JPH0889746A - Method and device for cleaning gas - Google Patents

Method and device for cleaning gas

Info

Publication number
JPH0889746A
JPH0889746A JP6257300A JP25730094A JPH0889746A JP H0889746 A JPH0889746 A JP H0889746A JP 6257300 A JP6257300 A JP 6257300A JP 25730094 A JP25730094 A JP 25730094A JP H0889746 A JPH0889746 A JP H0889746A
Authority
JP
Japan
Prior art keywords
gas
contact angle
fine particles
source
harmful
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6257300A
Other languages
Japanese (ja)
Inventor
Toshiaki Fujii
敏昭 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Research Co Ltd
Original Assignee
Ebara Research Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Research Co Ltd filed Critical Ebara Research Co Ltd
Priority to JP6257300A priority Critical patent/JPH0889746A/en
Publication of JPH0889746A publication Critical patent/JPH0889746A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)

Abstract

PURPOSE: To rapidly and effectively obtain a superclean space capable of preventing an increase of a contact angle by installing a stage for removing the harmful components to increase the contact angle and a stage for removing particulates in the hermetic space and placing a heating source in the hermetic space. CONSTITUTION: This cleaning method for preventing the increase in the contact angle of the surfaces of base materials or substrates includes a harmful component removing section A formed by using at least one kinds selected from active carbon, diatomaceous earth, silica gels 2, synthetic zeolite, high-polymer compds., glass materials or fluororesins for removing the harmful components 10 in gases within the hermetic space. Further, a particulate removing section B having a UV ray source 4 or radiation source and photon releasing materials 5 for releasing photons by irradiation with this ray source, electrodes 6 for electric fields and charge particulate capturing materials 7 for removing the particulates 11 in the gases is installed in the hermetic space. Further, a heat generating source 12 for generating gas circulating flow is installed in the hermetic space.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、気体の清浄化に係り、
特に、密閉空間中で接触角の増加防止に効果がある気体
の清浄方法及び装置に関する。本発明が適用できる分野
の例を次に示す。 (1)半導体工場におけるウエハの接触角増加防止。 (2)液晶工場におけるガラス基盤の接触角増加防止。 (3)精密機械工場における基盤の接触角増加防止。 本発明の気体の清浄方法及び装置は、貴重品の保管庫
(ストッカ)、ウエハ保管庫、液晶保管庫、クリーンボ
ックスなどのクリーンな空間における空気や窒素ガスそ
の他の気体の処理等に利用できる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to cleaning gas,
In particular, the present invention relates to a method and apparatus for cleaning gas, which is effective in preventing an increase in contact angle in a closed space. The following are examples of fields to which the present invention can be applied. (1) Prevention of increase in wafer contact angle in semiconductor factories. (2) Prevent increase of contact angle of glass substrate in LCD factory. (3) Preventing the increase of the contact angle of the board in the precision machinery factory. INDUSTRIAL APPLICABILITY The gas cleaning method and apparatus of the present invention can be used for treating air and nitrogen gas and other gases in a clean space such as a valuables storage (stocker), wafer storage, liquid crystal storage, and clean box.

【0002】[0002]

【従来の技術】従来の技術に関して、半導体工業におけ
るクリーンルームの空気清浄を例に説明する。従来のク
リーンルームの空気清浄方法あるいはその装置を大別す
ると、 (1)機械的ろ過方法(例えばHEPAフィルター) (2)静電的に微粒子の捕集を行う高電圧による荷電及
び導電性フィルターによるろ過方式(例えばHESAフ
ィルター) (3)光電子により微粒子を荷電させ、該微粒子を捕集
・除去する方式(特公平3−5859号、特開平4−1
71061号各公報)がある。 これらの方式は、いずれも微粒子(粒子状物質)除去を
目的としており、炭化水素(H.C.),SOx,NO
x,HCl,NH3 のような接触角を増加させる、ガス
状の汚染物(有害ガス)の除去には効果がない欠点があ
った。
2. Description of the Related Art Conventional techniques will be described by taking air cleaning in a clean room in the semiconductor industry as an example. The air cleaning methods in the conventional clean room or the apparatus therefor are roughly classified into (1) a mechanical filtration method (for example, a HEPA filter) (2) filtration by a high voltage charged and conductive filter that electrostatically collects fine particles. Method (for example, HESA filter) (3) Method of charging fine particles by photoelectrons and collecting / removing the fine particles (JP-B-3-5859, JP-A-4-1-1)
No. 71061). All of these methods are aimed at removing fine particles (particulate matter), and include hydrocarbons (HC), SOx, and NO.
There is a drawback that it is ineffective in removing gaseous pollutants (poisonous gases), which increases the contact angle such as x, HCl, NH 3 .

【0003】ガス状の汚染物(有害成分)であるH.
C.の除去法としては、燃焼分解法、触媒分解法、O3
分解法などが知られている。しかし、これらの方法はク
リーンルームへの導入空気に含有する極低濃度H.C.
除去には効果がない。また、H.C.以外の有害成分と
しては、SOx,NOx,HCl,NH3 などがあり、
これらの除去法としては適宜のアルカリ性物質や酸性物
質を用いた中和反応や酸化反応に基づく方法などが知ら
れている。しかし、これらの方法は、成分濃度がクリー
ンルームへの導入空気に含有するような極低濃度の場合
には効果が少ない。クリーンルームにおいては、自動車
排ガスに起因するような導入空気中の低濃度のH.C.
も汚染質として問題となる。また、クリーンルームにお
ける作業で生じた各種の溶剤(例えば、アルコール、ケ
トン類等)も汚染質として問題となる。
H. 3 which is a gaseous pollutant (hazardous component).
C. As a method for removing methane, combustion decomposition method, catalytic decomposition method, O 3
The decomposition method and the like are known. However, these methods have a very low H.V. concentration in the air introduced into the clean room. C.
It has no effect on removal. In addition, H. C. Other harmful components include SOx, NOx, HCl, NH 3, etc.,
As a method for removing these, a method based on a neutralization reaction or an oxidation reaction using an appropriate alkaline substance or acidic substance is known. However, these methods are less effective when the component concentration is an extremely low concentration such as contained in the air introduced into the clean room. In a clean room, H.O. C.
Also poses a problem as a pollutant. Further, various solvents (for example, alcohols, ketones, etc.) generated in the work in the clean room also pose a problem as contaminants.

