼラチン等を主体とする塗布膜へ各色染料を定
着する際の染料濃度や染色温度、染色時間等を制御して
図4(b)に示すようにカラーフィルタ光透過率を制御
し、各色の透過光量バランスを確保するのである。しか
しながら、オンチップカラーフィルタ層の染色条件のみ
では、固体撮像装置の設計自由度が小さく、満足な結果
が得られない場合も発生する。
As a method of keeping the balance of the amount of light incident on the photosensors of the respective colors within a certain fixed range and setting the ratio of the output voltage from the photosensors of the respective colors to the constant value as described above, for example, on A method of selecting the dyeing density depending on the dyeing condition of the chip color filter layer is adopted. That is, the color filter light transmittance is controlled as shown in FIG. 4B by controlling the dye concentration, dyeing temperature, dyeing time, etc. when fixing each color dye to the coating film mainly composed of gelatin or the like, and controlling each color. The balance of the amount of transmitted light is ensured. However, only the dyeing conditions of the on-chip color filter layer may reduce the degree of freedom in designing the solid-state image pickup device, and a satisfactory result may not be obtained.

【0013】本発明は上述した従来技術の問題点に鑑み
て提案するものであり、各色の光センサ部に入射する光
量のバランスを所望の一定範囲内に確実におさめ、色再
現性に優れた固体撮像装置を提供することをその課題と
する。
The present invention is proposed in view of the above-mentioned problems of the prior art, and surely keeps the balance of the amount of light incident on the photosensor portion of each color within a desired fixed range, and is excellent in color reproducibility. It is an object of the present invention to provide a solid-state imaging device.

【0014】[0014]

【課題を解決するための手段】本発明の固体撮像装置
は、複数の光センサ部上に選択的に形成された開口部を
有する遮光層と、複数の光センサ部上および前記遮光層
上の全面に形成された保護層と、保護層上に形成された
平坦化層上に、前記複数の光センサ部に臨んで周期的に
形成された複数色のオンチップカラーフィルタ層と、オ
ンチップカラーフィルタ層上に形成されたオンチップマ
イクロレンズと、を具備する固体撮像装置であって、こ
れら遮光層、保護層およびオンチップマイクロレンズの
うちの少なくともいずれか1種は、オンチップカラーフ
ィルタ層の各色に対応して、光センサ部への入射光量を
異にすることを特徴とするものである。
A solid-state image pickup device according to the present invention includes a light-shielding layer having openings selectively formed on a plurality of photosensor portions, and a plurality of photosensor portions and the light-shielding layer. A protective layer formed on the entire surface, a plurality of on-chip color filter layers periodically formed on the planarization layer formed on the protective layer so as to face the plurality of photosensor parts, and an on-chip color An on-chip microlens formed on a filter layer, wherein at least one of the light-shielding layer, the protective layer, and the on-chip microlens is an on-chip color filter layer. It is characterized in that the amount of light incident on the optical sensor unit is made different for each color.

【0015】本発明の好ましい実施態様においては、オ
ンチップマイクロレンズの平面形状は、オンチップカラ
ーフィルタ層の各色に対応してその面積を異ならしめる
ことにより、その入射光量を異にすることを特徴とす
る。
In a preferred embodiment of the present invention, the planar shape of the on-chip microlens is different in the area corresponding to each color of the on-chip color filter layer so that the amount of incident light is different. And

【0016】本発明の別の好ましい実施態様において
は、オンチップマイクロレンズの断面形状は、オンチッ
プカラーフィルタ層の各色に対応してその高さを異なら
しめることにより、その入射光量を異にすることを特徴
とする。
In another preferred embodiment of the present invention, the cross-sectional shape of the on-chip microlens is made different in height according to each color of the on-chip color filter layer, so that the amount of incident light is made different. It is characterized by

【0017】本発明のさらに別の好ましい実施態様にお
いては、保護層の断面形状は、オンチップカラーフィル
タ層の各色に対応してその厚さを異ならしめることによ
り、その入射光量を異にすることを特徴とする。
In still another preferred embodiment of the present invention, the cross-sectional shape of the protective layer is made different in thickness depending on each color of the on-chip color filter layer so that the amount of incident light is made different. Is characterized by.

【0018】本発明のまた別の好ましい実施態様におい
ては、遮光層の平面形状は、オンチップカラーフィルタ
層の各色に対応してその開口面積を異ならしめることに
より、その入射光量を異にすることを特徴とする。
In still another preferred embodiment of the present invention, the planar shape of the light shielding layer is made different from that of the on-chip color filter layer by making the opening areas thereof different so as to make the incident light amount different. Is characterized by.

