JPH089444Y2 - Radial hydrodynamic bearing - Google Patents

Radial hydrodynamic bearing

Info

Publication number
JPH089444Y2
JPH089444Y2 JP1988010412U JP1041288U JPH089444Y2 JP H089444 Y2 JPH089444 Y2 JP H089444Y2 JP 1988010412 U JP1988010412 U JP 1988010412U JP 1041288 U JP1041288 U JP 1041288U JP H089444 Y2 JPH089444 Y2 JP H089444Y2
Authority
JP
Japan
Prior art keywords
rotating member
fluid
dynamic pressure
bearing
axial direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1988010412U
Other languages
Japanese (ja)
Other versions
JPH01115018U (en
Inventor
寿徳 茅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Sankyo Corp
Original Assignee
Nidec Sankyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Sankyo Corp filed Critical Nidec Sankyo Corp
Priority to JP1988010412U priority Critical patent/JPH089444Y2/en
Publication of JPH01115018U publication Critical patent/JPH01115018U/ja
Application granted granted Critical
Publication of JPH089444Y2 publication Critical patent/JPH089444Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案は、ラジアル動圧流体軸受に関するものであ
り、例えば、光走査装置等における回転多面鏡装置等に
利用可能なものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention relates to a radial dynamic pressure fluid bearing, and is applicable to, for example, a rotary polygon mirror device in an optical scanning device or the like.

(従来の技術) 例えば、光走査装置等における回転多面鏡装置等で
は、多面鏡を回転自在に支持するためにラジアル動圧流
体軸受が用いられる。このラジアル動圧流体軸受は、支
持部材との間に流体を介在させて回転する回転部材を有
し、上記支持部材の受け面とこれに対向する上記回転部
材の受け面のうちの何れかの受け面に動圧発生用の溝を
複数個刻設してなり、上記回転部材の回転に伴い上記溝
部を通じて流体を流動させ、上記溝部に動圧力を発生さ
せて回転部材を支持するようになっている。
(Prior Art) For example, in a rotary polygon mirror device in an optical scanning device or the like, a radial dynamic pressure fluid bearing is used to rotatably support a polygon mirror. This radial dynamic pressure fluid bearing has a rotating member that rotates by interposing a fluid between it and a supporting member, and any one of a receiving surface of the supporting member and a receiving surface of the rotating member facing the receiving surface of the supporting member. A plurality of grooves for generating dynamic pressure are engraved on the receiving surface, and fluid is caused to flow through the groove portions as the rotating member rotates, so that dynamic pressure is generated in the groove portions to support the rotating member. ing.

第5図は従来のラジアル動圧流体軸受の例を示す。第
5図において、円筒状の支持部材1の内周側には円柱状
の回転部材2が回転自在に嵌められている。支持部材1
の内周面と回転部材2の外周面はそれぞれ受け面をな
し、これらの受け面は所定の間隙をおいて対向してい
る。回転部材2の外周面には動圧発生用の溝3が複数個
形成されている。この溝3は軸線方向に対して所定の角
度傾斜すると共に、軸受幅方向の中心に関し対称となる
ように形成されている。支持部材1の受け面と回転部材
2の受け面との間には空気その他の流体が介在してお
り、回転部材2が回転するとき、上記溝3を通じて上記
流体が矢印で示すように軸受幅方向の両端側から軸受幅
方向の中心側に向かって流動し、この流体の流動により
上記溝3部に動圧力が発生し、この動圧力により回転部
材2が支持されるようになっている。
FIG. 5 shows an example of a conventional radial dynamic pressure fluid bearing. In FIG. 5, a cylindrical rotating member 2 is rotatably fitted on the inner peripheral side of a cylindrical supporting member 1. Support member 1
The inner peripheral surface of the rotary member 2 and the outer peripheral surface of the rotary member 2 respectively form receiving surfaces, and these receiving surfaces face each other with a predetermined gap. A plurality of grooves 3 for generating dynamic pressure are formed on the outer peripheral surface of the rotating member 2. The groove 3 is formed so as to be inclined at a predetermined angle with respect to the axial direction and symmetrical with respect to the center in the bearing width direction. Air or other fluid is interposed between the receiving surface of the supporting member 1 and the receiving surface of the rotating member 2, and when the rotating member 2 rotates, the fluid flows through the groove 3 as shown by an arrow in the bearing width. The fluid flows from both ends in the direction toward the center in the bearing width direction, and a dynamic pressure is generated in the groove portion 3 by the flow of the fluid, and the rotary member 2 is supported by the dynamic pressure.

