JPH09106955A - Epitaxial wafer and semiconductor light-emitting element - Google Patents

Epitaxial wafer and semiconductor light-emitting element

Info

Publication number
JPH09106955A
JPH09106955A JP26431795A JP26431795A JPH09106955A JP H09106955 A JPH09106955 A JP H09106955A JP 26431795 A JP26431795 A JP 26431795A JP 26431795 A JP26431795 A JP 26431795A JP H09106955 A JPH09106955 A JP H09106955A
Authority
JP
Japan
Prior art keywords
epitaxial
substrate
orientation
thin film
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26431795A
Other languages
Japanese (ja)
Other versions
JP2914246B2 (en
Inventor
Atsushi Yoshinaga
敦 吉永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP26431795A priority Critical patent/JP2914246B2/en
Priority to DE1996127838 priority patent/DE19627838A1/en
Publication of JPH09106955A publication Critical patent/JPH09106955A/en
Application granted granted Critical
Publication of JP2914246B2 publication Critical patent/JP2914246B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/305Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table characterised by the doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02395Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02625Liquid deposition using melted materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Led Devices (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve simultaneously the problem of a zigzag thyristor and the problem of unevenness of the surface of a wafer by a method wherein the surface of a GaAs single crystal substrate is slanted at a prescribed angle from the face (100) or the face equivalent to the face (100). SOLUTION: In the case where a substrate of the orientation not a slanted is used, there is not a directivity property in the form of the surface of an epitaxial wafer because the density of atomic layer steps is low and the steps exist randomly on the surface of the substrate, but in the case where the orientation of the substrate is slanted, the atomic layer steps exist at intervals proportioned to the reciprocal number of the tangent of the slanted angle of the orientation and the form of the surface of the wafer is formed so as to have a striped pattern in the directions to correspond to the steps existing with the intervals. Moreover, a natural reverse temperature in an epitaxial layer is different from that in the region of the steps and in the case where the orientation of the substrate is an orientation (100), the latter natural inversion temperature is low. As a result, an N-type part 2 is grown in the layer of a P-type part 3 and a zigzag thyristor 4 is easy to generate. By setting the slant of the orientation between 0.5 deg. and 5.0 deg., the formation of a thyristor and a junction having little surface unevenness are obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はエピタキシャルウエ
ハおよび半導体発光素子に係わり、詳しくは徐冷法液相
エピタキシャル成長方法によって、GaAs単結晶基板
上に、シリコンを添加したGaAsあるいはAlGaA
sからなるエピタキシャル薄膜を成長し、該エピタキシ
ャル薄膜中にシリコンの自然反転を利用してpn接合を
形成したエピタキシャルウエハ、および該ウエハから作
製された半導体発光素子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an epitaxial wafer and a semiconductor light emitting device, and more particularly to a GaAs or AlGaA doped with silicon on a GaAs single crystal substrate by a slow cooling liquid phase epitaxial growth method.
The present invention relates to an epitaxial wafer in which an epitaxial thin film made of s is grown and a pn junction is formed in the epitaxial thin film by utilizing the natural inversion of silicon, and a semiconductor light emitting device manufactured from the wafer.

【0002】[0002]

【従来の技術】III −V族化合物半導体におけるドーパ
ントとしてのシリコンは、両性不純物として知られてい
る。即ち、シリコンはIV族元素であるので、半導体母体
の III 族元素を置換するとドナーになり、V族元素を
置換するとアクセプターとなる。その結果、シリコンを
添加したIII −V族化合物半導体の電導型と有効キャリ
ヤ濃度は、III 族元素を置換したシリコンの濃度とV族
元素を置換したシリコンの濃度の大小関係と濃度差によ
ってそれぞれ決まる。
2. Description of the Related Art Silicon as a dopant in III-V group compound semiconductors is known as an amphoteric impurity. That is, since silicon is a group IV element, it becomes a donor by substituting the group III element of the semiconductor matrix and becomes an acceptor by substituting the group V element. As a result, the conductivity type and effective carrier concentration of the group III-V compound semiconductor to which silicon is added are determined by the magnitude relationship and the difference in concentration between the group III element-substituted silicon and the group V element-substituted silicon, respectively. .

【0003】徐冷法液相エピタキシャル成長方法を用い
て、シリコンを添加したGaAsあるいはAlGaAs
からなるエピタキシャル薄膜を成長させる場合、シリコ
ンのドナーとしての偏析係数と、アクセプターとしての
偏析係数の温度依存性が異なっていることが一般に知ら
れている。そして、この現象を利用した赤外発光ダイオ
ードの製造が広くおこなわれている。
A slow cooling method liquid phase epitaxial growth method is used to add GaAs or AlGaAs to which silicon is added.
It is generally known that when an epitaxial thin film made of is grown, the temperature dependence of the segregation coefficient of silicon as a donor and the segregation coefficient of an acceptor are different. Infrared light emitting diodes utilizing this phenomenon are widely manufactured.

【0004】即ち、上記の赤外発光ダイオードの製造に
おいては、シリコンを添加したGaAsあるいはAlG
aAsからなるエピタキシャル薄膜を徐冷法液相エピタ
キシャル成長方法を用いて成長させる際に、その成長温
度が高温の場合はシリコンのドナーとしての偏析係数の
方がアクセプターとしての偏析係数よりも大きいため、
成長したエピタキシャル薄膜はn型となる。ところが成
長に伴う系の冷却の過程で、ある温度を境界として前記
のシリコンのドナーとしての偏析係数とアクセプターと
しての偏析係数の大小関係が逆転するため、低温で成長
したエピタキシャル薄膜はp型となる。その結果、エピ
タキシャル薄膜中にpn接合が形成される。このような
現象は一般にシリコンの自然反転と呼ばれており、前述
の偏析係数の大小関係が逆転する温度を自然反転温度と
称する。
That is, in manufacturing the above infrared light emitting diode, GaAs or AlG added with silicon is used.
When an epitaxial thin film made of aAs is grown using the slow cooling liquid phase epitaxial growth method, when the growth temperature is high, the segregation coefficient of silicon as a donor is larger than that of an acceptor.
The grown epitaxial thin film becomes n-type. However, in the process of cooling the system during growth, the size relationship between the segregation coefficient of silicon as a donor and the segregation coefficient of an acceptor is reversed at a certain temperature, so that the epitaxial thin film grown at low temperature becomes p-type. . As a result, a pn junction is formed in the epitaxial thin film. Such a phenomenon is generally called natural inversion of silicon, and the temperature at which the magnitude relationship of the segregation coefficient is inverted is called the natural inversion temperature.

