JPH09105673A - Spectral apparatus - Google Patents

Spectral apparatus

Info

Publication number
JPH09105673A
JPH09105673A JP26292195A JP26292195A JPH09105673A JP H09105673 A JPH09105673 A JP H09105673A JP 26292195 A JP26292195 A JP 26292195A JP 26292195 A JP26292195 A JP 26292195A JP H09105673 A JPH09105673 A JP H09105673A
Authority
JP
Japan
Prior art keywords
spectroscopic
measurement target
sample
continuous
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26292195A
Other languages
Japanese (ja)
Inventor
Takeo Tanaami
健雄 田名網
Shuji Urabe
修司 占部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP26292195A priority Critical patent/JPH09105673A/en
Publication of JPH09105673A publication Critical patent/JPH09105673A/en
Pending legal-status Critical Current

Links

Landscapes

  • Spectrometry And Color Measurement (AREA)

Abstract

PROBLEM TO BE SOLVED: To accurately measure the distribution of the colors of an article having a spatial distribution by providing a spectral means disposed so that one axis corresponds to the continuous space coordinates of an object to be measured and the other axis perpendicular thereto corresponds to the wavelength spectrum of the object to be measured, an incident slit, and an image processor. SOLUTION: A spectroscope 10 has a lens 11, an incident slit 12, a diffraction grating 13 and a photoreceiver 14. The lens 11 condenses the light from a sample 2, and focuses the area corresponding to a part from A to B on the sample 2 on the slit 12. The image of the slit 12 is incident on the grating 13, and the light spectrally separated by the grating 13 is incident on the photoreceiver 14. Many photoreceivers are arranged in two-dimensional state in the photoreceiver 14. CCD is normally used as the photoreceiver. With this constitution, the area from A to B on the sample 2 is focused on the slit 12 by the lens 11. The image of the slit 12 is spectrally decomposed into wavelengths from ϕ1 to ψ2 by the grating 13. At this time, the A and B of the space shaft become A", B" of the photoreceiver 14, and decomposed into the wavelengths λ1 to λ2 .

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、物体の色を測定するこ
とのできる分光装置に関し、特に色に関して空間分布を
持つ物体の色を正確に測定する分光装置に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a spectroscopic device capable of measuring the color of an object, and more particularly to a spectroscopic device capable of accurately measuring the color of an object having a spatial distribution in terms of color.

【0002】[0002]

【従来の技術】従来のこの種の分光測色装置の原理図を
図8に示す。試料2の表面に測定用光源1からの照明光
を照射し、試料2の表面からの乱反射光の一部をモノク
ロメータ3を通して受光器4に導き、電気信号に変換す
る。モノクロメータ3および受光器4から成る部分が分
光測光器であり、このような構成により試料表面の色を
測定することができる。
2. Description of the Related Art FIG. 8 shows the principle of a conventional spectral colorimetric apparatus of this type. Illumination light from the measurement light source 1 is applied to the surface of the sample 2, and a part of diffused reflection light from the surface of the sample 2 is guided to the light receiver 4 through the monochromator 3 and converted into an electric signal. The portion including the monochromator 3 and the light receiver 4 is a spectrophotometer, and the color of the sample surface can be measured by such a configuration.

【0003】[0003]

【発明が解決しようとする課題】ところで、このような
測色装置では1点の情報しか測定できないため、空間分
布を持つ試料に対しては、ある広い面積の平均値を測定
するかあるいは空間的にプローブまたは試料を走査して
測定する必要があった。しかし、前者は精度を悪化さ
せ、後者は測定に時間がかかると共に走査手段が必要な
ため複雑で高価となるという欠点があった。さらに、場
所による光量むらや、振動、光軸のずれあるいは傾きな
どの誤差も入りやすいという問題があった。
By the way, since such a color measuring device can measure only one point of information, for a sample having a spatial distribution, an average value of a certain wide area is measured or a spatial value is measured. It was necessary to scan the probe or sample for measurement. However, the former has a drawback that the accuracy is deteriorated, and the latter has a drawback that it takes a long time for measurement and requires a scanning means, which is complicated and expensive. In addition, there is a problem that unevenness in light quantity depending on the location, errors such as vibration, deviation or tilt of the optical axis are likely to occur.