(考案が解決しようとする課題) 上記の如き従来のラジアル動圧流体軸受によれば、流
体が軸受幅方向の両端側から軸受幅方向の中心側へ向か
って流動するため、溝3部に発生する動圧力の分布は、
第5図の右側の線図あるいは第4図の破線bで示すよう
になり、軸受幅方向の中心部で大きく、軸受幅方向の両
端部で小さくなる。そのため、軸受幅方向の中心部を巡
る1本の線に沿って回転部材2が支持されるのと実質的
に同じになり、外乱を受けると回転部材2が倒れ易いと
いう問題がある。このような問題を解消するために、一
般にはラジアル動圧流体軸受の軸受長さに対する軸の径
の比(L/D)を1程度にすると共に、軸受部を軸方向の
2箇所に形成している。しかし、これではラジアル動圧
流体軸受の背丈が高くなってしまう。また、軸受長さに
対する軸の径の比が小さく偏平な軸受の場合は、軸受部
を1箇所に形成して前述の如き外乱に対する傾きの発生
を甘受しているのが現状である。
(Problems to be solved by the invention) According to the conventional radial dynamic pressure fluid bearing as described above, since the fluid flows from both end sides in the bearing width direction toward the center side in the bearing width direction, it is generated in the groove 3 portion. The dynamic pressure distribution
As shown by the diagram on the right side of FIG. 5 or the broken line b of FIG. 4, it is large at the central portion in the bearing width direction and small at both ends in the bearing width direction. Therefore, this is substantially the same as the case where the rotary member 2 is supported along a single line that goes around the center portion in the bearing width direction, and there is a problem that the rotary member 2 tends to fall down when subjected to a disturbance. In order to solve such a problem, generally, the ratio of the shaft diameter to the bearing length (L / D) of the radial dynamic pressure fluid bearing is set to about 1, and the bearing portions are formed at two locations in the axial direction. ing. However, this increases the height of the radial hydrodynamic bearing. Further, in the case of a flat bearing in which the ratio of the shaft diameter to the bearing length is small, the bearing portion is formed in one place to accept the above-described inclination with respect to the disturbance.

本考案は、かかる従来の問題点を解消するためになさ
れたもので、軸受部を1箇所に設けても外乱によって回
転部材が傾くことのないようにしたラジアル動圧流体軸
受を提供することを目的とする。
The present invention has been made in order to solve the above-mentioned conventional problems, and provides a radial dynamic pressure fluid bearing in which the rotating member is not tilted due to disturbance even if the bearing portion is provided at one place. To aim.

(課題を解決するための手段) 本考案は、動圧発生用の溝を、(イ)受け面の軸方向
に対して所定の角度傾斜するとともに軸方向の中心に関
し対称となるように軸方向の中心からの傾斜の向きを逆
向きにして、流体を軸方向両側へ向かって導く向きと
し、(ロ)周方向に対し同じ向きでかつほぼ等間隔に形
成し、(ハ)端部が支持部材または回転部材の端部まで
至ることなく、端部と支持部材または回転部材の端部と
の間に受け面が残っており、(ニ)深さを均一にする、
という条件を満足するように形成し、回転部材の回転に
伴い軸受幅方向の中心から軸方向両端側へ流体を流動さ
せて上記溝部に動圧力を発生させ、回転部材を支持する
ことを特徴とする。
(Means for Solving the Problems) In the present invention, a groove for generating a dynamic pressure is axially tilted at a predetermined angle with respect to the axial direction of a receiving surface and is symmetrical about an axial center. The direction of the inclination from the center of the is reversed, and the fluid is directed toward both sides in the axial direction. (B) It is formed in the same direction with respect to the circumferential direction and at almost equal intervals, and (c) the end is supported. The receiving surface remains between the end portion and the end portion of the supporting member or the rotating member without reaching the end portion of the member or the rotating member, and (d) the depth is made uniform.
Is formed so as to satisfy the above condition, and fluid is caused to flow from the center in the bearing width direction to both ends in the axial direction along with the rotation of the rotating member to generate dynamic pressure in the groove portion to support the rotating member. To do.