【0005】このシリコンの自然反転を利用して発光ダ
イオードを製造する方法の利点は次のような点にある。
即ち、他の一般に行われている液相エピタキシャル成長
法による発光ダイオードの製造においては、p型の薄膜
とn型の薄膜を成長するためには2つの溶液を用意しな
くてはならない。これに対して、前記の方法を用いれば
単一溶液のみでpn接合が形成できる。従って、基板一
枚あたりに要する溶液槽が少ないため、同一体積のエピ
タキシャル成長炉で多数枚のエピタキシャル成長が可能
となり量産、及びコストの低減が図れるのである。
The advantages of the method of manufacturing a light emitting diode by utilizing the natural inversion of silicon are as follows.
That is, in the production of a light emitting diode by the other commonly used liquid phase epitaxial growth method, two solutions must be prepared in order to grow a p-type thin film and an n-type thin film. On the other hand, if the above method is used, a pn junction can be formed with only a single solution. Therefore, since the number of solution baths required for one substrate is small, it is possible to grow a large number of substrates in the epitaxial growth furnace having the same volume, and mass production and cost reduction can be achieved.

【0006】[0006]

【発明が解決しようとする課題】ところが、上述のよう
にシリコンの自然反転を利用して形成したエピタキシャ
ル薄膜中のpn接合界面には、図1に模式的に示したよ
うなp層中にくさび型にn層が入り込んだ構造が現れる
ことがあった。このような界面の形状を持つエピタキシ
ャルウエハから発光素子を分離する際に、図1の点線5
で示したように1つの素子の中にこの構造が含まれてし
まうように素子が分離された場合、図2(a)に示すよ
うに本来はダイオ−ド(pn構造)であるべき素子が図
2(b)に示すようなサイリスタ(pnpn構造)にな
り、定格電圧を印加しても電流が流れなくなるという不
具合が生じることがあった。以下ではこのp層中にくさ
び型にn層が入り込んだ構造を、その形状と特性からイ
ナズマ型サイリスタ4と呼ぶこととする。
However, the pn junction interface in the epitaxial thin film formed by utilizing the natural inversion of silicon as described above has a wedge in the p layer as schematically shown in FIG. There was a case where a structure in which n layers were inserted into the mold appeared. When separating a light emitting device from an epitaxial wafer having such an interface shape, a dotted line 5 in FIG.
When the elements are separated so that this structure is included in one element as shown in FIG. 2, an element which should originally be a diode (pn structure) as shown in FIG. The thyristor (pnpn structure) as shown in FIG. 2 (b) is obtained, and even if a rated voltage is applied, a current may stop flowing. In the following, the structure in which the wedge-shaped n-layer enters the p-layer will be referred to as a lightning-type thyristor 4 in view of its shape and characteristics.

【0007】イナズマ型サイリスタの発生原因について
は温度ゆらぎ、溶液内のシリコン濃度の不均一性などさ
まざまな要因が考えられるが、現在まで明確な結論を得
るには至っていない。本発明の目的は、このシリコンの
自然反転を利用して形成したpn接合に特有の問題であ
るイナズマ型サイリスタの発生を低減または解消し、発
光素子に生じるサイリスタ構造の発生を解消することに
ある。加えて本発明の目的は、上記のイナズマ型サイリ
スタを解消する手段として本発明者が見いだした後述す
る方法に付随して、新たに発生したエピタキシャルウエ
ハの表面の凹凸という問題をも同時に解決する手段を提
供することにある。
The cause of the lightning type thyristor may be various factors such as temperature fluctuation and non-uniformity of the silicon concentration in the solution, but no clear conclusion has been obtained so far. An object of the present invention is to reduce or eliminate the generation of an energetic thyristor, which is a problem peculiar to a pn junction formed by utilizing the natural inversion of silicon, and eliminate the generation of a thyristor structure generated in a light emitting element. . In addition, the object of the present invention is to solve the above-mentioned problem of unevenness on the surface of an epitaxial wafer, which is accompanied by a method described later found by the present inventors as a means for eliminating the above-mentioned lightning type thyristor. To provide.

【0008】[0008]

【課題を解決するための手段】徐冷法液相エピタキシャ
ル成長方法によって、GaAs単結晶基板上に、シリコ
ンを添加したGaAsあるいはAlGaAsからなるエ
ピタキシャル薄膜を成長する場合、従来の技術に於いて
は、GaAs単結晶基板は(100)面或いはそれと等
価な面が用いられるのが一般的であった。本発明者はイ
ナズマ型サイリスタの低減について検討を重ねた結果、
エピタキシャル成長に使用する基板の表面を(100)
面或いはこれと等価な面から傾けることが、pn接合界
面の形状に影響を与えることを見いだした。即ち、基板
の表面の傾きが0.2度以内の場合はpn接合界面形状
は基板面方位に傾きのない場合と同様であるが、傾きを
0.5度以上にするとイナズマ型サイリスタのエピタキ
シャル成長面と平行な方向の長さが50μm以下とな
り、さらに傾きを1度以上にするとイナズマ型サイリス
タが解消されることが明らかになった。本発明者は以上
の知見に基づき、本発明に到ったものである。
When an epitaxial thin film made of GaAs or AlGaAs doped with silicon is grown on a GaAs single crystal substrate by the slow cooling liquid phase epitaxial growth method, in the conventional technique, the GaAs single crystal is used. The substrate is generally a (100) plane or a plane equivalent thereto. As a result of repeated studies on the reduction of the lightning type thyristor,
The surface of the substrate used for epitaxial growth is (100)
It was found that tilting from the plane or a plane equivalent thereto affects the shape of the pn junction interface. That is, when the inclination of the surface of the substrate is within 0.2 degrees, the shape of the pn junction interface is the same as when there is no inclination in the substrate surface orientation, but when the inclination is 0.5 degrees or more, the epitaxial growth surface of the lightning type thyristor. It became clear that the length in the direction parallel to is 50 μm or less, and further, if the inclination is 1 degree or more, the lightning type thyristor is eliminated. The present inventor has arrived at the present invention based on the above findings.

【0009】即ち本発明は、徐冷法液相エピタキシャル
成長方法によって、GaAs単結晶基板上に、シリコン
を添加したGaAsあるいはAlGaAsからなるエピ
タキシャル薄膜を成長し、該エピタキシャル薄膜中にシ
リコンの自然反転を利用してpn接合を形成したエピタ
キシャルウエハにおいて、前記GaAs単結晶基板は、
表面が(100)面あるいはこれと等価な面から0.5
度以上傾いていることを特徴とする。
That is, according to the present invention, an epitaxial thin film made of GaAs or AlGaAs to which silicon is added is grown on a GaAs single crystal substrate by the slow cooling liquid phase epitaxial growth method, and natural inversion of silicon is utilized in the epitaxial thin film. In an epitaxial wafer having a pn junction, the GaAs single crystal substrate is
The surface is 0.5 from the (100) plane or its equivalent plane.
It is characterized by being inclined more than one degree.