【0004】このため、空間分布を持つ試料を測定する
ためには図9に示すようにカラーカメラ5が使用される
ことがある。しかし、カラーカメラはRGBの色フィル
タで測定しており、次のような理由により、正確な色の
測定ができないという問題がある。 (1) 図10に示す光特性に合わせるためには真のRBG
フィルタは規格上マイナスの特性も必要であるが、現実
には実現できないため近似(一部を点線で示す近似曲
線)のフィルタを使用している。 (2) スペクトル測定ではないため条件等色(分光分布の
異なる2つの色刺激が特定の観測条件で等しい色に見え
ること)を補正できない。 (3) 光源の輝線スペクトルを補正できない。
Therefore, in order to measure a sample having a spatial distribution, a color camera 5 may be used as shown in FIG. However, since the color camera uses RGB color filters for measurement, there is a problem that accurate color measurement cannot be performed for the following reasons. (1) True RBG to match the optical characteristics shown in FIG.
The filter also requires a negative characteristic in the standard, but since it cannot be realized in reality, an approximate (approximate curve partially shown by a dotted line) filter is used. (2) Since it is not a spectral measurement, it is not possible to correct the condition color matching (two color stimuli with different spectral distributions appear to be the same color under specific observation conditions). (3) The bright line spectrum of the light source cannot be corrected.

【0005】本発明の目的は、このような点に鑑み、空
間分布を持つ物体の色の分布を高速でしかも正確に測定
することのできる分光装置を実現することにある。
In view of the above points, an object of the present invention is to realize a spectroscopic device capable of accurately measuring the color distribution of an object having a spatial distribution at high speed.

【0006】[0006]

【課題を解決するための手段】このような目的を達成す
るために本願の第1の発明では、2次元状に多数の受光
素子を配列して成る受光器を備える分光器を有した分光
装置であって、1つの軸が測定対象の連続した空間座標
に対応し、それと直交する他の軸が前記測定対象の波長
スペクトルに対応するように設置された分光手段と、前
記測定対象の連続した空間座標に対応する軸が長手方向
となり前記測定対象からの光の一部を通過させ前記分光
手段に入射する直線状の入射スリット、前記分光手段の
出力を受けて前記測定対象の色の分布を求めるための処
理を行う画像処理装置を備えたことを特徴とする。ま
た、本願の第2の発明では、2次元状に多数の受光素子
を配列して成る受光器を備える分光器を有した分光装置
であって、波長連続変化フィルタを設け、1つの軸が測
定対象の連続した空間座標に対応し、それと直交する他
の軸が前記測定対象の波長スペクトルに対応すると共
に、波長スペクトルに対応する軸が前記波長連続変化フ
ィルタの波長に対して変化する方向であるようにした分
光手段と、この分光手段の出力を受けて前記測定対象の
色の分布を求めるための処理を行う画像処理装置を備え
たことを特徴とする。
In order to achieve such an object, in the first invention of the present application, a spectroscope having a spectroscope including a photodetector in which a large number of photodetectors are two-dimensionally arranged. In addition, one axis corresponds to the continuous spatial coordinates of the measurement target, and the other axis orthogonal to it corresponds to the spectral means installed so as to correspond to the wavelength spectrum of the measurement target, and the continuous measurement target of the measurement target. The axis corresponding to the spatial coordinates is the longitudinal direction and a linear incident slit that allows a part of the light from the measurement object to pass through and enters the spectroscopic means, and receives the output of the spectroscopic means to determine the color distribution of the measurement object. It is characterized in that it is provided with an image processing device for performing processing for obtaining. Further, according to the second invention of the present application, there is provided a spectroscope including a spectroscope including a photodetector in which a large number of photodetectors are arranged in a two-dimensional manner, wherein a wavelength continuous change filter is provided and one axis is measured. Corresponding to the continuous spatial coordinates of the object, the other axis orthogonal thereto corresponds to the wavelength spectrum of the measurement object, and the axis corresponding to the wavelength spectrum is the direction that changes with respect to the wavelength of the wavelength continuous change filter. It is characterized in that it is provided with such a spectroscopic means, and an image processing device for receiving the output of the spectroscopic means and performing processing for obtaining the color distribution of the measurement object.