(作用) 回転部材が回転すると、回転部材と支持部材との間に
介在する流体が動圧発生用の溝を通じて軸受幅方向の中
心から軸方向両端側へ向かって流動し、上記溝部の軸受
幅方向の両端側において大きな動圧力が発生し、回転部
材が軸方向の2箇所で支持されるのと実質的に同じにな
る。
(Operation) When the rotating member rotates, the fluid interposed between the rotating member and the supporting member flows from the center in the bearing width direction toward the axially both ends through the groove for generating dynamic pressure, and the bearing width of the groove portion. A large dynamic pressure is generated at both ends in the direction, which is substantially the same as when the rotating member is supported at two axial positions.

(実施例) 以下、本考案に係るラジアル動圧流体軸受の実施例に
ついて図面を参照しながら説明する。
(Example) An example of a radial dynamic pressure fluid bearing according to the present invention will be described below with reference to the drawings.

本考案に係るラジアル動圧流体軸受を回転多面鏡装置
に適用した例を示す第1図において、符号11は円筒状の
固定軸受部をなす支持部材であり、この支持部材11内に
は有底円筒状の回転部材12が伏せられた形で回転自在に
嵌められている。支持部材11の内周面と回転部材12の外
周面はそれぞれ平坦な受け面をなしており、これらの受
け面は所定の間隙をおいて対向している。上記双方の受
け面のうちの一方の受け面である回転部材12の外周面29
には、第2図に示すように動圧発生用の溝28が複数個周
方向に対し同じ向きでほぼ等間隔に、かつ、深さをほぼ
均一にして刻設されている。これらの溝28は、軸方向に
対して所定の角度傾斜すると共に軸受幅方向の中心に関
し対称となるように、軸方向中心からの傾斜の向きが逆
向きになって「く」字状に形成されることにより、流体
を軸方向両側へ導く向きに形成されていると共に、各溝
28は上記「く」の字の中心の折り曲がり部において周溝
26により連通している。また、各溝28はその各端部が回
転部材12の端部まで至ることのないように、従って、各
溝28の各端部と回転部材12の端部との間に回転部材12の
周面29が受け面として残るように形成されている。一
方、支持部材11の内周面側には上記周溝26と対向する位
置に周溝24が形成されている。支持部材11の内周面と回
転部材12の外周面との間には空気その他の流体が介在し
ており、支持部材11には上記流体を回転部材12との間に
供給するための供給孔22が形成されている。この供給孔
22は支持部材11の外部と周溝22とを連通する。
In FIG. 1, which shows an example in which the radial dynamic pressure fluid bearing according to the present invention is applied to a rotary polygon mirror device, reference numeral 11 is a support member that forms a cylindrical fixed bearing portion. A cylindrical rotating member 12 is rotatably fitted in a prone shape. The inner peripheral surface of the support member 11 and the outer peripheral surface of the rotating member 12 each form a flat receiving surface, and these receiving surfaces face each other with a predetermined gap. The outer peripheral surface 29 of the rotating member 12, which is one of the two receiving surfaces.
As shown in FIG. 2, a plurality of grooves 28 for generating dynamic pressure are formed in the same direction in the circumferential direction at substantially equal intervals and with a substantially uniform depth. These grooves 28 are inclined in a predetermined angle with respect to the axial direction and symmetrically with respect to the center in the bearing width direction. Is formed so as to guide the fluid to both sides in the axial direction, and
28 is the circumferential groove at the bent portion at the center of the above-mentioned “K” shape.
It communicates with 26. Further, each groove 28 is arranged so that each end thereof does not reach the end of the rotating member 12, and therefore, the circumference of the rotating member 12 is provided between each end of each groove 28 and the rotating member 12. The surface 29 is formed so as to remain as a receiving surface. On the other hand, a peripheral groove 24 is formed on the inner peripheral surface side of the support member 11 at a position facing the peripheral groove 26. Air or other fluid is interposed between the inner peripheral surface of the support member 11 and the outer peripheral surface of the rotary member 12, and the support member 11 has a supply hole for supplying the fluid between the support member 11 and the rotary member 12. 22 are formed. This supply hole
Reference numeral 22 connects the outside of the support member 11 and the circumferential groove 22.