【0010】ところが一方、基板表面の低指数面からの
傾きが大きくなるにつれて、一般にエピタキシャルウエ
ハの表面は凹凸が強くなる傾向にある。このような表面
の凹凸は発光素子を製造する工程に於いて様々な不良の
原因となるので、エピタキシャルウエハ表面の凹凸はな
るべく小さいことが望ましい。本発明者は、上述の発明
を実施するに当たって、エピタキシャルウエハ表面の凹
凸が発光素子を製造する工程に於いて様々な不良の原因
となるのを防ぐために許容できる基板の傾き角度の上限
を検討した結果、傾き角度が5度以下であるならば、表
面研磨等の方法により上記の表面の凹凸が発光素子を製
造する工程に於いて様々な不良の原因となるのを防ぐこ
とができることを見いだした。
On the other hand, as the inclination of the substrate surface from the low index plane increases, the surface of the epitaxial wafer generally tends to have more irregularities. Since such unevenness on the surface causes various defects in the process of manufacturing the light emitting device, it is desirable that the unevenness on the surface of the epitaxial wafer is as small as possible. In carrying out the above-mentioned invention, the present inventor examined the upper limit of the tilt angle of the substrate that can be allowed in order to prevent the unevenness of the surface of the epitaxial wafer from causing various defects in the process of manufacturing the light emitting device. As a result, it has been found that if the inclination angle is 5 degrees or less, it is possible to prevent the above unevenness of the surface from causing various defects in the process of manufacturing the light emitting device by a method such as surface polishing. .

【0011】そこで本発明は、徐冷法液相エピタキシャ
ル成長方法によって、GaAs単結晶基板上に、シリコ
ンを添加したGaAsあるいはAlGaAsからなるエ
ピタキシャル薄膜を成長し、該エピタキシャル薄膜中に
シリコンの自然反転を利用してpn接合を形成したエピ
タキシャルウエハにおいて、前記GaAs単結晶基板
は、表面が(100)面あるいはこれと等価な面から
0.5度乃至5度傾いていることを特徴とするものであ
る。
Therefore, according to the present invention, an epitaxial thin film made of GaAs or AlGaAs to which silicon is added is grown on a GaAs single crystal substrate by the slow cooling liquid phase epitaxial growth method, and natural inversion of silicon is utilized in the epitaxial thin film. In an epitaxial wafer having a pn junction formed thereon, the surface of the GaAs single crystal substrate is tilted from the (100) plane or a plane equivalent thereto by 0.5 to 5 degrees.

【0012】[0012]

【発明の実施の形態】本発明によれば、GaAs単結晶
基板は、表面が(100)面あるいはこれと等価な面か
ら0.5度以上傾いている。本発明がイナズマ型サイリ
スタの発生の問題を解消し得る理由は、以下の作用によ
るものだと考えられる。
BEST MODE FOR CARRYING OUT THE INVENTION According to the present invention, the surface of the GaAs single crystal substrate is inclined by 0.5 degrees or more from the (100) plane or a plane equivalent thereto. The reason why the present invention can solve the problem of the occurrence of the lightning type thyristor is considered to be as follows.

【0013】周知のようにエピタキシャルウエハの表面
の形態は、基板面方位の傾きに依存するが、これは基板
面方位を傾けることによって基板表面に生じる原子層ス
テップの密度が面方位の傾きの有無と大きさによって異
なるためである。即ち、基板の面方位に傾きのない基板
を使用する場合には、この原子層ステップの密度は小さ
く、また表面にランダムに存在するので、エピタキシャ
ルウエハの表面の形態には方向性がないが、基板面方位
が傾いている場合には、基板表面の原子層ステップが面
方位を傾けた方向に、傾けた角度の正接の逆数に比例し
た間隔で存在するために、エピタキシャルウエハの表面
の形態はこれに対応した方向に縞状のパターンを持つよ
うになるのである。
As is well known, the morphology of the surface of an epitaxial wafer depends on the inclination of the substrate surface orientation. This is because the density of atomic layer steps generated on the substrate surface by tilting the substrate surface orientation has an inclination of the surface orientation. It depends on the size. That is, when using a substrate in which the plane orientation of the substrate is not tilted, the density of this atomic layer step is low, and since it randomly exists on the surface, the morphology of the surface of the epitaxial wafer has no directionality, When the substrate plane orientation is tilted, the atomic layer steps on the substrate surface are present in the tilted direction of the plane orientation at intervals proportional to the reciprocal of the tangent of the tilted angle. It has a striped pattern in the direction corresponding to this.

【0014】次にpn接合界面形状について考えてみ
る。エピタキシャル層は全体としては基板表面と垂直に
成長するが、これに伴って先述の原子層ステップは図3
に示すように成長方向とは異なる方向8に進行する。
Next, let us consider the shape of the pn junction interface. As a whole, the epitaxial layer grows perpendicularly to the substrate surface.
As shown in (4), it progresses in the direction 8 different from the growth direction.

【0015】エピタキシャル層と原子層ステップは成長
速度と成長方位が異なるので、それぞれの領域に対応す
る不純物の実効偏析係数が異なる。シリコンを添加した
GaAsの場合は、ジャーナル・オブ・アプライド・フ
ィジックス第42巻4512〜4513頁(1971年
発行)記載のように、成長方位が異なると自然反転温度
が変化する。このため、エピタキシャル層と原子層ステ
ップの領域では自然反転温度が異なり、基板面方位を
(100)面とした場合は原子層ステップの方が自然反
転温度が低くなる。このため、エピタキシャル成長の過
程において、系の温度がエピタキシャル層の自然反転温
度に達しても原子層ステップは自然反転せず、系が原子
層ステップの自然反転温度に達するまで原子層ステップ
の進行した跡のみがn型になる。この結果、図1のよう
なイナズマ型サイリスタが発生するものと考えられる。
Since the epitaxial layer and the atomic layer step have different growth rates and growth directions, the effective segregation coefficients of the impurities corresponding to the respective regions are different. In the case of GaAs to which silicon is added, the natural inversion temperature changes depending on the growth orientation, as described in Journal of Applied Physics, Volume 42, pages 4512-4513 (published in 1971). Therefore, the natural inversion temperature is different in the regions of the epitaxial layer and the atomic layer step, and when the substrate plane orientation is the (100) plane, the atomic layer step has a lower natural inversion temperature. Therefore, in the process of epitaxial growth, the atomic layer step does not naturally invert even when the temperature of the system reaches the natural inversion temperature of the epitaxial layer, and the trace of the progress of the atomic layer step until the system reaches the natural inversion temperature of the atomic layer step. Only becomes n-type. As a result, it is considered that the lightning type thyristor as shown in FIG. 1 is generated.

【0016】基板の表面が傾いている場合には、前述の
ように原子層ステップが表面に存在する。この原子層ス
テップはエピタキシャル成長中に互いに融合するのでエ
ピタキシャル成長終了後では肉眼で確認できるようなマ
クロな構造になる。この融合が起こるタイミングは原子
ステップ密度が大きいほどエピタキシャル成長開始位置
に近い。実験結果から面方位の傾きが0.5度のときは
この融合がエピタキシャル層の自然反転温度よりも僅か
に低温側、即ちエピタキシャル成長が進行した側で起こ
る。このため、基板面方位が傾いていない場合よりもイ
ナズマ型サイリスタの長さが短くなる。さらに傾きを大
きくした場合、この原子層ステップ密度が高くなるの
で、エピタキシャル層の自然反転温度に達するよりも前
に原子層ステップが融合する。このため、イナズマ型サ
イリスタは発生しなくなるものと考えられる。
If the surface of the substrate is tilted, atomic layer steps are present on the surface, as described above. Since these atomic layer steps are fused with each other during the epitaxial growth, they have a macroscopic structure that can be visually confirmed after the epitaxial growth is completed. The timing when this fusion occurs is closer to the epitaxial growth start position as the atomic step density increases. From the experimental result, when the inclination of the plane orientation is 0.5 degree, this fusion occurs slightly on the lower temperature side than the natural inversion temperature of the epitaxial layer, that is, on the side where the epitaxial growth proceeds. Therefore, the length of the lightning type thyristor becomes shorter than that when the substrate surface orientation is not inclined. When the gradient is further increased, the atomic layer step density becomes higher, and the atomic layer steps are fused before the spontaneous inversion temperature of the epitaxial layer is reached. Therefore, it is considered that the lightning type thyristor will not occur.