【0004】また、微粒子とガス状汚染物(有害成分)
の中間体であるミストやクラスターのような物質も従来
のフィルタでは除去できなかった。クリーンルームにお
ける汚染物(粒子状物質及び接触角を増加させるガス状
有害成分)は、半導体製品の生産性(歩留り)を低下さ
せる原因、すなわち、ウエハ、半製品、製品の基盤表面
への汚染物の沈着による破損となるため、これらの除去
あるいは汚染防止ができる空間が必要となってきてい
る。これらに対し、本発明者らは、すでに接触角増加防
止を図るいくつかの提案(例えば、特開平5−1572
84号、特開平6−324号各公報)をしている。これ
らは、実用上、適用先によってより効果的に実施し得る
形態で行うように改良する必要があった。
Further, fine particles and gaseous pollutants (hazardous components)
Substances such as mist and clusters, which are intermediates of, could not be removed by conventional filters. The contaminants in the clean room (particulate matter and gaseous harmful components that increase the contact angle) reduce the productivity (yield) of semiconductor products, that is, the contaminants on the surface of wafers, semi-finished products and substrate of products. Since it will be damaged by deposition, a space that can remove these or prevent contamination is needed. On the other hand, the present inventors have already proposed some proposals for preventing the increase of the contact angle (for example, JP-A-5-1572).
No. 84, JP-A-6-324). In practical use, it was necessary to improve them so that they could be carried out more effectively depending on the application.

【0005】[0005]

【発明が解決しようとする課題】基板のウエハ、半製
品、製品に接触角を増加させる有害成分が付着したり、
微粒子が付着すると製品の生産性が低下する。例えば、
ウエハやガラスなどの基板から高機能製品を作るプロセ
スでは、作業工程上、1日〜10日間程度、一時ストッ
ク(保管)する必要がある。この場合、原料、半製品、
製品はクリーンルーム空気に暴露されるので汚染(例え
ば接触角が増加)され、生産性低下の原因となってい
る。接触角とは、表面の汚染の程度を表わす指標であ
り、「表面のぬれ性を表わす角度」で表現され、接触角
が高いと汚染されており、逆に低いと汚染されていな
い。例えば、通常のクリーンルームの空気にウエハが接
触すると、該空気中のH.C.がウエハ上に付着して汚
染する。この場合、ウエハの接触角は高くなる。
Problems such as adhesion of harmful components that increase the contact angle to wafers, semi-finished products and products of substrates,
If the fine particles adhere, the productivity of the product will decrease. For example,
In the process of producing a high-performance product from a substrate such as a wafer or glass, it is necessary to temporarily stock (store) for about 1 to 10 days in the work process. In this case, raw materials, semi-finished products,
Since the product is exposed to clean room air, it is contaminated (for example, the contact angle is increased), which causes a decrease in productivity. The contact angle is an index showing the degree of contamination of the surface, and is represented by "an angle showing the wettability of the surface". When the contact angle is high, it is contaminated, and conversely, it is not contaminated. For example, when the wafer comes into contact with the air in a normal clean room, the H.V. C. Adheres to and contaminates the wafer. In this case, the contact angle of the wafer is high.

【0006】製品の生産性向上のためには、接触角で表
現される基板上への有害成分の付着及び基板への微粒子
の付着の両方をなくする必要がある。すなわち、半導体
製品の生産性向上のためには、接触角の増加防止に効果
があり、かつ除塵された気体が必要であり、そのための
方法及び装置が必要である。そこで、本発明は、上記要
望に答え、接触角の増加防止に効果がある超清浄な密閉
空間を得る空気の清浄方法及び装置を提供することを課
題とする。
In order to improve the productivity of products, it is necessary to eliminate both the adhesion of harmful components on the substrate and the adhesion of fine particles to the substrate, which are expressed by the contact angle. That is, in order to improve the productivity of semiconductor products, a gas that is effective in preventing an increase in contact angle and that is dust-free is required, and a method and apparatus therefor are required. Therefore, it is an object of the present invention to provide an air cleaning method and device that responds to the above-mentioned demand and obtains an ultra-clean closed space that is effective in preventing an increase in contact angle.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に、本発明では、基材又は基板表面の接触角の増加を防
止する気体の清浄方法において、密閉空間内で有害成分
及び微粒子を含む気体を、接触角を増加する気体中の有
害成分を除去する工程及び光電子により気体中の微粒子
を除去する工程に、該密閉空間内に設けられた発熱源に
基づく気体流によって通すこととしたものである。ま
た、本発明では、基材又は基板表面の接触角の増加を防
止する気体の清浄装置において、密閉空間内に、気体中
の有害成分を除去するための、活性炭、珪藻土、シリカ
ゲル、合成ゼオライト、高分子化合物、ガラス材又はフ
ッ素樹脂から選ばれた少なくとも1種類の吸着材を用い
た有害ガス除去部と、該気体中の微粒子を除去するため
の、紫外線源及び/又は放射線源と該線源からの照射に
より光電子を放出する光電子放出材と電場用電極及び荷
電微粒子捕集材を有する微粒子除去部と、該密閉空間内
に気体循環流を発生させる発熱源とを備えたものであ
る。
In order to solve the above problems, in the present invention, in a gas cleaning method for preventing an increase in the contact angle of a substrate or a substrate surface, a harmful component and fine particles are contained in a closed space. The gas is passed through a step of removing harmful components in the gas that increases the contact angle and a step of removing fine particles in the gas by photoelectrons by a gas flow based on a heat source provided in the closed space. Is. Further, in the present invention, in a gas cleaning device for preventing an increase in the contact angle of the substrate or substrate surface, in a closed space, for removing harmful components in the gas, activated carbon, diatomaceous earth, silica gel, synthetic zeolite, A harmful gas removing part using at least one adsorbent selected from a polymer compound, a glass material or a fluororesin, an ultraviolet ray source and / or a radiation source for removing fine particles in the gas, and the radiation source. It is provided with a photoelectron emitting material that emits photoelectrons upon irradiation with a magnetic field, a fine particle removing section having an electric field electrode and a charged fine particle collecting material, and a heat source for generating a gas circulation flow in the closed space.