以上のような構成により支持部材11と回転部材12との
間にラジアル動圧流体軸受が形成されている。回転部材
12の回転の向きは、回転部材12が回転するとき流体が各
溝28に沿って第2図に矢印で示すように軸受幅方向の中
心から軸方向両端側に向かって流動するような向きとな
る。従って、軸方向に対する各溝28の傾きを逆にした場
合は回転部材12の回転の向きは逆になる。こうして、回
転部材12の回転により流体が軸受幅方向の中心から軸方
向両端側へ流動することにより上記各溝28部に動圧力が
発生し、回転部材12が支持される。流体が軸受幅方向中
心から軸方向両端側へ流動するとき、供給孔22と周溝24
及び周溝26を通じて流体が供給される。そして、溝28が
軸方向両端部において途切れ、流体の通路が回転部材12
の外周面29によって狭められることにより、軸方向両端
部において大きな動圧力が発生する。第4図の実線aは
このような動圧力の分布を示すもので、軸方向の両端部
の領域Ea,Ebで大きな動圧力が発生し、回転部材12が軸
方向の2箇所で支持されるのと実質的に同じであること
がわかる。なお、第4図の破線bは第5図に示す従来の
軸受における動圧力の分布を示す。
A radial dynamic pressure fluid bearing is formed between the support member 11 and the rotating member 12 with the above-described configuration. Rotating member
The direction of rotation of 12 is such that the fluid flows along each groove 28 from the center in the bearing width direction toward both ends in the axial direction as shown by the arrow in FIG. 2 when the rotating member 12 rotates. Become. Therefore, when the inclination of each groove 28 with respect to the axial direction is reversed, the rotation direction of the rotating member 12 is reversed. In this way, the rotation of the rotating member 12 causes the fluid to flow from the center in the bearing width direction toward both ends in the axial direction, whereby dynamic pressure is generated in the grooves 28, and the rotating member 12 is supported. When the fluid flows from the center of the bearing width direction to both ends in the axial direction, the supply hole 22 and the circumferential groove 24
And the fluid is supplied through the circumferential groove 26. Then, the groove 28 is interrupted at both ends in the axial direction, and the fluid passage is formed in the rotating member 12.
By being narrowed by the outer peripheral surface 29, a large dynamic pressure is generated at both axial end portions. A solid line a in FIG. 4 shows such a dynamic pressure distribution, and a large dynamic pressure is generated in the regions Ea and Eb at both ends in the axial direction, and the rotating member 12 is supported at two positions in the axial direction. It turns out that it is substantially the same as. The broken line b in FIG. 4 shows the dynamic pressure distribution in the conventional bearing shown in FIG.

第1図において、回転部材12の内周面には円筒状のヨ
ーク17が固着され、このヨーク17の内周面には円筒状の
ロータマグネット18が嵌合固着されている。支持部材11
の底部内周側には回路基板21が固定されており、回路基
板21の中心部に固定された支柱20が上記ロータマグネッ
ト18内に立ち上がっている。支柱20の外周には適宜の相
数の駆動コイル19が巻かれている。回路基板21には、ロ
ータの回転位置を検出して駆動コイル19への通電を切り
換えるための磁気センサが取りつけられ、また所定の配
線パターンが形成されている。このような各部材によっ
て駆動モータが構成されており、この駆動モータにより
回転部材12が回転駆動される。そして、回転部材12の上
端面の中心部にはボス16が突設されており、回転部材12
の上端面に多面鏡体13を乗せると共に上記ボス16に多面
鏡体13が嵌合されることにより多面鏡体13が回転部材12
に固着されている。従って、上記駆動モータの駆動によ
り多面鏡体13が回転駆動される。
In FIG. 1, a cylindrical yoke 17 is fixed to the inner peripheral surface of the rotating member 12, and a cylindrical rotor magnet 18 is fixedly fitted to the inner peripheral surface of the yoke 17. Support member 11
A circuit board 21 is fixed to the inner circumferential side of the bottom of the, and a support column 20 fixed to the center of the circuit board 21 stands up in the rotor magnet 18. A drive coil 19 having an appropriate number of phases is wound around the support 20. A magnetic sensor for detecting the rotational position of the rotor and switching the energization to the drive coil 19 is attached to the circuit board 21, and a predetermined wiring pattern is formed. A drive motor is constituted by such members, and the rotary member 12 is rotationally driven by the drive motor. A boss 16 is provided at the center of the upper end surface of the rotating member 12 so as to project.
The polygonal mirror body 13 is placed on the upper end surface of the and the polygonal mirror body 13 is fitted into the boss 16 so that the polygonal mirror body 13 is rotated.
It is stuck to. Therefore, the polygon mirror 13 is rotationally driven by the drive of the drive motor.