【0017】本発明者の実験によると、この原子層ステ
ップがエピタキシャル層の自然反転温度に達する以前の
段階で完全に融合するときの基板の傾きの最小値が1度
であることがあきらかになった。また基板表面の傾きが
0.5度であっても、(100)面に垂直に成長したエ
ピタキシャル層が自然反転した直後に原子層ステップの
融合が起こるため、イナズマ型サイリスタの長さが通常
の素子サイズよりも充分小さくなるので、発光素子の作
製に支障がなくなることもあきらかになった。
According to the experiments conducted by the present inventor, it is clear that the minimum value of the inclination of the substrate when this atomic layer step is completely fused before the natural inversion temperature of the epitaxial layer is reached is 1 degree. It was Even if the substrate surface is tilted by 0.5 degrees, the atomic layer steps are fused immediately after the spontaneous growth of the epitaxial layer grown perpendicular to the (100) plane. Since it was sufficiently smaller than the element size, it became clear that there was no hindrance to the production of the light emitting element.

【0018】本発明は、以上述べた作用によってイナズ
マ型サイリスタの発生の問題を解消し得るものであるた
め、本発明の効果は基板を傾ける方位には依存しない。
従って、本発明に於いては基板を傾ける方向はいずれで
も良い。
Since the present invention can solve the problem of the generation of the lightning type thyristor by the above-described action, the effect of the present invention does not depend on the orientation of tilting the substrate.
Therefore, in the present invention, the substrate may be tilted in any direction.

【0019】ただし、シリコンを添加したGaAsある
いはAlGaAsエピタキシャル薄膜の成長に於いて
は、自然反転温度は基板の面方位に依存することが知ら
れている。このため、基板面方位を傾ける方位によって
エピタキシャル成長により形成されたn層とp層の層厚
の比とエピタキシャル層の表面側(p側)のキャリヤ濃
度が変化する。従って基板面方位を傾ける方位によっ
て、成長したGaAsあるいはAlGaAsエピタキシ
ャル薄膜にn層とp層の層厚の比とエピタキシャル層の
表面側(p側)のキャリヤ濃度に関して、以下に述べる
ような特性上の差異が生じることに留意する必要があ
る。
However, it is known that the natural inversion temperature depends on the plane orientation of the substrate in the growth of the GaAs or AlGaAs epitaxial thin film to which silicon is added. For this reason, the ratio of the layer thicknesses of the n layer and the p layer formed by epitaxial growth and the carrier concentration on the surface side (p side) of the epitaxial layer change depending on the orientation of the substrate surface orientation. Therefore, depending on the orientation of tilting the substrate surface orientation, the grown GaAs or AlGaAs epitaxial thin film has the following characteristic characteristics with respect to the ratio of the n-layer and p-layer thickness and the carrier concentration on the surface side (p-side) of the epitaxial layer. It should be noted that there are differences.

【0020】すなわち、第1の場合は基板面方位を傾け
る方位を(100)面に対して非極性面が現れる方向で
ある〔110〕、〔1−10〕、〔101〕或いは〔1
0−1〕方向とする時で、この場合p層およびn層の各
エピタキシャル層厚と表面キャリヤ濃度は、面方位に傾
きのない基板を使用した場合と同様になる。従ってこの
場合は、傾きのない基板を使用した場合と同じエピタキ
シャル成長条件により、傾きのない基板を使用した場合
と同じ特性のエピタキシャル薄膜を得ることができる。
That is, in the first case, the direction in which the substrate plane is tilted is a direction in which a nonpolar plane appears with respect to the (100) plane [110], [1-10], [101] or [1].
0-1] direction, in this case, the respective epitaxial layer thicknesses and surface carrier concentrations of the p-layer and the n-layer are the same as in the case of using a substrate having no inclination in the plane orientation. Therefore, in this case, an epitaxial thin film having the same characteristics as in the case of using the non-tilted substrate can be obtained under the same epitaxial growth conditions as in the case of using the non-tilted substrate.

【0021】第2の場合は基板面方位を傾ける方位を
(100)面に対して〔111〕或いは〔1−1−1〕
方向として、(111)A面が現れる方向とするとき
で、この場合は傾きのない基板を使用した場合と同じエ
ピタキシャル成長条件により、p層が厚くなり表面キャ
リヤ濃度が増加する。
In the second case, the azimuth of inclining the substrate surface is [111] or [1-1-1] with respect to the (100) plane.
When the direction is the direction in which the (111) A plane appears, in this case, the p layer becomes thicker and the surface carrier concentration increases due to the same epitaxial growth conditions as in the case where a non-tilted substrate is used.

【0022】第3の場合は基板面方位を傾ける方位を
(100)面に対して〔11−1〕或いは〔1−11〕
として(111)B面が現れる方向とするときで、この
場合は傾きのない基板を使用した場合と同じエピタキシ
ャル成長条件によりp層が薄くなり表面キャリヤ濃度が
減少する。
In the third case, the azimuth of inclining the substrate surface azimuth is [11-1] or [1-11] with respect to the (100) plane.
When the (111) B plane appears, the p layer becomes thin and the surface carrier concentration decreases under the same epitaxial growth conditions as in the case where a non-tilted substrate is used.

【0023】第4の場合は上記第1から第3のいずれの
場合にもあてはまらない方位に基板を傾ける場合であ
る。この場合、p層とn層のエピタキシャル層厚比、自
然反転温度は上記第1から第3の場合を混合した状態に
なる。これらいずれの場合も、製造した素子の特性に差
がないので、上記の点に留意すればどちらの方向に基板
面方位を傾けても良い。
The fourth case is a case where the substrate is tilted in a direction that does not apply to any of the first to third cases. In this case, the p-layer and n-layer epitaxial layer thickness ratios and the natural inversion temperature are in a mixed state of the first to third cases. In any of these cases, there is no difference in the characteristics of the manufactured elements, so the substrate surface azimuth may be tilted in either direction if the above points are noted.

【0024】かかる手段によりイナズマ型サイリスタが
解消されるので、かかるエピタキシャル基板から製造し
た発光素子のサイリスタが解消される。
Since the lightning type thyristor is eliminated by such means, the thyristor of the light emitting device manufactured from such an epitaxial substrate is eliminated.