【0007】[0007]

【作用】測定対象の連続した1次元空間の光を分光し、
2次元の受光面を有する受光器で受光する。これにより
1軸が空間分布に、これと直交する他の1軸に波長スペ
クトルを割り当てることができ、空間分布とスペクトル
分布の両方を同時に求めることができる。画像処理装置
において、受光器の出力を基にJIS Z8722〜Z
8729等に準じて測定対象の色の分布を計算により求
める。
[Operation] The light in the continuous one-dimensional space of the measurement object is dispersed,
Light is received by a light receiver having a two-dimensional light receiving surface. As a result, one axis can be assigned to the spatial distribution, and the wavelength spectrum can be assigned to the other one axis orthogonal to the spatial distribution, and both the spatial distribution and the spectral distribution can be obtained at the same time. In the image processing device, according to the output of the light receiver, JIS Z8722-Z
The color distribution of the measurement object is calculated according to 8729 or the like.

【0008】[0008]

【発明の実施の形態】以下図面を用いて本発明を詳しく
説明する。図1は本発明に係る分光装置の一実施例を示
す構成図である。図において、2は試料、10は分光装
置、20は画像処理装置である。
DETAILED DESCRIPTION OF THE INVENTION The present invention will be described in detail below with reference to the drawings. FIG. 1 is a configuration diagram showing one embodiment of the spectrometer according to the present invention. In the figure, 2 is a sample, 10 is a spectroscopic device, and 20 is an image processing device.

【0009】分光装置10は、レンズ11、入射スリッ
ト12、回折格子13、受光器14から構成されてい
る。レンズ11は試料2からの光を集光するもので、試
料2上のAからBに対応する領域を入射スリット12上
に結像する。入射スリット12の像は分光手段としての
回折格子13に入射し、回折格子13により分光された
光は受光器14に入射する。回折格子13は凹面になっ
ており、入射スリット12からの光は集束されて受光器
14に入るようになっている。なお、図では光路を模式
的に表してある。
The spectroscopic device 10 comprises a lens 11, an entrance slit 12, a diffraction grating 13, and a light receiver 14. The lens 11 collects the light from the sample 2, and forms an area on the sample 2 on the entrance slit 12 corresponding to A to B. The image of the entrance slit 12 is incident on a diffraction grating 13 as a spectroscopic unit, and the light dispersed by the diffraction grating 13 is incident on a light receiver 14. The diffraction grating 13 has a concave surface, and the light from the entrance slit 12 is focused and enters the light receiver 14. In the figure, the optical path is schematically shown.

【0010】受光器14は多数の受光素子を2次元状に
配列したもので、受光素子としては通常電荷結合素子
(CCD:Charge Coupled Device )が用いられる。な
お、CCDに代えて金属酸化皮膜(MOS)型カメラを
用いてもよい。画像処理装置20は、受光器14の出力
を基に、例えば日本工業規格JISZ8722〜872
9等に準じて、試料2の色を算出することができるもの
である。
The light receiver 14 is formed by arranging a large number of light receiving elements two-dimensionally, and a charge coupled device (CCD: Charge Coupled Device) is usually used as the light receiving element. A metal oxide film (MOS) type camera may be used instead of the CCD. The image processing device 20 uses, for example, the Japanese Industrial Standards JISZ8722 to 872 based on the output of the light receiver 14.
The color of the sample 2 can be calculated according to 9 or the like.