【0008】次に、本発明の夫々の構成を詳細に説明す
る。接触角を増加させるガス状有害成分(ガス及び/又
はミスト状物質)を除去するためには、接触角を増大さ
せるこれら成分を吸着及び/又は吸収する材料を用い
る。非メタン炭化水素は、通常の空気(室内空気及び外
気)中の濃度で汚染をもたらす。また種々の非メタン炭
化水素のうち、接触角を増大させる成分は基材の種類
(ウエハ、ガラス材など)や基板上の薄膜の種類・性状
によって異なると考えられる。本発明者は鋭意検討した
結果、非メタン炭化水素を指標として、これを0.2p
pm以下、好ましくは0.1ppm以下まで除去すれば
効果的であることを発見した。すなわち、非メタン炭化
水素を吸着捕集するものであれば何れでも使用できる。
吸着材としては、活性炭、珪藻土、シリカゲル、合成ゼ
オライト、モレキュラシーブ、高分子化合物(例えは、
スチレン系重合体、スチレン−ジビニルベンゼン共重合
体)、ガラス、フッ素化合物、金属、イオン交換体
(例、イオン交換物質)などを用いる。
Next, each structure of the present invention will be described in detail. In order to remove the gaseous harmful components (gas and / or mist-like substance) that increase the contact angle, a material that adsorbs and / or absorbs these components that increase the contact angle is used. Non-methane hydrocarbons cause pollution at concentrations in normal air (indoor and outdoor air). Among various non-methane hydrocarbons, the component that increases the contact angle is considered to differ depending on the type of base material (wafer, glass material, etc.) and the type and properties of the thin film on the substrate. As a result of diligent studies, the present inventor has determined that this is 0.2 p
It has been found to be effective to remove pm or less, preferably 0.1 ppm or less. That is, any material that adsorbs and collects non-methane hydrocarbons can be used.
As the adsorbent, activated carbon, diatomaceous earth, silica gel, synthetic zeolite, molecular sieve, polymer compound (for example,
A styrene polymer, a styrene-divinylbenzene copolymer), glass, a fluorine compound, a metal, an ion exchanger (eg, an ion exchange substance), etc. are used.

【0009】ガラス材としては、酸化物ガラス系、例え
ばケイ酸塩ガラス、リン酸塩ガラスが一般的である。ケ
イ酸塩ガラスとしては特にホウケイ酸ガラス(主要成
分:N2 O−B2 3 −SiO2 )が、成形が容易で吸
着効果が高く、かつ安価であることから好ましい。ま
た、ガラス表面にTi、Au、Al、Crなどの金属薄
膜を被覆して用いると、吸着効果が高くなる。フッ素化
合物としては、四フッ化樹脂、四−六フッ化樹脂、四フ
ッ化エチレン樹脂(PTFE)、PFA樹脂、三フッ化
エチレン樹脂、四フッ化エチレン−エチレン共重合体、
フッ化ビニリデン樹脂(PVDF)、フッ化ビニル樹
脂、フッ化黒鉛、テフロンなどがある。
As the glass material, oxide glass materials such as silicate glass and phosphate glass are generally used. Borosilicate glass (main component: N 2 O—B 2 O 3 —SiO 2 ) is particularly preferable as the silicate glass because it is easy to mold, has a high adsorption effect, and is inexpensive. Further, when the glass surface is coated with a metal thin film of Ti, Au, Al, Cr or the like, the adsorption effect is enhanced. Examples of the fluorine compound include tetrafluororesin, tetra-hexafluororesin, tetrafluoroethylene resin (PTFE), PFA resin, trifluoroethylene resin, tetrafluoroethylene-ethylene copolymer,
Examples thereof include vinylidene fluoride resin (PVDF), vinyl fluoride resin, graphite fluoride, and Teflon.