【0025】但し、本発明を実施するに当たって、基板
を傾けたことによって生じるエピタキシャルウエハ表面
の凹凸は、成長させるエピタキシャル薄膜の厚さによっ
てもその強弱が変化する。一般にエピタキシャルウエハ
表面の凹凸はエピタキシャル薄膜の厚さが厚いほど強く
なる傾向にある。このため、基板を傾ける角度の上限を
5度としても、成長するエピタキシャル薄膜の厚さが厚
すぎると、エピタキシャルウエハ表面の凹凸が強くなり
すぎ、発光素子を製造する工程に於いて様々な不良の原
因が生じることになりやすい。
However, in carrying out the present invention, the unevenness of the surface of the epitaxial wafer caused by tilting the substrate changes in intensity depending on the thickness of the epitaxial thin film to be grown. Generally, the unevenness on the surface of the epitaxial wafer tends to become stronger as the thickness of the epitaxial thin film increases. Therefore, even if the upper limit of the angle of tilting the substrate is 5 degrees, if the thickness of the growing epitaxial thin film is too thick, the unevenness on the surface of the epitaxial wafer becomes too strong, which causes various defects in the process of manufacturing the light emitting device. The cause is likely to occur.

【0026】本発明者は、基板を0.5乃至5度傾けた
エピタキシャル薄膜において、発光素子を製造する工程
に於いて様々な不良の原因となる程度の表面の凹凸が生
じないエピタキシャル薄膜の厚さの上限を調査し、成長
するエピタキシャル薄膜の厚さを150μm以下とする
ことにより、発光素子を製造する工程に於いて様々な不
良の発生を大幅に減少できることを見いだした。従っ
て、本発明に於いては、成長するエピタキシャル薄膜の
厚さは150μm以下とするのが好ましい。成長するエ
ピタキシャル薄膜の厚さが150μmより大きいと、上
述した理由により、表面の凹凸が強くなりすぎ発光素子
を製造する工程に於いて様々な不良の原因が生じやす
い。ここで、エピタキシャル薄膜の厚さは、薄膜をエピ
タキシャル成長させる温度の範囲や成長に用いる溶液の
厚さを調整することにより制御できる。
The inventor has found that the thickness of an epitaxial thin film in which a substrate is tilted by 0.5 to 5 degrees does not cause surface irregularities to the extent of causing various defects in the process of manufacturing a light emitting device. By investigating the upper limit of the thickness, it was found that the occurrence of various defects can be significantly reduced in the process of manufacturing the light emitting device by setting the thickness of the growing epitaxial thin film to 150 μm or less. Therefore, in the present invention, the thickness of the grown epitaxial thin film is preferably 150 μm or less. When the thickness of the grown epitaxial thin film is larger than 150 μm, the unevenness of the surface becomes too strong and various causes of defects are likely to occur in the process of manufacturing the light emitting device for the reason described above. Here, the thickness of the epitaxial thin film can be controlled by adjusting the temperature range for epitaxially growing the thin film and the thickness of the solution used for the growth.

【0027】なお、上に述べてきた説明はGaAsから
なるエピタキシャル薄膜を例としたが、同様の現象はA
lGaAsからなるエピタキシャル薄膜を積層する場合
も起こるため、本発明は、徐冷法液相エピタキシャル成
長方法によって、GaAs単結晶基板上に、シリコン
(Si)を添加したAlGaAsからなるエピタキシャ
ル薄膜を成長し、該エピタキシャル薄膜中にシリコンの
自然反転を利用してpn接合を形成したエピタキシャル
ウエハの場合にも同様に用いることができる。また本発
明を実施するに当たって、本発明に係わるエピタキシャ
ルウエハは、シリコン(Si)を添加し自然反転を利用
してpn接合を形成したGaAsあるいはAlGaAs
からなるエピタキシャル薄膜以外に、例えば光の取り出
し効率を向上させるための窓層のような付加的なエピタ
キシャル薄膜を有する構造になっていても、その効果に
変わりはない。この場合は、積層するすべてのエピタキ
シャル薄膜の合計の厚さが150μm以下とすることが
好ましい。
In the above description, an epitaxial thin film made of GaAs is taken as an example, but the similar phenomenon is
Since this also occurs when an epitaxial thin film made of 1GaAs is laminated, the present invention grows an epitaxial thin film made of AlGaAs doped with silicon (Si) on a GaAs single crystal substrate by the slow cooling liquid phase epitaxial growth method. It can be similarly used in the case of an epitaxial wafer in which a pn junction is formed by utilizing the natural inversion of silicon. In carrying out the present invention, the epitaxial wafer according to the present invention is a GaAs or AlGaAs in which silicon (Si) is added and a pn junction is formed by utilizing natural inversion.
Even if the structure has an additional epitaxial thin film such as a window layer for improving the light extraction efficiency other than the epitaxial thin film made of, the effect is the same. In this case, the total thickness of all the epitaxial thin films to be laminated is preferably 150 μm or less.

【0028】[0028]

【実施例】次に本発明を実施例および比較例を用いて具
体的に説明する。
EXAMPLES Next, the present invention will be specifically described with reference to Examples and Comparative Examples.

【0029】本発明の実施例として、基板の表面が、結
晶学的面方位において、(100)面から〔1−10〕
方向にそれぞれ0.5度、1.0度、2.0度、及び
5.0度傾いているn型GaAs基板を用意した。また
比較例のために、基板の表面が、結晶学的面方位におい
て、(100)面から〔1−10〕方向にそれぞれ0.
2度、及び10.0度傾いているn型GaAs基板を用
意した。これらの基板上に赤外発光ダイオード構造を製
造するために、通常のスライドボート法による徐冷法液
相エピタキシャル成長方法でシリコンを添加したGaA
sからなるエピタキシャル薄膜を積層した。
As an example of the present invention, the surface of the substrate is [1-10] from the (100) plane in the crystallographic plane orientation.
An n-type GaAs substrate was prepared which was inclined in the directions of 0.5 degree, 1.0 degree, 2.0 degree, and 5.0 degree, respectively. For comparison, the surface of the substrate has a crystallographic plane orientation of 0. 0 from the (100) plane to the [1-10] direction.
An n-type GaAs substrate tilted at 2 degrees and 10.0 degrees was prepared. In order to fabricate an infrared light emitting diode structure on these substrates, GaA doped with silicon by a slow cooling liquid phase epitaxial growth method using a normal slide boat method.
An epitaxial thin film made of s was laminated.