【0019】従来の固体撮像装置においては、オンチッ
プマイクロレンズ、保護層および遮光層の形状は、いず
れも均一に形成することに主眼を置いて設計されてき
た。このためオンチップカラーフィルタ層の各色に対応
した光センサ部への入射光量の制御は、オンチップカラ
ーフィルタ層の染色濃度条件のみに依存し、このため必
ずしも充分な制御をおこなうことができなかった。
In the conventional solid-state image pickup device, the shapes of the on-chip microlens, the protective layer and the light-shielding layer have all been designed with a focus on uniform formation. Therefore, the control of the amount of light incident on the photosensor portion corresponding to each color of the on-chip color filter layer depends only on the dyeing density condition of the on-chip color filter layer, and thus it is not always possible to perform sufficient control. .

【0020】本発明においては、これらいずれの実施態
様においても、オンチップカラーフィルタ層の各色に対
応して入射光量を制御するとが可能となり、固体撮像装
置の設計自由度が飛躍的に向上する。各実施態様は個別
に採用してもよく、複数を組み合わせてもよい。さらに
オンチップカラーフィルタ層の染色濃度を選択する方法
と組み合わせて使用することも可能である。
In any of these embodiments of the present invention, it becomes possible to control the amount of incident light corresponding to each color of the on-chip color filter layer, and the degree of freedom in designing the solid-state image pickup device is dramatically improved. Each embodiment may be adopted individually or a plurality of them may be combined. Further, it can be used in combination with a method of selecting the dyeing density of the on-chip color filter layer.

【0021】[0021]

【発明の実施の形態】以下、本発明の実施の形態例につ
き、添付図面を参照して説明する。なお以下の実施の形
態例においては、従来技術の説明に供した図6中の構成
要素と同様の構成要素については同じ参照符号を付すも
のとする。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the accompanying drawings. Note that, in the following embodiments, the same reference numerals are given to the same constituent elements as those shown in FIG.

【0022】実施の形態例1 本実施の形態例は、オンチップマイクロレンズの平面形
状をオンチップカラーフィルタ層の各色に対応してその
面積を異ならしめた例であり、これを図1(a)〜
(b)を参照して説明する。
Embodiment 1 This embodiment is an example in which the planar shape of an on-chip microlens is made different in area corresponding to each color of an on-chip color filter layer, and this is shown in FIG. ) ~
This will be described with reference to FIG.

【0023】本実施の形態例による固体撮像装置の画素
部分の垂直レジスタ方向の概略断面図を図1(a)に、
そして被写体側からみた固体撮像装置の概略平面図を図
1(b)に示す。図1(b)のA−A断面が図1(a)
に相当する。同図に見られるように、オンチップマイク
ロレンズ9の平面形状はGのオンチップカラーフィルタ
層8に対応するものが最も大きく、RおよびBのオンチ
ップカラーフィルタ層8に対応するものの順に小さくな
る。このようなオンチップマイクロレンズ9の形状は、
先述したオンチップマイクロレンズ形成用の有機高分子
材料層上に形成するレジストパターンの平面形状に大小
を持たせ、これをリフローすることにより容易に形成で
きる。
FIG. 1A is a schematic sectional view of the pixel portion of the solid-state image pickup device according to the present embodiment in the vertical register direction.
Then, a schematic plan view of the solid-state imaging device viewed from the subject side is shown in FIG. The AA cross section of FIG. 1B is shown in FIG.
Is equivalent to As can be seen in the figure, the planar shape of the on-chip microlens 9 is the largest corresponding to the G on-chip color filter layer 8 and is smaller in the order corresponding to the R and B on-chip color filter layers 8. . The shape of such an on-chip microlens 9 is
The resist pattern formed on the organic polymer material layer for forming the on-chip microlens described above can be easily formed by giving the resist pattern a large and small shape and reflowing it.

【0024】かかるオンチップマイクロレンズ9の平面
形状の採用により、各オンチップカラーフィルタ層8に
対応したオンチップマイクロレンズ9の透過光量を異な
らしめて入射光量を制御することが可能となり、ホワイ
トバランスに優れた固体撮像装置を得ることができる。
By adopting such a planar shape of the on-chip microlenses 9, it becomes possible to control the incident light quantity by making the transmitted light quantity of the on-chip microlenses 9 corresponding to the respective on-chip color filter layers 8 different, thereby achieving white balance. An excellent solid-state imaging device can be obtained.

【0025】実施の形態例2 本実施の形態例は、オンチップマイクロレンズの断面形
状をオンチップカラーフィルタ層の各色に対応してその
高さを異ならしめた例であり、これを図2(a)〜
(b)を参照して説明する。
Embodiment 2 This embodiment is an example in which the cross-sectional shape of the on-chip microlens is made different in height according to each color of the on-chip color filter layer, and this is shown in FIG. a) ~
This will be described with reference to FIG.