【0010】ガラス及びフッ素化合物の使用形状は、フ
ィルタ状、繊維状、網状、球状、ペレット状、格子状、
棒状、プリーツ状などがなる。一般にフィルタ状が吸着
効果が大きいので好ましい。フィルタ状で用いる場合の
成形法の例として、フッ素化合物樹脂をバインダとして
用い、繊維状のガラス材をフィルタ状に固めて用いる方
法がある。このようなフィルタ状で用いるとH.C.の
除去性能に除塵性能が加わるのでフィルタ構成が簡素に
なる。従ってこのような吸着材を汚染防止装置に組み込
むことは、利用分野、装置規模、装置形状によっては好
ましい。このような例として、繊維状ホウケイ酸ガラス
をPTFEで固めフィルタ状に加工したもの、又は繊維
状ホウケイ酸ガラスをPVDFで固めフィルタ状に加工
したものがある。このようにフィルタ状にすることで、
H.C.除去の他に除塵性(比較的大粒径の粒子に効
果)も加わるので好ましい。
The shapes of glass and fluorine compounds used are filter, fiber, mesh, sphere, pellet, lattice,
It can be rod-shaped or pleated. In general, a filter shape is preferable because it has a large adsorption effect. As an example of a molding method in the case of using in a filter shape, there is a method of using a fluorine compound resin as a binder and solidifying a fibrous glass material in a filter shape. When used in such a filter form, C. Since the dust removal performance is added to the removal performance of, the filter configuration becomes simple. Therefore, it is preferable to incorporate such an adsorbent in a pollution control device depending on the field of use, the scale of the device, and the shape of the device. As such an example, there is one in which fibrous borosilicate glass is hardened with PTFE and processed into a filter shape, or one in which fibrous borosilicate glass is hardened with PVDF and processed into a filter shape. By making a filter like this,
H. C. In addition to removal, dust removal (effective for particles having a relatively large particle size) is also added, which is preferable.

【0011】金属としては、例えばFe、Ag、Ni、
Cr、Ti、Au、Pt、TiO2があり、粉末状、板
状、スポンジ状、線状、繊維状、あるいは適宜の担体に
付加したもの、例えばシリカ−アルミナゲルにAgを担
持したものやリン酸ジルコニウムにAgを担持した形状
が好適に使用できる。また、イオン交換体としては、通
気性に優れているものが好ましく、特に繊維状のものが
好ましい。イオン交換繊維は、本発明者らがすでに提案
した発明(例えば、特公平5−67325号、特公平6
−24626号各公報参照)があるので、これらを適宜
利用できる。
Examples of metals include Fe, Ag, Ni,
There are Cr, Ti, Au, Pt, and TiO 2, which are powdery, plate-like, sponge-like, linear, fibrous, or added to an appropriate carrier, for example, silica-alumina gel loaded with Ag or phosphorus. A shape in which zirconate is supported with Ag can be preferably used. Further, as the ion exchanger, those having excellent air permeability are preferable, and fibrous ones are particularly preferable. The ion exchange fiber is an invention already proposed by the present inventors (for example, Japanese Patent Publication No. 5-67325, Japanese Patent Publication No. 6).
-24626), these can be used as appropriate.

【0012】通常のクリーンルームにおいては、上記吸
着材のうち、活性炭、珪藻土、シリカゲル、合成ゼオラ
イト、高分子化合物、ガラス、フッ素化合物、および金
属が吸着効果が高いのでより好ましい。これらの吸着材
は、2種類以上を適宜組み合わせて使用することで効果
的となる(特願平5−145073号、特開平6−32
4号公報参照)。後述するように、接触角増大に関与す
るH.C.は複数種類と考えられるので、2種類以上の
吸着材を組み合わせて用いると寿命が長くなる。汚染原
因H.C.は発明者らの研究によれば、ガラスの汚染
H.C.は主に、C16〜C26の高分子量の脂肪酸、フタ
ル酸エステル、フェノール誘導体で親水性基と疎水性基
を有する高分子量のH.C.である。このため、通常1
種類の吸着材による捕集によっては接触角増大に関与す
る全てのH.C.を捕集するには限界があるので、吸着
特性の異なる吸着材を、実験を行って適宜組み合わせて
用いると効果的になると考えられる。
In a normal clean room, among the above adsorbents, activated carbon, diatomaceous earth, silica gel, synthetic zeolite, polymer compounds, glass, fluorine compounds and metals are more preferable because of their high adsorption effect. These adsorbents can be effectively used by appropriately combining two or more kinds (Japanese Patent Application No. 5-145073 and Japanese Patent Application Laid-Open No. 6-32).
(See Japanese Patent Publication No. 4). As will be described later, H.264 that is involved in increasing the contact angle. C. Since it is considered that there are a plurality of types of adsorbents, the life of the adsorbents becomes longer when two or more types of adsorbents are used in combination. Cause of pollution H. C. According to the research conducted by the inventors, the H. C. Is mainly a C 16 -C 26 high molecular weight fatty acid, a phthalate ester, and a phenol derivative, which has a hydrophilic group and a hydrophobic group. C. Is. Therefore, usually 1
Depending on the type of adsorbent collected, all H. C. Since there is a limit to the collection of adsorbents, it is considered effective to use adsorbents having different adsorption characteristics by conducting experiments and appropriately combining them.

【0013】また、ガラスやウエハの基板の種類によっ
て、又は基板の表面状態によってはH.C.の影響の程
度が異なるので、利用分野、装置規模、形状、装置の使
用条件、共有ガス、要求性能、経済性などにより適宜予
備試験を行って、上記吸着材の中から好適なものを選定
することができる。また適用分野や装置のタイプによっ
ては、吸着材に空気を通す前に被処理空気の脱水、除湿
又は減湿を行えば吸着材の吸着性能が向上し、また寿命
が延びる。そのために、吸着式、吸収式、膜分離による
方式など周知のものを本吸着材の前に設置することがで
きる。上記吸着材の内、シリカゲルや合成ゼオライトの
ように吸湿性の材料は、脱水とH.C.除去の両方の機
能を有することから好ましい。
Further, depending on the type of glass or wafer substrate, or the surface condition of the substrate, H. C. Since the degree of influence of the adsorbent is different, a suitable preliminary test is performed according to the field of use, scale of the equipment, shape, usage conditions of the equipment, shared gas, required performance, economic efficiency, etc., and a suitable one is selected from the above adsorbents. be able to. Depending on the field of application and the type of device, if the air to be treated is dehydrated, dehumidified or dehumidified before air is passed through the adsorbent, the adsorbing performance of the adsorbent is improved and the service life is extended. Therefore, well-known materials such as an adsorption type, an absorption type, and a membrane separation type can be installed in front of the present adsorbent. Among the above-mentioned adsorbents, hygroscopic materials such as silica gel and synthetic zeolite are dehydrated and H. C. It is preferable because it has both functions of removal.