【0030】エピタキシャル成長用の溶液として、溶媒
としての金属Gaに溶質としてのGaAs多結晶を金属
Ga1kgに対して145g、及びドーパントとしての
シリコンを金属Ga1kgに対して2gをそれぞれ配合
したものを用いた。この溶液を溶液槽に入れ、またGa
As基板を別に成長装置に載置した状態で、成長装置の
スライドボートを成長炉内に入れて水素雰囲気で910
℃まで昇温し、GaAs多結晶とシリコンをGa溶液中
に完全に溶解した。続いてこの溶液を905℃まで降温
した後、スライドボートを摺動させて前記基板上にこの
溶液を導いた。このとき基板上のGa溶液の厚さは10
mmとなるように治具を設計した。その後1℃/分の冷
却速度で降温し、GaAs基板上にエピタキシャル薄膜
を成長させた。785℃に到達した後、雰囲気ガスをア
ルゴンに換えて放冷した。この成長条件では約860℃
が前述のシリコンの自然反転温度に対応しており、この
工程によってエピタキシャル薄膜中にpn接合が形成さ
れた。
As a solution for epitaxial growth, a mixture of Ga as a solvent, 145 g of GaAs polycrystal as a solute and 1 g of Ga as a solute, and 2 g of silicon as a dopant per 1 kg of Ga was used. Add this solution to the solution tank and
With the As substrate placed separately on the growth apparatus, the slide boat of the growth apparatus was placed in the growth furnace and the atmosphere was changed to 910 in a hydrogen atmosphere.
The temperature was raised to 0 ° C., and GaAs polycrystal and silicon were completely dissolved in the Ga solution. Subsequently, the temperature of this solution was lowered to 905 ° C., and then a slide boat was slid to guide the solution onto the substrate. At this time, the thickness of the Ga solution on the substrate is 10
The jig was designed to be mm. Then, the temperature was lowered at a cooling rate of 1 ° C./min to grow an epitaxial thin film on the GaAs substrate. After reaching 785 ° C., the atmosphere gas was changed to argon and the mixture was allowed to cool. Approximately 860 ℃ under these growth conditions
Corresponds to the above-mentioned natural inversion temperature of silicon, and a pn junction was formed in the epitaxial thin film by this step.

【0031】このようにして得られたエピタキシャルウ
エハは、GaAsエピタキシャル薄膜の厚さが約120
μmであり、そのうち基板側から約40μmがn型の電
導型、その上の約80μmがp型の電導型を示した。ま
た、GaAsエピタキシャル薄膜のキャリア濃度は、基
板との界面近傍ではn型でおよそ5×1017cm-3、エ
ピタキシャル薄膜表面ではp型でおよそ2×1018cm
-3であった。以上のようにして製造された赤外発光ダイ
オード用のエピタキシャルウエハの表面の形態、および
pn接合界面形状について説明する。
The thus obtained epitaxial wafer has a GaAs epitaxial thin film with a thickness of about 120.
μm, of which about 40 μm from the substrate side was an n-type conductive type, and about 80 μm above it was a p-type conductive type. The carrier concentration of the GaAs epitaxial thin film is about 5 × 10 17 cm −3 for n-type near the interface with the substrate and about 2 × 10 18 cm for p-type on the surface of the epitaxial thin film.
Was -3 . The morphology of the surface and the pn junction interface shape of the epitaxial wafer for infrared light emitting diode manufactured as described above will be described.

【0032】表1に、上記の表面の傾き角度がそれぞれ
異なる基板を使用して製造したエピタキシャルウエハの
pn接合界面の形状と表面形態の良否を示した。pn接
合界面形状はエピタキシャル基板を劈開し、硫酸:過酸
化水素:水=8:1:1の組成のエッチング液で3分間
エッチングした後に偏光顕微鏡によって観察した。表1
で接合界面形状については、イナズマ型サイリスタのま
ったく存在しないものを○印、イナズマ型サイリスタの
長さがエピタキシャル基板全域において50μm未満の
ものを△印、イナズマ型サイリスタの長さが200μm
以上のものが一点でも観察されたものは×印として表示
した。表面の形態については、素子工程においてエピタ
キシャルウエハの表面を研磨しなくても通常のオーミッ
ク電極が形成できる程度のものを○印、深さ10μmの
研磨工程を付加すれば通常のオーミック電極形成が可能
である程度のものを△印、深さ10μmの研磨によって
もオーミック電極形成が無理なものを×印で表示した。
Table 1 shows the shape of the pn junction interface and the quality of the surface morphology of the epitaxial wafers manufactured using the substrates having different surface inclination angles. The pn junction interface shape was observed by a polarization microscope after cleaving the epitaxial substrate, etching with an etching solution having a composition of sulfuric acid: hydrogen peroxide: water = 8: 1: 1 for 3 minutes. Table 1
Regarding the junction interface shape, ○ indicates that there is no lightning type thyristor at all, and Δ indicates that the length of lightning type thyristor is less than 50 μm over the entire epitaxial substrate, and length of lightning type thyristor is 200 μm
If even one point of the above was observed, it was indicated as x. Regarding the surface morphology, if the normal ohmic electrode can be formed without polishing the surface of the epitaxial wafer in the element process, a circle is shown, and if a polishing process with a depth of 10 μm is added, a normal ohmic electrode can be formed. Some of these are indicated by Δ, and those by which ohmic electrode formation is impossible even by polishing to a depth of 10 μm are indicated by X.

【0033】[0033]

【表1】 [Table 1]

【0034】表1より、pn接合界面形状は基板の表面
の傾きの角度により変化し、傾き角度が0.2度では2
00μm以上のイナズマ型サイリスタが見られるが、傾
き角度が1.0度以上の場合はイナズマ型サイリスタが
まったく見られないことがわかる。また、傾き角度が
0.5度の場合は、イナズマ型サイリスタは発生するも
ののその長さは50μm以下であることがわかる。同様
に表1より、エピタキシャルウエハ表面の形態も基板の
表面の傾きの角度により変化し、傾き角度が2.0度以
下の場合は素子工程においてエピタキシャルウエハの表
面を研磨しなくても通常のオーミック電極が形成できる
程度の良好な表面であるが、傾き角度が10.0度の場
合は深さ10μmの研磨によってもオーミック電極形成
が無理な程度の強い凹凸の表面になることがわかる。ま
た、傾き角度が5.0度の場合は深さ10μmの研磨工
程を付加すれば通常のオーミック電極形成が可能である
程度の凹凸の表面になることがわかる。
From Table 1, the shape of the pn junction interface changes depending on the angle of inclination of the surface of the substrate, and is 2 when the angle of inclination is 0.2 degrees.
It can be seen that the lightning type thyristor having a thickness of 00 μm or more can be seen, but the lightning type thyristor cannot be seen at all when the inclination angle is 1.0 degree or more. Further, it can be seen that when the tilt angle is 0.5 degree, the length of the lightning type thyristor is 50 μm or less, although it is generated. Similarly, from Table 1, the morphology of the surface of the epitaxial wafer also changes depending on the angle of inclination of the surface of the substrate. When the angle of inclination is 2.0 degrees or less, normal ohmic contact is performed without polishing the surface of the epitaxial wafer in the element process. Although the surface is good enough to form an electrode, it can be seen that when the inclination angle is 10.0 degrees, the surface having strong irregularities is such that ohmic electrode formation is impossible even by polishing to a depth of 10 μm. Further, it can be seen that when the inclination angle is 5.0 degrees, a normal ohmic electrode can be formed by adding a polishing step with a depth of 10 μm, and the surface becomes uneven to some extent.