【0026】本実施の形態例による固体撮像装置の垂直
レジスタ方向の概略断面図を図2(a)に、そして被写
体側からみた固体撮像装置の概略平面図を図2(b)に
示す。図2(b)のA−A断面が図2(a)に相当す
る。同図に見られるように、オンチップマイクロレンズ
9の断面形状における高さは、例えばGのオンチップカ
ラーフィルタ層8に対応するものが最も大きく、Rおよ
びBのオンチップカラーフィルタ層8に対応するものの
順に小さくなる。このようなオンチップマイクロレンズ
9の形状は、先述したオンチップマイクロレンズ形成用
の有機高分子材料層上に形成するレジストパターンの厚
さに大小を持たせることにより容易に形成できる。
FIG. 2A shows a schematic cross-sectional view of the solid-state image pickup device according to the present embodiment in the vertical register direction, and FIG. 2B shows a schematic plan view of the solid-state image pickup device viewed from the subject side. The AA cross section of FIG. 2B corresponds to FIG. As shown in the figure, the height of the cross-sectional shape of the on-chip microlens 9 is, for example, largest corresponding to the G on-chip color filter layer 8 and corresponding to the R and B on-chip color filter layers 8. It becomes smaller in order of what you do. Such a shape of the on-chip microlens 9 can be easily formed by varying the thickness of the resist pattern formed on the organic polymer material layer for forming the on-chip microlens described above.

【0027】その製造方法の1つとしては、レジストパ
ターン形成後にさらに上層レジスト膜を塗布し、厚さを
必要とするレジストパターン上にのみに上層レジストパ
ターンを残し、これらをともにリフローしてリフローレ
ジストパターンとし、これをエッチバックして有機高分
子材料層に転写すればよい。この際には上層のレジスト
膜塗布時に下層のレジストパターンとミキシングしない
ような配慮は当然必要であり、上層レジスト膜塗布液の
溶剤選択や、下層のレジスト膜のプリベーク条件の設定
等を適宜おこなう。また他の製造方法としては、均一な
厚さのリフローレジストパターンを形成後、さらに上層
レジスト膜を塗布し、厚さを必要とするリフローレジス
トパターン上にのみに上層レジストパターンを残し、こ
の上層レジストパターンをリフローする2段階リフロー
法によってもよい。この後全面エッチバックしてオンチ
ップマイクロレンズ材料層である有機高分子材料層にリ
フローレジストパターン形状を転写する。
As one of the manufacturing methods thereof, an upper layer resist film is further applied after the resist pattern is formed, the upper layer resist pattern is left only on the resist pattern requiring a thickness, and these are reflowed together to form a reflow resist. A pattern may be formed, and this may be etched back and transferred to the organic polymer material layer. At this time, it is of course necessary to take care not to mix with the resist pattern of the lower layer when the resist film of the upper layer is applied, and the solvent of the coating solution for the upper resist film is selected and the prebaking conditions of the resist film of the lower layer are appropriately set. As another manufacturing method, after forming a reflow resist pattern having a uniform thickness, an upper layer resist film is further applied, and the upper layer resist pattern is left only on the reflow resist pattern requiring a thickness. A two-step reflow method of reflowing the pattern may be used. Then, the entire surface is etched back to transfer the reflow resist pattern shape to the organic polymer material layer which is the on-chip microlens material layer.

【0028】かかるオンチップマイクロレンズ9の断面
形状の採用により、各オンチップカラーフィルタ層8に
対応してオンチップマイクロレンズ9の透過光量を異な
らしめて入射光量を制御することが容易に可能となり、
ホワイトバランスに優れた固体撮像装置を得ることがで
きる。
By adopting such a cross-sectional shape of the on-chip microlens 9, it becomes possible to easily control the incident light quantity by making the transmitted light quantity of the on-chip microlens 9 different for each on-chip color filter layer 8.
It is possible to obtain a solid-state imaging device having an excellent white balance.

【0029】実施の形態例3 本実施の形態例は、光センサ上の保護層の厚さを各色に
対応して異ならしめた例であり、これを図3を参照して
説明する。
Embodiment 3 This embodiment is an example in which the thickness of the protective layer on the photosensor is made different for each color, which will be described with reference to FIG.