【0011】このような構成において、試料2上のAか
らBに対応する領域がレンズ11によって回折格子の入
射スリット12上に結像される。これをA’,B’とす
る。このスリット12の像は回折格子13により波長λ
1 から波長λ2 までスペクトル分解される。この時空間
軸のA,Bは、受光器のA”,B”となり、それぞれλ
1 からλ2 というスペクトルに分解し展開される。
In such a structure, the area corresponding to A to B on the sample 2 is imaged by the lens 11 on the entrance slit 12 of the diffraction grating. Let this be A ', B'. The image of this slit 12 has a wavelength λ due to the diffraction grating 13.
It is spectrally decomposed from 1 to wavelength λ 2 . At this time, A and B on the space-time axis become A ″ and B ″ of the photodetector, respectively,
The spectrum is decomposed from 1 to λ 2 .

【0012】試料としては、食品や塗装、成形材など
で、図2に示すような1次元物体ものが多くある。この
ような試料を対象とするとき、端部は誤差を多く含むた
め端部を除き中央近傍だけを測定したい場合がある。こ
のとき、受光器14には試料2のA−Bの領域が図2の
(b)のように波長λ1 からλ2 までに分解され、同図
(c)のようなパターンが現れる。このパターンのう
ち、ある特定の波長λ3 でA−B方向の断面をとると同
図(d)のようなパターンが得られ、試料2のおおよそ
の形状が分かる。
The samples include foods, coatings, moldings, and many one-dimensional objects as shown in FIG. When targeting such a sample, there are cases where it is desired to measure only the vicinity of the center excluding the end because the end includes many errors. At this time, the area AB of the sample 2 is decomposed into wavelengths λ 1 to λ 2 in the light receiver 14 as shown in FIG. 2B, and a pattern as shown in FIG. Of these patterns, when a cross section in the AB direction at a specific wavelength λ 3 is taken, a pattern as shown in FIG. 7D is obtained, and the approximate shape of the sample 2 can be seen.

【0013】画像処理装置20における画像処理などに
よりこの中央近傍の領域Cのみ抽出すれば、試料の正確
な色を測定することができる。このように1次元の空間
分布と共にスペクトルを測定すれば、試料2の蛇行や幅
の変化に対しても自動的に測定領域を対応させることが
できる。また、RGBのフィルタではなく真のスペクト
ルを測定できるため、正確な測色値が得られる。なお、
色の計算は、このスペクトルを用いて日本工業規格のJ
IS Z8722〜8729などに基づく計算を適用す
ればよい。
If only the region C near the center is extracted by image processing or the like in the image processing apparatus 20, the accurate color of the sample can be measured. By measuring the spectrum together with the one-dimensional spatial distribution in this way, the measurement region can be automatically made to correspond to the meandering of the sample 2 and the change of the width. Further, since a true spectrum can be measured instead of the RGB filter, an accurate colorimetric value can be obtained. In addition,
The color is calculated using this spectrum using the Japanese Industrial Standard J
Calculation based on IS Z8722-8729 or the like may be applied.

【0014】図3は木目状のパターンの色を測定する場
合であり、同図(a)の試料のA−Bの領域が同図
(b)のようにスペクトル分解され、ある特定の波長λ
3 でA−B方向の断面をとると同図(c)のようなパタ
ーンが得られる。年輪に相当する部分とその間の部分が
1回の測定で同時に測定できる。また図示しないが、液
晶パネルやディスプレイのような、光量のむらを測定し
なければならない場合も、本発明の方式は大変有効であ
る。ただしこの場合、他の軸(A−B方向と直角な方
向)は機械的スキャンが必要である。
FIG. 3 shows the case of measuring the color of a wood grain pattern. The area AB of the sample shown in FIG. 3A is spectrally decomposed as shown in FIG.
By taking a cross section in the direction of A-B in 3 , a pattern as shown in FIG. The part corresponding to the annual ring and the part in between can be measured simultaneously with one measurement. Although not shown, the method of the present invention is also very effective in the case where it is necessary to measure unevenness in the amount of light such as in a liquid crystal panel or a display. However, in this case, the other axis (direction perpendicular to the AB direction) requires mechanical scanning.

【0015】なお、以上の説明は本発明の説明および例
示を目的として特定の好適な実施例を示したに過ぎな
い。したがって本発明はその本質から逸脱せずに多くの
変更ないし変形をなし得ることは明らかである。以下そ
の他の実施例をいくつか列挙する。
The above description merely shows specific preferred embodiments for the purpose of explaining and exemplifying the present invention. It is therefore evident that the present invention is capable of many modifications and variations without departing from its essence. Some other examples will be listed below.