【0035】さらに、上述した表面の傾き角度がそれぞ
れ異なる基板を使用して製造したエピタキシャルウエハ
から発光素子を製造して、サイリスタの発生状況を比較
した。ここで発光素子の平面形状は250μm角の略正
方形とした。サイリスタの発生状況の結果を表2に示
す。ここでサンプルの個数は、基板の傾き角度毎に各々
およそ10万個である。この結果から、基板の傾き角度
が0.5度以上である基板を用いるとサイリスタが発生
しなくなることがわかる。以上述べた結果より、本発明
の優位性はあきらかである。
Further, light emitting devices were manufactured from epitaxial wafers manufactured by using substrates having different surface inclination angles, and the occurrence states of thyristors were compared. Here, the planar shape of the light emitting device was a substantially square of 250 μm square. Table 2 shows the results of the thyristor generation status. Here, the number of samples is about 100,000 for each tilt angle of the substrate. From this result, it is understood that the thyristor does not occur when a substrate having a substrate inclination angle of 0.5 degrees or more is used. From the results described above, the superiority of the present invention is clear.

【0036】[0036]

【表2】 [Table 2]

【0037】[0037]

【発明の効果】以上述べてきたように本発明は、シリコ
ンの自然反転を利用して形成したpn接合に特有の問題
であるイナズマ型サイリスタの発生を低減または解消
し、発光素子に生じるサイリスタ構造の発生を解消する
効果を有する。同時に本発明は、上記のイナズマ型サイ
リスタを解消する手段として本発明者が見いだした、G
aAs単結晶基板の表面を(100)面あるいはこれと
等価な面から0.5度以上傾けるという方法に付随し
て、新たに発生したエピタキシャルウエハの表面の凹凸
という問題をも同時に解決する効果を有する。
As described above, the present invention reduces or eliminates the generation of the lightning type thyristor, which is a problem peculiar to the pn junction formed by utilizing the natural inversion of silicon, and the thyristor structure generated in the light emitting element. Has the effect of eliminating the occurrence of. At the same time, the present invention has been found by the present inventor as means for solving the above-mentioned lightning type thyristor.
In addition to the method of inclining the surface of the aAs single crystal substrate from the (100) plane or a plane equivalent thereto by 0.5 degrees or more, the effect of simultaneously solving the problem of the newly generated unevenness of the surface of the epitaxial wafer is obtained. Have.

【図面の簡単な説明】[Brief description of the drawings]

【図1】イナズマ型サイリスタを説明する模式図であ
る。
FIG. 1 is a schematic diagram illustrating an inazuma type thyristor.

【図2】エピタキシャル基板の(a)通常のpn接合を
含む領域から製造された発光素子と(b)イナズマ型サ
イリスタを含む領域から製造された発光素子とを説明す
る模式図である。
FIG. 2 is a schematic diagram illustrating (a) a light emitting device manufactured from a region including a normal pn junction and (b) a light emitting device manufactured from a region including a lightning type thyristor of an epitaxial substrate.

【図3】エピタキシャル成長の方向と原子ステップの成
長方向を説明する模式図である。
FIG. 3 is a schematic diagram for explaining the epitaxial growth direction and the atomic step growth direction.

【符号の説明】[Explanation of symbols]

1 n型GaAs基板 2 n型エピタキシャル薄膜 3 p型エピタキシャル薄膜 4 イナズマ型サイリスタ 5 素子分離の際の切断線 6 原子層ステップ 7 エピタキシャル成長方向 8 原子層ステップの進行方向 1 n-type GaAs substrate 2 n-type epitaxial thin film 3 p-type epitaxial thin film 4 lightning-type thyristor 5 cutting line for device isolation 6 atomic layer step 7 epitaxial growth direction 8 atomic layer step progress direction

【手続補正書】[Procedure amendment]

【提出日】平成8年2月22日[Submission date] February 22, 1996

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項1[Correction target item name] Claim 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0011[Correction target item name] 0011

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0011】そこで本発明は、徐冷法液相エピタキシャ
ル成長方法によって、GaAs単結晶基板上に、シリコ
ンを添加したGaAsあるいはAlGaAsからなるエ
ピタキシャル薄膜を成長し、該エピタキシャル薄膜中に
シリコンの自然反転を利用してpn接合を形成したエピ
タキシャルウエハにおいて、前記GaAs単結晶基板
は、表面が(100)面あるいはこれと等価な面から
0.5度以上かつ5度以下の範囲内で傾いていることを
特徴とするものである。
Therefore, according to the present invention, an epitaxial thin film made of GaAs or AlGaAs to which silicon is added is grown on a GaAs single crystal substrate by the slow cooling liquid phase epitaxial growth method, and natural inversion of silicon is utilized in the epitaxial thin film. In the epitaxial wafer having a pn junction formed thereon, the surface of the GaAs single crystal substrate is tilted within a range of 0.5 degrees or more and 5 degrees or less from a (100) plane or a plane equivalent thereto. It is a thing.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0026[Correction target item name] 0026

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0026】本発明者は、基板を0.5度以上かつ5度
以下の範囲内で傾けたエピタキシャル薄膜において、発
光素子を製造する工程に於いて様々な不良の原因となる
程度の表面の凹凸が生じないエピタキシャル薄膜の厚さ
の上限を調査し、成長するエピタキシャル薄膜の厚さを
150μm以下とすることにより、発光素子を製造する
工程に於いて様々な不良の発生を大幅に減少できること
を見いだした。従って、本発明に於いては、成長するエ
ピタキシャル薄膜の厚さは150μm以下とするのが好
ましい。成長するエピタキシャル薄膜の厚さが150μ
mより大きいと、上述した理由により、表面の凹凸が強
くなりすぎ発光素子を製造する工程に於いて様々な不良
の原因が生じやすい。ここで、エピタキシャル薄膜の厚
さは、薄膜をエピタキシャル成長させる温度の範囲や成
長に用いる溶液の厚さを調整することにより制御でき
る。
The inventor of the present invention, in the epitaxial thin film in which the substrate is tilted within the range of 0.5 degrees or more and 5 degrees or less, has a surface irregularity that causes various defects in the process of manufacturing the light emitting device. By investigating the upper limit of the thickness of the epitaxial thin film that does not cause the occurrence of defects, it was found that various defects can be significantly reduced in the process of manufacturing the light emitting device by setting the thickness of the growing epitaxial thin film to 150 μm or less. It was Therefore, in the present invention, the thickness of the grown epitaxial thin film is preferably 150 μm or less. The thickness of the growing epitaxial thin film is 150μ
If it is larger than m, the unevenness of the surface becomes too strong and various causes of defects are likely to occur in the process of manufacturing the light emitting device for the reason described above. Here, the thickness of the epitaxial thin film can be controlled by adjusting the temperature range for epitaxially growing the thin film and the thickness of the solution used for the growth.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 徐冷法液相エピタキシャル成長方法によ
って、GaAs単結晶基板上に、シリコン(Si)を添
加したGaAsあるいはAlGaAsからなるエピタキ
シャル薄膜を成長し、該エピタキシャル薄膜中にシリコ
ンの自然反転を利用してpn接合を形成したエピタキシ
ャルウエハにおいて、 前記GaAs単結晶基板は、表面が(100)面あるい
はこれと等価な面から0.5度乃至5度傾いていること
を特徴とするエピタキシャルウエハ。
1. A slow-cooling liquid phase epitaxial growth method is used to grow an epitaxial thin film of GaAs or AlGaAs doped with silicon (Si) on a GaAs single crystal substrate, and utilize the natural inversion of silicon in the epitaxial thin film. An epitaxial wafer having a pn junction, wherein the GaAs single crystal substrate has a surface inclined by 0.5 to 5 degrees from a (100) plane or a plane equivalent thereto.
【請求項2】 積層するすべてのエピタキシャル薄膜の
合計の厚さが150μm以下であることを特徴とする請
求項1記載のエピタキシャルウエハ。
2. The epitaxial wafer according to claim 1, wherein the total thickness of all the laminated epitaxial thin films is 150 μm or less.
【請求項3】 請求項1または2記載のエピタキシャル
ウエハから作製された半導体発光素子。
3. A semiconductor light emitting device manufactured from the epitaxial wafer according to claim 1.
JP26431795A 1995-10-12 1995-10-12 Epitaxial wafer and semiconductor light emitting device Expired - Lifetime JP2914246B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP26431795A JP2914246B2 (en) 1995-10-12 1995-10-12 Epitaxial wafer and semiconductor light emitting device
DE1996127838 DE19627838A1 (en) 1995-10-12 1996-07-10 Epitaxial wafer for LED manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26431795A JP2914246B2 (en) 1995-10-12 1995-10-12 Epitaxial wafer and semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JPH09106955A true JPH09106955A (en) 1997-04-22
JP2914246B2 JP2914246B2 (en) 1999-06-28