【0030】本実施の形態例による固体撮像装置の画素
部分の垂直レジスタ方向の概略断面図を図3に示す。同
図に見られるように、光センサ2上の保護層6の厚さは
Gのオンチップカラーフィルタ層8に対応するものが最
も薄く、RおよびBのオンチップカラーフィルタ層に対
応するものの順に厚くなる。このような保護層6の厚さ
制御は、Si3 4 等よりなる保護層6を厚く形成し、
薄くしたい光センサ上部分の保護層6を選択的にエッチ
ングすることにより容易に形成できる。エッチングは、
ウェットエッチングあるいはプラズマエッチングのいず
れでもよい。
FIG. 3 is a schematic sectional view of the pixel portion of the solid-state image pickup device according to this embodiment in the vertical register direction. As shown in the figure, the protective layer 6 on the optical sensor 2 has the thinnest thickness corresponding to the G on-chip color filter layer 8 and the thinnest corresponding to the R and B on-chip color filter layers. Get thicker. To control the thickness of the protective layer 6 as described above, the protective layer 6 made of Si 3 N 4 or the like is formed thick,
It can be easily formed by selectively etching the protective layer 6 on the upper portion of the optical sensor which is desired to be thin. Etching is
Either wet etching or plasma etching may be used.

【0031】かかる保護層6の厚さ制御により、各保護
層6の透過光の多重干渉モード等を異ならしめて光セン
サ部への入射光量を制御することが可能となり、ホワイ
トバランスに優れた固体撮像装置を得ることができる。
By controlling the thickness of the protective layer 6 as described above, it becomes possible to control the amount of light incident on the optical sensor section by making the multiple interference modes of the transmitted light of each protective layer 6 different and to control the solid-state image pickup excellent in white balance. The device can be obtained.

【0032】実施の形態例4 本実施の形態例は、遮光層の平面形状をオンチップカラ
ーフィルタ層の各色に対応してその開口面積を異ならし
めた例であり、これを図4(a)〜(d)を参照して説
明する。
Embodiment 4 This embodiment is an example in which the planar shape of the light shielding layer is made different in the opening area corresponding to each color of the on-chip color filter layer, and this is shown in FIG. Description will be made with reference to (d).

【0033】本実施の形態例による固体撮像装置の、画
素部の垂直レジスタ方向の概略断面図を図4(a)に、
そして被写体側からみた固体撮像装置の概略平面図を図
4(b)〜(d)に示す。図4(b)のB−B断面が図
4(a)に相当する。同図に見られるように、遮光層5
の開口面積は例えばGのオンチップカラーフィルタ層に
対応するものが最も大きく、RおよびBのオンチップカ
ラーフィルタ層に対応するものの順に小さくなる。図4
(b)は垂直方向の開口幅を異ならしめた例、図4
(c)は水平方向の開口幅を異ならしめた例、図4
(d)は垂直および水平両方向の開口幅を異ならしめた
例である。これら開口形状の設計は、光センサ部やポリ
シリコンゲート等の下層構造に応じて適宜選択する。
FIG. 4A is a schematic sectional view of the pixel portion of the solid-state image pickup device according to the present embodiment in the vertical register direction.
4B to 4D are schematic plan views of the solid-state imaging device viewed from the subject side. A BB cross section of FIG. 4B corresponds to FIG. As shown in the figure, the light shielding layer 5
The area corresponding to the G on-chip color filter layer is the largest and the area corresponding to the R and B on-chip color filter layers is smaller in that order. FIG.
FIG. 4B is an example in which the opening widths in the vertical direction are made different, and FIG.
FIG. 4C shows an example in which the opening widths in the horizontal direction are made different, and FIG.
(D) is an example in which the opening widths in both the vertical and horizontal directions are made different. The design of these opening shapes is appropriately selected according to the lower layer structure such as the photosensor portion and the polysilicon gate.

【0034】かかる遮光層の平面形状は、遮光層パター
ニング用のレジストパターン露光用マスクの設計により
容易に実現できる。このような遮光層の開口面積の制御
によっても、各遮光層の透過光量を異ならしめるて光セ
ンサ部への入射光量を制御することが可能となり、ホワ
イトバランスに優れた固体撮像装置を得ることができ
る。
The plane shape of the light shielding layer can be easily realized by designing a resist pattern exposure mask for patterning the light shielding layer. Even by controlling the opening area of the light-shielding layer as described above, it becomes possible to control the amount of light incident on the optical sensor section by making the amount of light transmitted through each light-shielding layer different, and to obtain a solid-state imaging device with excellent white balance. it can.

【0035】以上本発明を4例の形態例を用いて説明し
たが、本発明はこれら態様例に何ら限定されるものでは
ない。上述した実施の形態例は全て原色系のオンチップ
カラーフィルタ層の例で説明したが、補色系のオンチッ
プカラーフィルタ層であっても同様に本発明を適用でき
る。
Although the present invention has been described with reference to the four examples, the present invention is not limited to these examples. Although all of the above-described embodiments have been described using the example of the primary color on-chip color filter layer, the present invention can be similarly applied to the complementary color on-chip color filter layer.