【0016】(1) 図1に示す回折格子13はプリズムに
置き換えても構わない。また、レンズ11による結像面
に入射スリット12を配置しているが、試料2に微粉な
どが含まれノイズとなる場合には、少しピントを甘くし
た方がノイズを低減できるため、必ずしも結像面の位置
に入射スリットを配置する必要はない。
(1) The diffraction grating 13 shown in FIG. 1 may be replaced with a prism. Further, although the entrance slit 12 is arranged on the image forming surface of the lens 11, if fine powder or the like is contained in the sample 2 and causes noise, it is possible to reduce the noise by slightly defocusing the image. It is not necessary to arrange the entrance slit at the position of the surface.

【0017】(2) 図4に、回折格子の代わりに波長連続
変化フィルタ15を用いた例を示す。試料2がA−Bと
直角方向に1次元の物体の場合、図示のような波長連続
変化フィルタを使用することができる。このフィルタ
は、波長(λ)方向に膜圧を連続的に変化させることに
より、図5に示すように中心波長がλ方向に連続的に変
化するバンドパスフィルタとしての特性を示すものであ
る。このフィルタをCCD受光器14に密着させるか、
あるいはリレー光学系でフィルタの透過光をCCD上に
結像させることにより、一軸を波長軸、他の一軸を空間
軸とすることができる。
(2) FIG. 4 shows an example in which the continuous wavelength change filter 15 is used instead of the diffraction grating. When the sample 2 is a one-dimensional object in the direction perpendicular to A-B, the wavelength continuous change filter as shown can be used. This filter exhibits characteristics as a bandpass filter in which the central wavelength continuously changes in the λ direction as shown in FIG. 5 by continuously changing the film pressure in the wavelength (λ) direction. If this filter is closely attached to the CCD light receiver 14,
Alternatively, one axis can be used as the wavelength axis and the other axis can be used as the spatial axis by focusing the transmitted light of the filter on the CCD with the relay optical system.

【0018】(3) 回折格子などの分光器を用いる場合、
入射スリットは直線である必要があるが、試料上の測定
領域も直線である必要はない。例えば試料2と入射スリ
ット12の間の光学系16を工夫し、図6に示すように
試料上では扇状の測定領域とすることもできる。
(3) When using a spectroscope such as a diffraction grating,
The entrance slit needs to be linear, but the measurement area on the sample need not be linear either. For example, the optical system 16 between the sample 2 and the entrance slit 12 may be devised so that a fan-shaped measurement region is formed on the sample as shown in FIG.

【0019】(4) さらに、試料2と入射スリット12の
間の光学系として、バンドルファイバ17を用いれば、
図7に示すように1次元のスリットに試料上の2次元の
空間を対応させることができる(連続したスリットの空
間座標が試料上の折り畳んだ位置に対応する)。これは
特にディスプレイの光量むらの測定などに有効である。 (5) また、画像処理装置20は分光器10に含めてもよ
い。
(4) Furthermore, if a bundle fiber 17 is used as an optical system between the sample 2 and the entrance slit 12,
As shown in FIG. 7, a one-dimensional slit can be associated with a two-dimensional space on the sample (the spatial coordinates of continuous slits correspond to the folded position on the sample). This is particularly effective for measuring the uneven light amount of the display. (5) Further, the image processing device 20 may be included in the spectroscope 10.

【0020】[0020]

【発明の効果】以上説明したように本発明によれば次の
ような効果が発揮される。 (1) 受光器として2次元のセンサを使用し、一軸を空間
分布に、これと直交する他の一軸を波長スペクトルに割
り当てることにより、空間分布とスペクトル分布の両方
を同時に求めることができる。これによって空間分布を
持つ物体の色の分布を高速に測定することができる。 (2) RBGフィルタによるのではなく、直接スペクトル
を測定できるため、正確な測定ができる。
As described above, according to the present invention, the following effects are exhibited. (1) By using a two-dimensional sensor as a light receiver and assigning one axis to the spatial distribution and the other axis orthogonal to this to the wavelength spectrum, both the spatial distribution and the spectral distribution can be obtained at the same time. This allows the color distribution of an object having a spatial distribution to be measured at high speed. (2) Since the spectrum can be measured directly instead of using the RBG filter, accurate measurement can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る分光装置の一実施例を示す構成図FIG. 1 is a configuration diagram showing one embodiment of a spectroscopic device according to the present invention.