なお、支持部材11側の周溝24と回転部材12側の周溝26
のうちの何れか一方は省略してもよい。
The circumferential groove 24 on the support member 11 side and the circumferential groove 26 on the rotating member 12 side
Either one of them may be omitted.

このように、上記実施例によれば、回転部材12の回転
に伴い軸受幅方向の中心部から流体を供給して溝28に沿
い軸方向両端側へ流体を流動させ、各溝28の軸方向両端
部を回転部材12の端部まで至らしめることなく、各溝28
の端部と回転部材12の端部との間に回転部材12の周面29
を受け面として残して軸方向両端側において動圧力を発
生させるようにしたため、軸方向の2箇所で回転部材12
が支持されるのと実質的に同じとなり、たとえ軸方向の
長さ対軸の径との比(L/D)が小さな偏平な軸受であっ
ても、外乱による回転部材12の傾きの少ない安定したラ
ジアル動圧流体軸受を得ることができる。
As described above, according to the above-described embodiment, the fluid is supplied from the center portion in the bearing width direction along with the rotation of the rotating member 12 to cause the fluid to flow along the grooves 28 toward both ends in the axial direction, and the axial direction of each groove 28. Each groove 28 without reaching both ends to the end of the rotating member 12
Between the end of the rotating member 12 and the end of the rotating member 12.
Since the dynamic pressure is generated on both ends in the axial direction while leaving it as the receiving surface, the rotating member 12 is formed at two positions in the axial direction.
Is substantially the same as that supported, and even with a flat bearing with a small ratio of the axial length to the shaft diameter (L / D), there is little tilt of the rotating member 12 due to disturbance and stability. It is possible to obtain a radial dynamic pressure fluid bearing.

なお、第3図に示すように、回転部材12の受け面に形
成した「く」字状の溝は必ずしも第2図に示すような周
溝26で連通する必要はない。第3図において符号30は、
軸方向に対して所定の角度傾斜すると共に軸受幅方向の
中心に関し対称となるように「く」字状に形成された複
数の溝である。この場合も、各溝30の各端部は回転部材
12の端部にまで至らない範囲で形成され、各溝30の各端
部と回転部材12の端部との間に回転部材12の外周面31が
残っている。そして、回転部材12の回転に伴い流体が各
溝30に沿い軸受幅方向中心から軸方向両端側へ向かって
流動するようになっており、もって、軸方向両端部にお
いて大きな動圧力が発生するようになっている。
Note that, as shown in FIG. 3, the V-shaped groove formed on the receiving surface of the rotating member 12 does not necessarily need to be communicated with the peripheral groove 26 as shown in FIG. In FIG. 3, reference numeral 30 indicates
It is a plurality of grooves formed in a V shape so as to be inclined at a predetermined angle with respect to the axial direction and symmetrical about the center in the bearing width direction. Also in this case, each end of each groove 30 has a rotating member.
The outer peripheral surface 31 of the rotary member 12 is formed between each end of each groove 30 and the end of the rotary member 12 so as not to reach the end of the rotary member 12. Then, as the rotating member 12 rotates, the fluid flows along the grooves 30 from the center of the bearing width direction toward both ends in the axial direction, so that a large dynamic pressure is generated at both ends in the axial direction. It has become.

以上述べた各実施例では、動圧発生用の溝を回転部材
12側に設けていたが、この溝は支持部材11側に設けても
よい。また、本考案に係るラジアル動圧流体軸受は、支
持部材の外周側で回転部材が回転する形式のものにも適
用可能である。さらに本考案に係るラジアル動圧流体軸
受は、回転多面鏡装置以外にも広く適用可能である。
In each of the embodiments described above, the groove for generating the dynamic pressure is formed in the rotating member.
Although it is provided on the 12 side, this groove may be provided on the support member 11 side. Further, the radial dynamic pressure bearing according to the present invention is also applicable to the type in which the rotary member rotates on the outer peripheral side of the support member. Further, the radial dynamic pressure fluid bearing according to the present invention can be widely applied to other than the rotary polygon mirror device.