【0036】また、遮光層、保護層およびオンチップマ
イクロレンズの個々につきその光透過量を異にする他
に、これらを複数組み合わせて光透過量を異ならしめ、
光センサ部への入射光量を制御してもよい。このように
固体撮像装置の設計の自由度を大幅に拡大することによ
り、より優れたホワイトバランスを有する固体撮像装置
構造を得ることが可能である。
Further, in addition to making the light transmission amount different for each of the light shielding layer, the protective layer and the on-chip microlens, a plurality of these are combined to make the light transmission amounts different,
The amount of light incident on the optical sensor unit may be controlled. By greatly expanding the degree of freedom in designing the solid-state imaging device in this manner, it is possible to obtain a solid-state imaging device structure having a better white balance.

【0037】[0037]

【発明の効果】以上の説明から明らかなように、本発明
の固体撮像装置によれば、各色の光センサ部に入射する
光量のバランスを所望の一定範囲内に確実におさめ、色
再現性に優れた固体撮像装置を提供することが可能とな
る。
As is apparent from the above description, according to the solid-state image pickup device of the present invention, the balance of the amount of light incident on the photosensor portion of each color is surely kept within a desired fixed range, and the color reproducibility is improved. It is possible to provide an excellent solid-state imaging device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を適用した実施例1の固体撮像装置を示
し、(a)は画素部分の垂直レジスタ方向の概略断面図
であり、(b)は被写体側からみた固体撮像装置の概略
平面図であり、オンチップマイクロレンズ群のレイアウ
トを示す図である。
1A and 1B show a solid-state imaging device according to a first embodiment to which the present invention is applied, FIG. 1A is a schematic cross-sectional view of a pixel portion in a vertical register direction, and FIG. 1B is a schematic plan view of the solid-state imaging device viewed from a subject side. FIG. 6 is a diagram showing a layout of an on-chip microlens group.

【図2】本発明を適用した実施例2の固体撮像装置を示
し、(a)は画素部分の垂直レジスタ方向の概略断面図
であり、(b)は被写体側からみた固体撮像装置の概略
平面図であり、オンチップマイクロレンズ群のレイアウ
トを示す図である。
2A and 2B show a solid-state imaging device according to a second embodiment to which the present invention is applied, FIG. 2A is a schematic cross-sectional view of a pixel portion in a vertical register direction, and FIG. 2B is a schematic plane view of the solid-state imaging device viewed from a subject side. FIG. 6 is a diagram showing a layout of an on-chip microlens group.

【図3】本発明を適用した実施例3の固体撮像装置の画
素部分の垂直レジスタ方向の概略断面図である。
FIG. 3 is a schematic sectional view of a pixel portion of a solid-state imaging device according to a third embodiment of the present invention in a vertical register direction.

【図4】本発明を適用した実施例4の固体撮像装置を示
し、(a)は画素部分の垂直レジスタ方向の概略断面図
であり、(b)〜(d)はそれぞれ遮光層の概略平面図
である。
4A and 4B show a solid-state imaging device according to a fourth embodiment of the present invention, in which FIG. 4A is a schematic cross-sectional view of a pixel portion in a vertical register direction, and FIGS. 4B to 4D are schematic plane views of a light shielding layer. It is a figure.

【図5】分光特性を示すグラフであり、(a)はSi光
センサ感度の分光特性を、(b)は各色のオンチップカ
ラーフィルタ層の光透過率を、(c)はオンチップカラ
ーフィルタ層搭載後のSi光センサ感度をそれぞれ示
す。
5A and 5B are graphs showing spectral characteristics, where FIG. 5A is a spectral characteristic of Si photosensor sensitivity, FIG. 5B is a light transmittance of an on-chip color filter layer of each color, and FIG. 5C is an on-chip color filter. The respective Si optical sensor sensitivities after the layers are mounted are shown.

【図6】従来の固体撮像装置を示し、(a)は画素部分
の垂直レジスタ方向の概略断面図であり、(b)は被写
体側からみた固体撮像装置の概略平面図であり、オンチ
ップマイクロレンズ群のレイアウトを示す図である。
6A and 6B show a conventional solid-state imaging device, FIG. 6A is a schematic cross-sectional view of a pixel portion in a vertical register direction, and FIG. 6B is a schematic plan view of the solid-state imaging device as viewed from the subject side. It is a figure which shows the layout of a lens group.