【図2】一次元物体の測定についての説明図FIG. 2 is an explanatory diagram for measuring a one-dimensional object.

【図3】他の試料の測定についての説明図FIG. 3 is an explanatory diagram for measurement of another sample.

【図4】本発明の他の実施例を示す構成図FIG. 4 is a configuration diagram showing another embodiment of the present invention.

【図5】波長連続変化フィルタの特性を説明するための
FIG. 5 is a diagram for explaining the characteristics of a continuous wavelength change filter.

【図6】本発明の更に他の実施例を示す構成図FIG. 6 is a configuration diagram showing still another embodiment of the present invention.

【図7】本発明の更に他の実施例を示す構成図である。FIG. 7 is a configuration diagram showing still another embodiment of the present invention.

【図8】従来の分光測色装置の原理図FIG. 8 is a principle diagram of a conventional spectrocolorimeter.

【図9】カラーカメラにより空間分布を測定する装置の
構成図
FIG. 9 is a block diagram of an apparatus for measuring spatial distribution with a color camera.

【図10】光特性を示す図である。FIG. 10 is a diagram showing optical characteristics.

【符号の説明】[Explanation of symbols]

2 試料 10 分光器 11 レンズ 12 入射スリット 13 回折格子 14 受光器 15 波長連続変化フィルタ 16 光学系 17 バンドルファイバ 20 画像処理装置 2 sample 10 spectroscope 11 lens 12 entrance slit 13 diffraction grating 14 light receiver 15 continuous wavelength change filter 16 optical system 17 bundle fiber 20 image processing device