(考案の効果) 本考案によれば、回転部材の回転に伴い軸受幅方向の
中心部から流体を供給して動圧発生用の溝に沿い軸方向
両端側へ流体を流動させ、軸方向両端側において動圧力
を発生させるようにしたため、軸方向の2箇所で回転部
材が支持されるのと実質的に同じとなり、たとえ軸方向
の長さ対軸の径との比が小さな偏平な軸受であっても、
外乱による回転部材の傾きの少ないラジアル動圧流体軸
受を得ることができる。また、各溝を、軸方向中心に関
し対称となるように、かつ、周方向に同じ向きでほぼ等
間隔に形成したため、円周方向での流体圧力のむらがな
く、回転部材を安定に支持することができる。さらに、
各溝の両端部を支持部材または回転部材の端部まで至ら
せることなく、各溝の両端部と支持部材または回転部材
の端部との間に受け面を残し、かつ、各溝の深さを均一
にしたため、軸方向両端部において流体圧力が急激に上
昇し、軸方向両端部の2ヵ所において回転部材を確実に
支持することができ、回転部材の回転を安定化させるこ
とができる。
(Effects of the Invention) According to the present invention, as the rotating member rotates, the fluid is supplied from the center portion in the bearing width direction to cause the fluid to flow along the grooves for generating the dynamic pressure to the both axial ends, and the both axial ends. Since the dynamic pressure is generated on the side, it is substantially the same as the rotating member being supported at two locations in the axial direction, and even with a flat bearing having a small ratio of the axial length to the shaft diameter. Even so,
It is possible to obtain a radial dynamic pressure fluid bearing in which the rotating member is less inclined due to disturbance. Further, since the grooves are formed symmetrically with respect to the axial center and at substantially equal intervals in the same direction in the circumferential direction, there is no unevenness of fluid pressure in the circumferential direction, and the rotating member is stably supported. You can further,
The receiving surface is left between the both ends of each groove and the end of the supporting member or the rotating member without reaching both ends of the groove to the end of the supporting member or the rotating member, and the depth of each groove Since the pressure is made uniform, the fluid pressure sharply rises at both ends in the axial direction, the rotating member can be reliably supported at the two positions at both ends in the axial direction, and the rotation of the rotating member can be stabilized.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案に係るラジアル動圧流体軸受の適用例を
示す正面断面図、第2図は本考案に係るラジアル動圧流
体軸受の一実施例を示す一部断面正面図、第3図は本考
案に係るラジアル動圧流体軸受の別の実施例を示す一部
断面正面図、第4図は本考案に係るラジアル動圧流体軸
受によって得られる動圧力分布の例を従来のラジアル動
圧流体軸受における動圧力分布と比較して示す線図、第
5図は従来の動圧軸受の例を示す一部断面正面図であ
る。 11……支持部材、12……回転部材、28,30,34……動圧発
生用の溝。
FIG. 1 is a front sectional view showing an application example of a radial dynamic pressure fluid bearing according to the present invention, and FIG. 2 is a partial sectional front view showing an embodiment of a radial dynamic pressure fluid bearing according to the present invention. Is a partial sectional front view showing another embodiment of the radial dynamic pressure fluid bearing according to the present invention, and FIG. 4 is an example of dynamic pressure distribution obtained by the radial dynamic pressure fluid bearing according to the present invention. FIG. 5 is a partial cross-sectional front view showing an example of a conventional dynamic pressure bearing, which is shown in comparison with the dynamic pressure distribution in a fluid bearing. 11 ... Support member, 12 ... Rotating member, 28, 30, 34 ... Grooves for generating dynamic pressure.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】支持部材との間に流体を介在させて回転す
る回転部材を有し、上記支持部材の受け面とこれに対向
する上記回転部材の受け面のうちの何れかの受け面に動
圧発生用溝を複数個刻設して成るラジアル動圧流体軸受
において、 上記各溝は、 (イ)受け面の軸方向に対して所定の角度傾斜するとと
もに軸方向の中心に関し対称となるように軸方向の中心
からの傾斜の向きが逆向きになっており、上記流体を軸
方向両側へ向かって導く向きに形成されている、 (ロ)周方向に対し同じ向きでかつほぼ等間隔に形成さ
れている、 (ハ)端部が支持部材または回転部材の端部まで至るこ
となく、端部と支持部材または回転部材の端部との間に
受け面が残っており、 (ニ)深さが均一である という条件を満足しており、 上記回転部材の回転に伴い軸受幅方向の中心から軸方向
両端側へ流体を流動させて上記溝部に動圧力を発生さ
せ、回転部材を支持することを特徴とするラジアル動圧
軸受。
1. A rotating member that rotates by interposing a fluid between the supporting member and the supporting member, wherein any one of the receiving surface of the supporting member and the receiving surface of the rotating member facing the supporting surface of the rotating member. In a radial dynamic fluid bearing having a plurality of grooves for generating dynamic pressure, each groove is (a) inclined at a predetermined angle with respect to the axial direction of the receiving surface and symmetrical with respect to the center of the axial direction. As described above, the direction of inclination from the center in the axial direction is opposite, and the fluid is formed so as to guide the fluid toward both sides in the axial direction. (C) The end does not reach the end of the supporting member or the rotating member, and the receiving surface remains between the end and the end of the supporting member or the rotating member. The condition that the depth is uniform is satisfied. Accordingly, a fluid is caused to flow from the center in the bearing width direction to both ends in the axial direction to generate a dynamic pressure in the groove portion, thereby supporting the rotating member.
JP1988010412U 1988-01-28 1988-01-28 Radial hydrodynamic bearing Expired - Lifetime JPH089444Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1988010412U JPH089444Y2 (en) 1988-01-28 1988-01-28 Radial hydrodynamic bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1988010412U JPH089444Y2 (en) 1988-01-28 1988-01-28 Radial hydrodynamic bearing