【符号の説明】[Explanation of symbols]

1 半導体基板 2 光センサ部 3 第1層ポリシリコンゲート 4 第2層ポリシリコンゲート 5 遮光層 6 保護層 7 平坦化層 8 オンチップカラーフィルタ層 9 オンチップマイクロレンズ 1 Semiconductor Substrate 2 Optical Sensor Section 3 First Layer Polysilicon Gate 4 Second Layer Polysilicon Gate 5 Light Shielding Layer 6 Protective Layer 7 Flattening Layer 8 On-Chip Color Filter Layer 9 On-Chip Microlens

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 複数の光センサ部上に選択的に形成され
た開口部を有する遮光層と、 前記複数の光センサ部上および前記遮光層上の全面に形
成された保護層と、 前記保護層上に形成された平坦化層上に、前記複数の光
センサ部に臨んで周期的に形成された複数色のオンチッ
プカラーフィルタ層と、 前記オンチップカラーフィルタ層上に形成されたオンチ
ップマイクロレンズと、 を具備する固体撮像装置であって、 前記遮光層、前記保護層および前記オンチップマイクロ
レンズのうちの少なくともいずれか1種は、 前記オンチップカラーフィルタ層の各色に対応して、前
記光センサ部への入射光量を異にする構造であることを
特徴とする固体撮像装置。
1. A light-shielding layer having openings selectively formed on a plurality of optical sensor portions, a protective layer formed on the entire surface of the plurality of optical sensor portions and the light-shielding layer, and the protection. On-chip color filter layers of a plurality of colors that are periodically formed facing the plurality of photosensor units on a flattening layer formed on the layer, and on-chip formed on the on-chip color filter layer. A solid-state imaging device comprising: a microlens, wherein at least one of the light-shielding layer, the protective layer, and the on-chip microlens corresponds to each color of the on-chip color filter layer, A solid-state imaging device having a structure in which the amount of light incident on the optical sensor unit is different.
【請求項2】 オンチップマイクロレンズの平面形状
は、オンチップカラーフィルタ層の各色に対応してその
面積を異ならしめることにより、前記入射光量を異にす
ることを特徴とする、請求項1記載の固体撮像装置。
2. The plane shape of the on-chip microlens is different in the area corresponding to each color of the on-chip color filter layer, so that the incident light amount is different. The solid-state imaging device described.
【請求項3】 オンチップマイクロレンズの断面形状
は、オンチップカラーフィルタ層の各色に対応してその
高さを異ならしめることにより、前記入射光量を異にす
ることを特徴とする、請求項1記載の固体撮像装置。
3. The cross-sectional shape of the on-chip microlens is different in height depending on each color of the on-chip color filter layer so that the incident light amount is different. 1. The solid-state imaging device according to 1.
【請求項4】 保護層の断面形状は、オンチップカラー
フィルタ層の各色に対応してその厚さを異ならしめるこ
とにより、前記入射光量を異にすることを特徴とする、
請求項1記載の固体撮像装置。
4. The cross-sectional shape of the protective layer is characterized in that the incident light amount is made different by making the thickness different corresponding to each color of the on-chip color filter layer.
The solid-state imaging device according to claim 1.
【請求項5】 遮光層の平面形状は、オンチップカラー
フィルタ層の各色に対応してその開口面積を異ならしめ
ることにより、前記入射光量を異にすることを特徴とす
る、請求項1記載の固体撮像装置。
5. The planar shape of the light-shielding layer is different in the incident light amount by making the opening area of the on-chip color filter layer different for each color. Solid-state imaging device.
JP7275298A 1995-10-24 1995-10-24 Solid-state image sensor Pending JPH09116127A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7275298A JPH09116127A (en) 1995-10-24 1995-10-24 Solid-state image sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7275298A JPH09116127A (en) 1995-10-24 1995-10-24 Solid-state image sensor

Publications (1)

Publication Number Publication Date
JPH09116127A true JPH09116127A (en) 1997-05-02

Family

ID=17553489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7275298A Pending JPH09116127A (en) 1995-10-24 1995-10-24 Solid-state image sensor

Country Status (1)