【0014】H.C.吸収材は、低濃度のH.C.と反
応し、これを固定化できるものであれば何でも使用でき
る。一般には、H2 SO4 共存下でのCr6+との反応
や、H2 2 7 共存下でのI2 5 との反応を用いる
ことができる。前者は低分子量のH.C.に、後者は高
分子量のH.C.に対して有効である。例えば、ガラス
ビーズあるいは適宜の形状(例えばペレット状)のゼオ
ライトやアルミナなどの担体表面にH2 SO4 酸性の6
価クロムを含む塩水溶液を含浸させて用いる。なお、吸
収とは化学反応により反応吸収することを示す。吸収材
及び/又は吸収材の使用条件は、本発明の装置の適用分
野、装置規模、形状、要求性能などによって、適宜予備
試験を行って決めることができる。装置中の被処理空気
の空間速度(SV)は通常100〜200,000(h
-1)、好ましくは100〜30,000(h-1)とす
る。
H. C. The absorber is a low concentration H. C. Any substance that reacts with and can be immobilized can be used. Generally, a reaction with Cr 6+ in the coexistence of H 2 SO 4 or a reaction with I 2 O 5 in the coexistence of H 2 S 2 O 7 can be used. The former is a low molecular weight H. C. The latter has a high molecular weight H. C. Is effective against. For example, glass beads or an appropriate shape (for example, pellet shape) of a carrier such as zeolite or alumina on the surface of H 2 SO 4 acid 6
It is used by being impregnated with an aqueous salt solution containing valent chromium. The term "absorption" means that the reaction is absorbed by a chemical reaction. The absorbent material and / or the usage conditions of the absorbent material can be determined by conducting a preliminary test as appropriate according to the application field of the device of the present invention, device scale, shape, required performance, and the like. The space velocity (SV) of the air to be treated in the apparatus is usually 100 to 200,000 (h
-1 ), preferably 100 to 30,000 (h -1 ).

【0015】以上は、通常の空気中の極低濃度HCを除
去する場合の本発明の態様を説明したものである。一般
に基材又は基板表面を汚染し、接触角を増大させる原因
となる物質は、(1)SOx,NOx,HCl,NH3
のような有害ガス、(2)微粒子、(3)HC、に大別
できて、本発明者が検討した結果、通常の空気中(通常
のクリーンルームにおける環境大気中)や半導体製造工
場や液晶製造工場などのクリーンルームで使用されるN
2 中では、接触角に対して、微粒子とHCの影響が大き
い。すなわち、一般にSOx,NOx,HCl,NH3
は、通常の空気中の濃度レベルでは接触角の増大に対し
て影響が少ない。従って除塵とHCの除去によって効果
が得られる。
The above is the description of the embodiment of the present invention in the case of removing the extremely low concentration HC in normal air. Generally, substances that contaminate the substrate or substrate surface and increase the contact angle are (1) SOx, NOx, HCl, NH 3
As a result of examination by the present inventor, it can be roughly divided into harmful gases such as (2) fine particles, (3) HC, and in normal air (atmosphere in a normal clean room), a semiconductor manufacturing plant, or liquid crystal manufacturing. N used in clean rooms such as factories
In 2 , the influence of fine particles and HC on the contact angle is large. That is, generally SOx, NOx, HCl, NH 3
Has little effect on increasing the contact angle at normal concentration levels in air. Therefore, the effect is obtained by removing dust and HC.

【0016】しかし、SOxやHF、HCl、NOx、
NH3 等有害ガスがクリーンルーム内又はその周辺で発
生してこれらの濃度が高い場合はこれらガス成分の影響
を受けるし、これらの濃度が通常では影響しない程度に
低い場合であっても、基材や基板が敏感な場合や表面が
特殊な状態になっている場合(例えば基材表面に特殊な
薄膜を被覆した場合)には影響を受ける可能性がある。
このような場合、本発明者がすでに提案した、紫外線及
び/又は放射線を有害ガスに照射してガスを微粒子化
し、この微粒子を捕集する方法(装置)(特願平3−2
2686号)を適宜組み合わせて用いにのが好ましい。
またこのような場合、別の周知の有害ガス除去材、例え
ば活性炭、イオン交換繊維などを適宜組み合わせて用い
てもよい。活性炭は、酸やアルカリなどを添着したり、
周知の方法によって適宜改質したものを用いることがで
きる。さらに、HCを除去する目的に対しても、本発明
者がすでに提案した、紫外線及び/又は放射線照射によ
りHCを微粒子化して捕集する方法(特願平3−105
092号)を併せて用いることもできる。
However, SOx, HF, HCl, NOx,
If harmful gases such as NH 3 are generated in or around the clean room and their concentration is high, they are affected by these gas components, and even if these concentrations are so low that they do not usually affect the base material. Or when the substrate is sensitive or when the surface is in a special state (for example, when the surface of the base material is coated with a special thin film), it may be affected.
In such a case, a method (apparatus) proposed by the present inventor to irradiate harmful gas with ultraviolet rays and / or radiation to atomize the gas and collect the particles (Japanese Patent Application No. 3-2).
No. 2686) is preferably used in combination.
In such a case, another known harmful gas removing material such as activated carbon or ion exchange fiber may be appropriately combined and used. Activated carbon is impregnated with acid or alkali,
It is possible to use those appropriately modified by a known method. Further, also for the purpose of removing HC, a method which has been already proposed by the present inventor to collect the fine particles of HC by irradiation with ultraviolet rays and / or radiation (Japanese Patent Application No. 3-105).
No. 092) can also be used together.