Publications (2)

Publication Number Publication Date
JPH01115018U JPH01115018U (en) 1989-08-02
JPH089444Y2 true JPH089444Y2 (en) 1996-03-21

Family

ID=31218051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1988010412U Expired - Lifetime JPH089444Y2 (en) 1988-01-28 1988-01-28 Radial hydrodynamic bearing

Country Status (1)

Country Link
JP (1) JPH089444Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003097543A (en) * 2001-09-25 2003-04-03 Koyo Seiko Co Ltd Dynamic pressure bearing and its manufacturing method
JP2014047827A (en) * 2012-08-30 2014-03-17 Ntn Corp Static pressure gas bearing spindle device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4988175U (en) * 1972-11-21 1974-07-31
DE2624849C3 (en) * 1976-06-03 1981-12-03 Skf Kugellagerfabriken Gmbh, 8720 Schweinfurt Self-pressure generating radial plain bearing
JPS6017537Y2 (en) * 1980-07-02 1985-05-29 日本精工株式会社 Split type hydrodynamic bearing sleeve
JPS6197621U (en) * 1984-12-04 1986-06-23
JPS61110876U (en) * 1984-12-26 1986-07-14

Also Published As

Publication number Publication date
JPH01115018U (en) 1989-08-02

Similar Documents

Publication Publication Date Title
US6276831B1 (en) Rotary apparatus with asymmetrically formed dynamic pressure generating grooves
JPS6335731B2 (en)
KR880014712A (en) Disc drive spindle motor with low cogging torque
JPH089444Y2 (en) Radial hydrodynamic bearing
JP2008224017A (en) Magnetic bearing device
KR100257820B1 (en) Brushless direct motor
JPH0725774Y2 (en) Polygon mirror device
JP4427828B2 (en) Magnetic bearing
KR100335235B1 (en) Spindle motor for driving disk
JPH0752419Y2 (en) Dynamic bearing structure
JPH0724933Y2 (en) Thrust bearing mechanism for high speed motors
JPH0643378A (en) Rotary structure
JPH04224313A (en) Magnetic bearing device
JPH07147050A (en) Spindle motor
JPS61259224A (en) Fluid bearing for optical deflector
JPH0530720A (en) Spindle motor
JP3282979B2 (en) Capstan motor
JPH1031188A (en) Polygon scanner
JPH0640456Y2 (en) Thin DC control motor
JPS583154A (en) Magnetic head driving device
JPH07336982A (en) Motor system
JP2579416Y2 (en) Air spindle
JP2604691Y2 (en) Static pressure air bearing device
JPH0690365B2 (en) motor
JPH03272319A (en) Dynamic pressure bearing structure