Country Link
JP (1) JPH09116127A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001189442A (en) * 1999-12-28 2001-07-10 Nikon Corp Solid-state image pickup device, manufacturing method therefor, and digital camera
JP2001332711A (en) * 2000-05-18 2001-11-30 Sony Corp Solid-state image pickup element and its manufacturing method
EP1213764A2 (en) * 2000-12-08 2002-06-12 STMicroelectronics Limited Solid state image sensors and microlens arrays
WO2002049366A1 (en) * 2000-12-14 2002-06-20 3Dv Systems, Ltd. 3d camera
EP1458028A3 (en) * 1999-12-02 2006-03-01 Nikon Corporation Solid-state image sensor, production method of the same and digital camera
JP2006066931A (en) * 2005-10-14 2006-03-09 Toppan Printing Co Ltd Solid-state imaging device and method of manufacturing the same
JP2006093456A (en) * 2004-09-24 2006-04-06 Matsushita Electric Ind Co Ltd Solid-state imaging device, its manufacturing method and camera
JP2006237245A (en) * 2005-02-24 2006-09-07 Fuji Photo Film Co Ltd Microlens mounting single ccd color solid state imaging device and image reading apparatus
KR100780547B1 (en) * 2006-11-24 2007-11-30 동부일렉트로닉스 주식회사 Image sensor and method of manufacturing the image sensor
EP1517374A3 (en) * 2003-09-19 2008-03-26 FUJIFILM Corporation A solid state imaging device
JP2008153331A (en) * 2006-12-15 2008-07-03 Toppan Printing Co Ltd Color solid-state imaging element, and manufacturing method thereof
US7566405B2 (en) * 2003-11-26 2009-07-28 Aptina Imaging Corporation Micro-lenses for CMOS imagers and method for manufacturing micro-lenses
JP2009212154A (en) * 2008-02-29 2009-09-17 Canon Inc Image pickup device and image pickup system
JP2009252982A (en) * 2008-04-04 2009-10-29 Canon Inc Photoelectric conversion device
US8102426B2 (en) 1998-09-28 2012-01-24 Microsoft International Holdings B.V. 3D vision on a chip
US8436925B2 (en) 2008-12-08 2013-05-07 Sony Corporation Solid-state imaging device, method for processing signal of solid-state imaging device, and imaging apparatus
JP2013161848A (en) * 2012-02-02 2013-08-19 Toppan Printing Co Ltd Photomask for microlens, and method of manufacturing color solid-state imaging element using the same
CN105390511A (en) * 2014-08-20 2016-03-09 采钰科技股份有限公司 Image sensing device and method for fabricating the same
JP2016134617A (en) * 2015-01-16 2016-07-25 采▲ぎょく▼科技股▲ふん▼有限公司VisEra Technologies Company Limited Solid state image sensor
CN106158897A (en) * 2011-10-11 2016-11-23 索尼公司 Solid imaging element and electronic equipment
WO2018020846A1 (en) * 2016-07-29 2018-02-01 ソニーセミコンダクタソリューションズ株式会社 Imaging device