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】2次元状に多数の受光素子を配列して成る
受光器を備える分光器を有した分光装置であって、 1つの軸が測定対象の連続した空間座標に対応し、それ
と直交する他の軸が前記測定対象の波長スペクトルに対
応するように設置された分光手段と、 前記測定対象の連続した空間座標に対応する軸が長手方
向となり前記測定対象からの光の一部を通過させ前記分
光手段に入射する直線状の入射スリットと、 前記分光手段の出力を受けて前記測定対象の色の分布を
求めるための処理を行う画像処理装置を備えたことを特
徴とする分光装置。
1. A spectroscopic device having a spectroscope including a photodetector in which a large number of photodetectors are arrayed in a two-dimensional manner, wherein one axis corresponds to continuous spatial coordinates of a measurement target and is orthogonal thereto. The spectroscopic means installed so that the other axis corresponds to the wavelength spectrum of the measurement target, and the axis corresponding to the continuous spatial coordinates of the measurement target becomes the longitudinal direction and passes a part of the light from the measurement target. A spectroscopic device comprising: a linear entrance slit that is incident on the spectroscopic device; and an image processing device that receives an output of the spectroscopic device and performs a process for obtaining a color distribution of the measurement target.
【請求項2】前記分光器が、前記測定対象と分光手段の
間に設置され前記入射スリットのスリット面に前記測定
対象の実像が結像されるようにした結像光学系を有する
ことを特徴とする請求項1記載の分光装置。
2. The spectroscope has an imaging optical system installed between the measurement object and the spectroscopic means so that a real image of the measurement object is formed on the slit surface of the entrance slit. The spectroscopic device according to claim 1.
【請求項3】前記受光器として、電荷結合素子またはM
OS型カメラを使用したことを特徴とする請求項1記載
の分光装置。
3. A charge-coupled device or M as the photodetector.
The spectroscopic apparatus according to claim 1, wherein an OS type camera is used.
【請求項4】前記分光器が、前記測定対象と分光手段の
間に設置され前記測定対象の連続した空間座標が試料上
では曲線または折り畳んだ位置に対応するように変換す
る光学素子を有することを特徴とする請求項1記載の分
光装置。
4. The spectroscope has an optical element installed between the measuring object and the spectroscopic means and converting so that continuous spatial coordinates of the measuring object correspond to a curved or folded position on the sample. The spectroscopic device according to claim 1, wherein:
【請求項5】前記分光手段が回折格子またはプリズムで
あることを特徴とする請求項1または請求項2記載の分
光装置。
5. The spectroscopic apparatus according to claim 1, wherein the spectroscopic means is a diffraction grating or a prism.
【請求項6】前記試料と分光手段の間の光学的結合手段
として光ファイバーを用いたことを特徴とする請求項1
または請求項2または請求項3または請求項4または請
求項5記載の分光装置。
6. An optical fiber is used as an optical coupling means between the sample and the spectroscopic means.
Alternatively, the spectroscopic device according to claim 2, claim 3, claim 4, or claim 5.
【請求項7】2次元状に多数の受光素子を配列して成る
受光器を備える分光器を有した分光装置であって、 波長連続変化フィルタを設け、1つの軸が測定対象の連
続した空間座標に対応し、それと直交する他の軸が前記
測定対象の波長スペクトルに対応すると共に、波長スペ
クトルに対応する軸が前記波長連続変化フィルタの波長
に対して変化する方向であるようにした分光手段と、 この分光手段の出力を受けて前記測定対象の色の分布を
求めるための処理を行う画像処理装置を備えたことを特
徴とする分光装置。
7. A spectroscope having a spectroscope including a photodetector in which a large number of photodetectors are arranged in a two-dimensional manner, wherein a continuous wavelength change filter is provided and one axis has a continuous space to be measured. Spectral means corresponding to the coordinates, and another axis orthogonal to the coordinates corresponds to the wavelength spectrum of the measurement target, and the axis corresponding to the wavelength spectrum is in the direction of changing with respect to the wavelength of the wavelength continuous change filter. And a spectroscopic device including an image processing device that receives the output of the spectroscopic device and performs a process for obtaining the color distribution of the measurement target.
【請求項8】前記分光器が、前記測定対象と波長連続変
化フィルタの間に設置され、前記波長連続変化フィルタ
の表面または受光器の受光面に前記測定対象の実像を結
像するような結像光学系を有することを特徴とする請求
項7記載の分光装置。
8. The spectrometer is installed between the measurement target and the continuous wavelength change filter, and forms a real image of the measurement target on the surface of the continuous wavelength change filter or the light receiving surface of the light receiver. The spectroscopic apparatus according to claim 7, further comprising an image optical system.
【請求項9】前記試料と分光手段の間の光学的結合手段
として光ファイバーを用いたことを特徴とする請求項7
または請求項8記載の分光装置。
9. An optical fiber is used as an optical coupling means between the sample and the spectroscopic means.
Alternatively, the spectroscopic device according to claim 8.
JP26292195A 1995-10-11 1995-10-11 Spectral apparatus Pending JPH09105673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26292195A JPH09105673A (en) 1995-10-11 1995-10-11 Spectral apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26292195A JPH09105673A (en) 1995-10-11 1995-10-11 Spectral apparatus

Publications (1)

Publication Number Publication Date
JPH09105673A true JPH09105673A (en) 1997-04-22

Family

ID=17382456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26292195A Pending JPH09105673A (en) 1995-10-11 1995-10-11 Spectral apparatus

Country Status (1)