【0017】イオン交換繊維(フィルター)は、共存す
る酸性ガス、アルカリ性ガス、臭気性ガス等も同時に捕
集できるので実用上好ましい。使用するアニオン交換フ
ィルター及び/又はカチオン交換フィルターの種類、使
用量及びその比率は、気体中の同伴する酸性ガス、アル
カリ性ガス、臭気性ガスの種類、濃度等に応じて適宜決
めることができる。例えばアニオン交換フィルターは酸
性ガスの捕集に、またカチオン交換フィルターはアンモ
ニアのようなアルカリ性ガスの捕集に効果的である。フ
ィルターの使用量やその比率は、上述の捕集すべき物質
の濃度や濃度比率に対応して、これらに見合う量を、装
置の適用分野、形状、構造、効果、経済性等を考慮して
適宜決めれば良い。使用する吸着材及び/又は吸収材の
種類や使用条件は適宜に決めることができる。すなわ
ち、これらは利用するクリーンルームの汚染物(ガス状
及び/又はミスト状有害成分)の濃度、種類、適用装置
の種類、構造、規模、要求性能・効率、経済性などで適
宜に予備試験を行い決めることができる。
The ion-exchange fiber (filter) is practically preferable because it can simultaneously collect coexisting acidic gas, alkaline gas, odorous gas and the like. The type, amount and ratio of the anion exchange filter and / or cation exchange filter to be used can be appropriately determined according to the types and concentrations of the acidic gas, alkaline gas and odorous gas entrained in the gas. For example, anion exchange filters are effective at collecting acidic gases, and cation exchange filters are effective at collecting alkaline gases such as ammonia. The amount and ratio of the filter used correspond to the concentration and concentration ratio of the substances to be collected, and the amount corresponding to these should be taken into consideration in consideration of the application field, shape, structure, effect, economical efficiency, etc. of the device. It may be decided as appropriate. The kind of the adsorbent and / or the adsorbent used and the use conditions can be appropriately determined. In other words, these should be appropriately preliminarily tested in terms of concentration, type, applicable equipment type, structure, scale, required performance / efficiency, economic efficiency, etc. of clean room contaminants (gaseous and / or mist-like harmful components). I can decide.

【0018】次に、微粒子除去部を説明する。ここで
は、特に微細な微粒子(超微粒子)の除去に効果的であ
る。微粒子除去部は、主に本発明の特徴である光電子の
放出を行う光電子放出材、紫外線源及び/又は放射線
源、電場用電極材、荷電微粒子捕集材からなる。夫々の
構成を詳細に説明する。光電子放出材は、紫外線又は放
射線の照射により光電子を放出するものであれば何れで
も良く、光電的な仕事関数が小さなもの程好ましい、効
果や経済性の面から、Ba,Sr,Ca,Y,Gd,L
a,Ce,Nd,Th,Pr,Be,Zr,Fe,N
i,Zn,Cu,Ag,Pt,Cd,Pb,Al,C,
Mg,Au,In,Bi,Nb,Si,Ti,Ta,
U,B,Eu,Sn,P,Wのいずれか又はこれらの化
合物又は合金又は混合物が好ましく、これらは単独で又
は二種以上を複合して用いられる。複合材としては、ア
マルガムの如く物理的な複合材も用いうる。
Next, the fine particle removing section will be described. Here, it is particularly effective for removing fine particles (ultrafine particles). The fine particle removing unit mainly includes a photoelectron emitting material that emits photoelectrons, which is a feature of the present invention, an ultraviolet ray source and / or a radiation source, an electrode material for electric field, and a charged fine particle collecting material. Each configuration will be described in detail. The photoelectron emitting material may be any as long as it emits photoelectrons by irradiation with ultraviolet rays or radiation, and the smaller the photoelectric work function is, the more preferable. From the viewpoint of effect and economy, Ba, Sr, Ca, Y, Gd, L
a, Ce, Nd, Th, Pr, Be, Zr, Fe, N
i, Zn, Cu, Ag, Pt, Cd, Pb, Al, C,
Mg, Au, In, Bi, Nb, Si, Ti, Ta,
Any one of U, B, Eu, Sn, P, W or a compound, alloy or mixture thereof is preferable, and these are used alone or in combination of two or more kinds. As the composite material, a physical composite material such as amalgam can also be used.