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8102426B2 (en) 1998-09-28 2012-01-24 Microsoft International Holdings B.V. 3D vision on a chip
EP1458028A3 (en) * 1999-12-02 2006-03-01 Nikon Corporation Solid-state image sensor, production method of the same and digital camera
JP2001189442A (en) * 1999-12-28 2001-07-10 Nikon Corp Solid-state image pickup device, manufacturing method therefor, and digital camera
JP2001332711A (en) * 2000-05-18 2001-11-30 Sony Corp Solid-state image pickup element and its manufacturing method
EP1213764A2 (en) * 2000-12-08 2002-06-12 STMicroelectronics Limited Solid state image sensors and microlens arrays
EP1213764A3 (en) * 2000-12-08 2004-11-10 STMicroelectronics Limited Solid state image sensors and microlens arrays
US6884985B2 (en) 2000-12-08 2005-04-26 Stmicroelectronics Ltd. Solid state image sensors and microlens arrays
WO2002049367A3 (en) * 2000-12-14 2003-03-06 3Dv Systems Ltd Improved photosurface for a 3d camera
WO2002049366A1 (en) * 2000-12-14 2002-06-20 3Dv Systems, Ltd. 3d camera
EP1517374A3 (en) * 2003-09-19 2008-03-26 FUJIFILM Corporation A solid state imaging device
US7612811B2 (en) 2003-09-19 2009-11-03 Fujifilm Holdings Corp. Solid state imaging device incorporating a light shielding film having openings of different sizes
US8390931B2 (en) 2003-11-26 2013-03-05 Aptina Imaging Corporation Micro-lenses for CMOS imagers and method for manufacturing micro-lenses
US7566405B2 (en) * 2003-11-26 2009-07-28 Aptina Imaging Corporation Micro-lenses for CMOS imagers and method for manufacturing micro-lenses
JP2006093456A (en) * 2004-09-24 2006-04-06 Matsushita Electric Ind Co Ltd Solid-state imaging device, its manufacturing method and camera
JP4546797B2 (en) * 2004-09-24 2010-09-15 パナソニック株式会社 Solid-state imaging device, manufacturing method thereof, and camera
US7656453B2 (en) 2004-09-24 2010-02-02 Panasonic Corporation Solid-state imaging device having characteristic color unit depending on color, manufacturing method thereof and camera
JP2006237245A (en) * 2005-02-24 2006-09-07 Fuji Photo Film Co Ltd Microlens mounting single ccd color solid state imaging device and image reading apparatus
JP4512504B2 (en) * 2005-02-24 2010-07-28 富士フイルム株式会社 Microlens mounted single-plate color solid-state imaging device and image input device
JP2006066931A (en) * 2005-10-14 2006-03-09 Toppan Printing Co Ltd Solid-state imaging device and method of manufacturing the same
KR100780547B1 (en) * 2006-11-24 2007-11-30 동부일렉트로닉스 주식회사 Image sensor and method of manufacturing the image sensor
JP2008153331A (en) * 2006-12-15 2008-07-03 Toppan Printing Co Ltd Color solid-state imaging element, and manufacturing method thereof
JP2009212154A (en) * 2008-02-29 2009-09-17 Canon Inc Image pickup device and image pickup system
US20120105670A1 (en) * 2008-02-29 2012-05-03 C/O Canon Kabushiki Kaisha Image sensing apparatus and imaging system
JP2009252982A (en) * 2008-04-04 2009-10-29 Canon Inc Photoelectric conversion device
US8436925B2 (en) 2008-12-08 2013-05-07 Sony Corporation Solid-state imaging device, method for processing signal of solid-state imaging device, and imaging apparatus
CN106158897A (en) * 2011-10-11 2016-11-23 索尼公司 Solid imaging element and electronic equipment
JP2013161848A (en) * 2012-02-02 2013-08-19 Toppan Printing Co Ltd Photomask for microlens, and method of manufacturing color solid-state imaging element using the same
CN105390511A (en) * 2014-08-20 2016-03-09 采钰科技股份有限公司 Image sensing device and method for fabricating the same
JP2016046510A (en) * 2014-08-20 2016-04-04 采▲ぎょく▼科技股▲ふん▼有限公司VisEra Technologies Company Limited Image sensing device and method of manufacturing the same
US9640576B2 (en) 2014-08-20 2017-05-02 Visera Technologies Company Limited Image sensing device and method for fabricating the same
JP2016134617A (en) * 2015-01-16 2016-07-25 采▲ぎょく▼科技股▲ふん▼有限公司VisEra Technologies Company Limited Solid state image sensor
US9704901B2 (en) 2015-01-16 2017-07-11 Visera Technologies Company Limited Solid-state imaging devices
WO2018020846A1 (en) * 2016-07-29 2018-02-01 ソニーセミコンダクタソリューションズ株式会社 Imaging device
US20190297234A1 (en) * 2016-07-29 2019-09-26 Sony Semiconductor Solutions Corporation Imaging device
US10917546B2 (en) 2016-07-29 2021-02-09 Sony Semiconductor Solutions Corporation Imaging device utilizing sensor area of photoelectric conversion elements corresponding to incident light passed through optical elements including a layer of polarizers of horizontal and vertical directions and quarter wave plates

Similar Documents

Publication Publication Date Title
JPH09116127A (en) Solid-state image sensor
EP0124025B1 (en) Solid-state color imaging device and process for fabricating the same
US5466926A (en) Colored microlens array and method of manufacturing same
US5986704A (en) Solid-state image pickup device, with purposefully displaced color filters, method of manufacturing same and camera incorporating same
US20050270594A1 (en) Solid-state imaging device, method for manufacturing the same and camera
US7535043B2 (en) Solid-state image sensor, method of manufacturing the same, and camera
JPH10125887A (en) Solid-state image sensor
CN101908549B (en) Solid-state image device, manufacturing method thereof and electronic apparatus
US6970293B2 (en) Solid state imaging device
JP2006210701A (en) Solid-state image sensing device and its manufacturing method
US20040183086A1 (en) Semiconductor apparatus and method for fabricating the same
JPH05134109A (en) Manufacture of color filter
JPH10209415A (en) Solid-state imaging device and it manufacturing method
KR100832710B1 (en) Image sensor and method of manufacturing the same
JP2004047682A (en) Solid-state image pickup device
JPH09148549A (en) Color solid image pickup element with on-chip lens
US6721005B1 (en) Solid state image sensor having different structures for effective pixel area and optical black area
JPH05167054A (en) Manufacture of solid-state image sensing device
JP2001267543A (en) Solid-state image pickup device and camera system using the same
JPH11289073A (en) Solid image pickup device and manufacture thereof
JP2006196626A (en) Solid-state imaging device, its manufacturing method and camera
KR100873289B1 (en) CMOS image sensor with reduced effect of oblinque incident light
KR100555480B1 (en) Solid static pick-up device having microlens and method for manufacturing the same
JP2000012814A (en) Solid color imaging element with on-chip lens and manufacturing method therefor
KR0155780B1 (en) Solid state image sensor and fabrication thereof