Country Link
JP (1) JPH09105673A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000205954A (en) * 1999-01-08 2000-07-28 Naba:Kk Spectroscope
JP2001343332A (en) * 2000-05-31 2001-12-14 Sharp Corp Method and device for evaluating electronic parts
KR20020013061A (en) * 2000-08-10 2002-02-20 조기환 Method for Determinating spectrum using multslit and mult channel spectrograph using the same
GB2384049A (en) * 2002-01-15 2003-07-16 Infrared Integrated Syst Ltd Two dimensional detector array for measuring two parameters
JP2006162509A (en) * 2004-12-09 2006-06-22 National Institutes Of Natural Sciences Spectroscope
JP2006170669A (en) * 2004-12-13 2006-06-29 Mitsui Mining & Smelting Co Ltd Quality inspection device of vegetables and fruits
JP2006208102A (en) * 2005-01-26 2006-08-10 Matsushita Electric Works Ltd Spectral colorimetry device
JP2008206014A (en) * 2007-02-22 2008-09-04 Nikon Corp Photometric apparatus and imaging apparatus
JP2012093294A (en) * 2010-10-28 2012-05-17 Canon Inc Spectrophotometric unit and image forming device including the same
WO2013114524A1 (en) * 2012-01-30 2013-08-08 株式会社島津製作所 Spectrometer and image part extraction device
US8958069B2 (en) 2010-10-28 2015-02-17 Canon Kabushiki Kaisha Spectral colorimetric apparatus and image forming apparatus including the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000205954A (en) * 1999-01-08 2000-07-28 Naba:Kk Spectroscope
JP2001343332A (en) * 2000-05-31 2001-12-14 Sharp Corp Method and device for evaluating electronic parts
KR20020013061A (en) * 2000-08-10 2002-02-20 조기환 Method for Determinating spectrum using multslit and mult channel spectrograph using the same
GB2384049A (en) * 2002-01-15 2003-07-16 Infrared Integrated Syst Ltd Two dimensional detector array for measuring two parameters
GB2384049B (en) * 2002-01-15 2005-12-07 Infrared Integrated Syst Ltd Dual function sensor system
JP2006162509A (en) * 2004-12-09 2006-06-22 National Institutes Of Natural Sciences Spectroscope
JP2006170669A (en) * 2004-12-13 2006-06-29 Mitsui Mining & Smelting Co Ltd Quality inspection device of vegetables and fruits
JP2006208102A (en) * 2005-01-26 2006-08-10 Matsushita Electric Works Ltd Spectral colorimetry device
JP2008206014A (en) * 2007-02-22 2008-09-04 Nikon Corp Photometric apparatus and imaging apparatus
JP2012093294A (en) * 2010-10-28 2012-05-17 Canon Inc Spectrophotometric unit and image forming device including the same
US8958069B2 (en) 2010-10-28 2015-02-17 Canon Kabushiki Kaisha Spectral colorimetric apparatus and image forming apparatus including the same
WO2013114524A1 (en) * 2012-01-30 2013-08-08 株式会社島津製作所 Spectrometer and image part extraction device
JPWO2013114524A1 (en) * 2012-01-30 2015-05-11 株式会社島津製作所 Spectroscopic measurement apparatus and image partial extraction apparatus

Similar Documents

Publication Publication Date Title
US8081311B2 (en) System for multispectral imaging
US4770530A (en) Remote spectrophotometer
US6690466B2 (en) Spectral imaging system
US6630999B2 (en) Color measuring sensor assembly for spectrometer devices
US7365842B2 (en) Light scanning type confocal microscope
US7189984B2 (en) Object data input apparatus and object reconstruction apparatus
US20080068722A1 (en) Film mapping system
GB2445956A (en) Multiple-source spectrometer with tunable filter
JPH09105673A (en) Spectral apparatus
US6208413B1 (en) Hadamard spectrometer
US5297555A (en) Multichannel spectrometer
EP0520463B1 (en) A high-resolution spectroscopy system
JP2558864B2 (en) Spectroscopic analyzer
TW202014671A (en) Device for optically measuring and imaging a measurement object, and method
JP2001021810A (en) Interference microscope
JP2003114107A (en) Film thickness measuring device
JP3657345B2 (en) Film thickness inspection system
JPH02275326A (en) Spectrometer
CN214502673U (en) Colorimeter
JP2511902B2 (en) Spectrophotometer
JPH11101692A (en) Spectroscopic colorimeter
JPH0626930A (en) Spectrophotometer
KR101054017B1 (en) Calibration method of the spectrometer
JPH0820309B2 (en) Spectroscopic operation device
JP3006770B2 (en) Tunable multi-channel spectrometer