Family

ID=17401509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26431795A Expired - Lifetime JP2914246B2 (en) 1995-10-12 1995-10-12 Epitaxial wafer and semiconductor light emitting device

Country Status (2)

Country Link
JP (1) JP2914246B2 (en)
DE (1) DE19627838A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9806230B2 (en) 2009-08-24 2017-10-31 QROMIS, Inc. Solid state lighting devices with selected thermal expansion and/or surface characteristics, and associated methods
CN116169556A (en) * 2023-04-21 2023-05-26 深圳市星汉激光科技股份有限公司 Optical fiber coupling semiconductor laser with ladder design and welding equipment

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001048694A (en) * 1999-08-02 2001-02-20 Sumitomo Electric Ind Ltd Gallium.arsenic single crystal wafer and gallium.arsenic liquid phase epitaxial wafer
RU2472248C2 (en) * 2010-03-03 2013-01-10 Общество с ограниченной ответственностью "Интелсоб" (ООО "Интелсоб") High-voltage high-temperature quick-acting thyristor with field control

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5040315A (en) * 1973-08-18 1975-04-14
JPS5193883A (en) * 1975-02-17 1976-08-17
JPS5268079A (en) * 1975-12-01 1977-06-06 Western Electric Co Highly smooth epitaxial crystal growth
JPS5334485A (en) * 1976-09-10 1978-03-31 Toshiba Corp Manufacture for chemical compound semiconductor light emitting element
JPS5389367A (en) * 1977-01-18 1978-08-05 Hitachi Cable Ltd Substrate crystal for semiconductor epitaxial growth
JPH06132562A (en) * 1992-10-22 1994-05-13 Hitachi Cable Ltd Semiconductor light emitting device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3334236C2 (en) * 1983-09-22 1995-01-19 Telefunken Microelectron Method of manufacturing a semiconductor device
DE3731010A1 (en) * 1987-09-16 1989-03-30 Telefunken Electronic Gmbh Process for liquid-phase epitaxy

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5040315A (en) * 1973-08-18 1975-04-14
JPS5193883A (en) * 1975-02-17 1976-08-17
JPS5268079A (en) * 1975-12-01 1977-06-06 Western Electric Co Highly smooth epitaxial crystal growth
JPS5334485A (en) * 1976-09-10 1978-03-31 Toshiba Corp Manufacture for chemical compound semiconductor light emitting element
JPS5389367A (en) * 1977-01-18 1978-08-05 Hitachi Cable Ltd Substrate crystal for semiconductor epitaxial growth
JPH06132562A (en) * 1992-10-22 1994-05-13 Hitachi Cable Ltd Semiconductor light emitting device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9806230B2 (en) 2009-08-24 2017-10-31 QROMIS, Inc. Solid state lighting devices with selected thermal expansion and/or surface characteristics, and associated methods
CN116169556A (en) * 2023-04-21 2023-05-26 深圳市星汉激光科技股份有限公司 Optical fiber coupling semiconductor laser with ladder design and welding equipment

Also Published As

Publication number Publication date
JP2914246B2 (en) 1999-06-28
DE19627838A1 (en) 1997-04-17

Similar Documents

Publication Publication Date Title
TWI429797B (en) Group iii nitride semiconductor crystal substrate and semiconductor device
US4876210A (en) Solution growth of lattice mismatched and solubility mismatched heterostructures
JPH076971A (en) Synthetic semiconductor and its controlled doping
US4960728A (en) Homogenization anneal of II-VI compounds
JP6758569B2 (en) High withstand voltage Schottky barrier diode
US11466384B2 (en) Method of forming a high quality group-III metal nitride boule or wafer using a patterned substrate
EP0216852A1 (en) Method for prevention of autodoping of epitaxial layers
JPH03236218A (en) Compound semiconductor substrate and manufacture thereof
US20210246571A1 (en) Large area group iii nitride crystals and substrates, methods of making, and methods of use
JP3267606B2 (en) Substrate treatment and method for fabricating a semiconductor device using the substrate
US4948751A (en) Moelcular beam epitaxy for selective epitaxial growth of III - V compound semiconductor
US11721549B2 (en) Large area group III nitride crystals and substrates, methods of making, and methods of use
EP0573270B1 (en) Method of preparing compound semiconductor
JP2914246B2 (en) Epitaxial wafer and semiconductor light emitting device
US4164436A (en) Process for preparation of semiconductor devices utilizing a two-step polycrystalline deposition technique to form a diffusion source
US5571321A (en) Method for producing a gallium phosphide epitaxial wafer
EP4104202A1 (en) Large area group iii nitride crystals and substrates, methods of making, and methods of use
Tanahashi et al. Electrical properties of undoped and Si‐doped Al0. 48In0. 52As grown by liquid phase epitaxy
Steiner et al. Silicon layers on polycrystalline silicon substrates—influence of growth parameters during liquid phase epitaxy
JP7046242B1 (en) Method for manufacturing indium phosphide single crystal ingot and method for manufacturing indium phosphide substrate
US20020179002A1 (en) Inp single crystal substrate
KR100403543B1 (en) GaAs single crystal wafer and GaAs liquid phase epitaxial wafer
US20230340695A1 (en) Large area group iii nitride crystals and substrates, methods of making, and methods of use
KR100952650B1 (en) Epitaxial growing method and substrate for epitaxial growth
JPH0526760B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080416

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110416

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110416

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120416

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120416

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 15

EXPY Cancellation because of completion of term