【0019】例えば、化合物としては酸化物、ほう化
物、炭化物があり、酸化物にはBaO,SrO,Ca
O,Y2 5 ,Gd2 3 ,Nd2 3 ,ThO2 ,Z
rO2 ,Fe2 3 ,ZnO,CuO,Ag2 O,La
2 3 ,PtO,PbO,Al23 ,MgO,In2
3 ,BiO,NbO,BeOなどがあり、またほう化
物にはYB6 ,GdB6 ,LaB5 ,NdB6 ,CeB
6 ,BuB6 ,PrB6 ,ZrB2 などがあり、さらに
炭化物としてはUC,ZrC,TaC,TiC,Nb
C,WCなどがある。また、合金としては黄銅、青銅、
リン青銅、AgとMgとの合金(Mgが2〜20wt
%)、CuとBeとの合金(Beが1〜10wt%)及
びBaとAlとの合金を用いることができ、上記Agと
Mgとの合金、CuとBeとの合金及びBaとAlとの
合金が好ましい。酸化物は金属表面のみを空気中で加熱
したり、或いは薬品で酸化することによっても得ること
ができる。
For example, compounds include oxides, borides, and carbides, and oxides include BaO, SrO, and Ca.
O, Y 2 O 5 , Gd 2 O 3 , Nd 2 O 3 , ThO 2 , Z
rO 2 , Fe 2 O 3 , ZnO, CuO, Ag 2 O, La
2 O 3 , PtO, PbO, Al 2 O 3 , MgO, In 2
There are O 3 , BiO, NbO, BeO, etc., and boride includes YB 6 , GdB 6 , LaB 5 , NdB 6 , CeB.
6 , BuB 6 , PrB 6 , ZrB 2 and the like, and as carbides, UC, ZrC, TaC, TiC, Nb.
C, WC, etc. In addition, as the alloy, brass, bronze,
Phosphor bronze, an alloy of Ag and Mg (Mg is 2 to 20 wt.
%), An alloy of Cu and Be (Be is 1 to 10 wt%) and an alloy of Ba and Al can be used. Alloys are preferred. The oxide can also be obtained by heating only the metal surface in air, or by oxidizing with a chemical.

【0020】さらに他の方法としては使用前に加熱し、
表面に酸化層を形成して長期にわたって安定な酸化層を
得ることもできる。この例としてはMgとAgとの合金
を水蒸気中で300〜400℃の温度の条件下でその表
面に酸化膜を形成させることができ、この酸化薄膜は長
期間にわたって安定なものである。また、本発明者が、
すでに提案したように光電子放出材を多重構造としたも
のも好適に使用できる(特願平1−155857号)。
また、適宜の母材上に、薄膜状に光電子を放出し得る物
質を付加し、使用することもできる(特願平2−278
123号)。この例として、紫外線透過性物質(母材)
としての石英ガラス上に光電子を放出し得る物質とし
て、Auを薄膜状に付加したものがある(特願平2−2
95423号)。
Still another method is to heat before use,
An oxide layer can be formed on the surface to obtain a stable oxide layer for a long period of time. As an example of this, an alloy of Mg and Ag can form an oxide film on its surface in water vapor at a temperature of 300 to 400 ° C., and this oxide thin film is stable for a long period of time. In addition, the present inventor
As already proposed, a photoelectron emitting material having a multiple structure can also be suitably used (Japanese Patent Application No. 1-155857).
Also, a substance capable of emitting photoelectrons in a thin film form may be added to an appropriate base material and used (Japanese Patent Application No. 2-278).
123). As an example of this, an ultraviolet transparent substance (base material)
As a substance capable of emitting photoelectrons on the quartz glass as described above, there is a substance in which Au is added in a thin film shape (Japanese Patent Application No. 2-2.
95423).

【0021】これらの材料の使用形状は、棒状、綿状、
格子状、板状、プリーツ状、曲面状、金網状等何れの形
状でもよいが、紫外線の照射面積及び処理空気との接触
面積の大きな形状のものがよく、装置によっては被処理
空間部(後述)に存在する微粒子が光電子放出部に迅速
に移動できるものが好ましい。光電子放出材からの光電
子放出のための照射源は、照射による光電子を放出する
ものであればいずれでも良い。紫外線の他に電磁波、レ
ーザ、放射線が適宜に適用分野、装置規模、形状、効果
等で選択し、使用できる。この内効果、操作性の面で、
紫外線又は放射線が通常好ましい。
The shapes of these materials used are rod-shaped, cotton-shaped,
It may have any shape such as a lattice shape, a plate shape, a pleated shape, a curved surface shape, and a wire mesh shape, but a shape having a large irradiation area of ultraviolet rays and a large contact area with the processing air is preferable, and depending on the apparatus, a space to be processed (see below). It is preferable that the fine particles present in (1) can be rapidly moved to the photoelectron emitting portion. The irradiation source for emitting photoelectrons from the photoelectron emitting material may be any one as long as it emits photoelectrons by irradiation. In addition to ultraviolet rays, electromagnetic waves, lasers, and radiations can be appropriately selected and used according to application fields, device scales, shapes, effects and the like. In terms of internal effects and operability,
UV or radiation is usually preferred.

【0022】紫外線の種類は、その照射により光電子放
出材が光電子を放出しうるものであれば何れでも良く、
適用分野によっては、殺菌(滅菌)作用を併せもつもの
が好ましい。紫外線の種類は、適用分野、作業内容、用
途、経済性などにより適宜決めることができる。例え
ば、バイオロジカル分野においては、殺菌作用、効率の
面から遠紫外線を併用するのが好ましい。該紫外線源と
しては、紫外線を発するものであれば何れも使用でき、
適用分野、装置の形状、構造、効果、経済性等により適
宜選択し用いることができる。例えば、水銀灯、水素放
電管、キセノン放電管、ライマン放電管などを適宜使用
できる。バイオロジカル分野では、殺菌(滅菌)波長2
54nmを有する紫外線を用いると、殺菌(滅菌)効果
が併用でき好ましい。
Any kind of ultraviolet light may be used as long as the photoelectron emitting material can emit photoelectrons by its irradiation.
Depending on the field of application, those having a sterilizing effect are preferable. The type of ultraviolet rays can be appropriately determined depending on the application field, work content, application, economic efficiency and the like. For example, in the biological field, it is preferable to use deep ultraviolet rays together from the viewpoint of bactericidal action and efficiency. As the ultraviolet ray source, any one can be used as long as it emits ultraviolet rays,
It can be appropriately selected and used depending on the application field, the shape of the device, the structure, the effect, the economical efficiency and the like. For example, a mercury lamp, a hydrogen discharge tube, a xenon discharge tube, a Lyman discharge tube, or the like can be used as appropriate. In the biological field, sterilization wavelength 2
It is preferable to use an ultraviolet ray having a wavelength of 54 nm because the sterilizing effect can be used together.

【0023】次に、光電子放出材及び電場用電極の位置
や形状について述べる。光電子放出材及び/又は電極
は、微粒子の存在する空間の適宜の位置の空間の1部分
に、電場と光電子放出材の間に電場が形成できるように
設置され、光電子放出材(−)と電極(+)間に電場
(電界)を形成する。該電場により光電子放出材から光
電子が効率よく放出される(光電子放出部)。電極又は
光電子放出材の位置や形状は、微粒子の存在する空間に
より適宜に選択でき、電場のための印加電圧が低くでき
て光電子放出材からの光電子が空間中で微粒子に荷電を
与えることができれば何れでもよく、利用分野、装置規
模、形状、効果、経済性等を考慮して、適宜予備試験等
により決めることができる。電極材の材質は、導体であ
れば何れも使用でき、周知の荷電装置における各種電極
材が好適に使用できる。
Next, the positions and shapes of the photoelectron emitting material and the electric field electrode will be described. The photoelectron emission material and / or the electrode is installed in a part of a space at an appropriate position in the space where the particles are present so that an electric field can be formed between the electric field and the photoelectron emission material, and the photoelectron emission material (-) and the electrode An electric field (electric field) is formed between (+). Due to the electric field, photoelectrons are efficiently emitted from the photoelectron emitting material (photoelectron emitting portion). The position or shape of the electrode or the photoelectron emitting material can be appropriately selected depending on the space in which the particles are present, and if the applied voltage for the electric field can be lowered and the photoelectrons from the photoelectron emitting material can charge the particles in the space. Any of them may be used, and can be appropriately determined by a preliminary test or the like in consideration of the field of use, device scale, shape, effect, economy, and the like. Any material can be used for the electrode material as long as it is a conductor, and various electrode materials in known charging devices can be preferably used.

【0024】また、電極と光電子放出材の設置位置と形
状は、本発明者がすでに提案した(特願平3−1316
40号)ように構成するのが好ましい。本発明に用いる
電場電圧は、0.1V/cm〜2kV/cmである。好
適な電場の強さは、利用分野、条件、装置形状、規模、
効果、経済性等で適宜予備試験や検討を行い決めること
が出来る。荷電微粒子の捕集材(集じん材)は、荷電微
粒子が捕集できるものであればいずれでも使用できる。
通常の荷電装置における集じん板、集じん電極等各種電
極材や静電フィルター方式が一般的であるが、スチール
ウール電極、タングステンウール電極のような捕集部自
体が電極を構成するウール状構造のものも有効である。
エレクトレット材も好適に使用できる。
The inventor has already proposed the installation position and shape of the electrode and the photoelectron emitting material (Japanese Patent Application No. 3-1316).
No. 40) is preferable. The electric field voltage used in the present invention is 0.1 V / cm to 2 kV / cm. The suitable electric field strength depends on the field of application, conditions, device shape, scale,
Preliminary tests and examinations can be made to determine the effect and economy. As the collecting material (dust collecting material) for the charged fine particles, any material can be used as long as it can collect the charged fine particles.
Various electrode materials such as a dust collecting plate and a dust collecting electrode in an ordinary charging device and an electrostatic filter method are generally used, but a wool-like structure in which the collecting portion itself such as a steel wool electrode or a tungsten wool electrode constitutes an electrode. Are also valid.
Electret materials can also be preferably used.

【0025】本発明のごとく気体の流動が比較的少ない
密閉空間の清浄化への利用では電場用電極材が、荷電微
粒子捕集材と兼用又は一体化していると装置がコンパク
ト化できて好ましい。例えば、上述荷電微粒子捕集材の
内、集じん板や集じん電極あるいはスチールウール電
極、タングステンウール電極のようなウール状電極材等
の各種電極材は、電場用電極と、荷電微粒子の捕集を兼
ねてできるので好ましい。従来のフィルタ方式による微
粒子除去の場合、気体を流動化する必要があり、該流動
化により、微粒子による汚染が広がる問題があった。こ
れに対して、光電子による本荷電・捕集方法は、気体を
積極的に流動化することなく、光電子により荷電を付与
される粒子状物質全てが捕集・除去できるので、効果的
である。
In the use for cleaning a closed space in which gas flow is relatively small as in the present invention, it is preferable that the electrode material for the electric field also serves as or is integrated with the material for collecting charged fine particles because the apparatus can be made compact. For example, among the above-mentioned charged particulate matter collecting materials, various electrode materials such as a dust collecting plate, a dust collecting electrode, or a wool-like electrode material such as a steel wool electrode and a tungsten wool electrode are used as an electric field electrode and a collection of charged particulate matter. It is preferable because it can be combined with the above. In the case of removing particulates by the conventional filter method, it is necessary to fluidize the gas, and there is a problem that the fluidization causes contamination by particulates to spread. On the other hand, the present photoelectron charging / collecting method is effective because all the particulate matter to which the photoelectrons are charged can be collected / removed without positively fluidizing the gas.

【0026】次に本発明における気体流を形成するため
の発熱源について説明する。発熱源は、加熱によるか、
あるいは加熱と冷却による温度差を用いている。加熱源
については、通常運転の場合には、紫外線ランプのみで
良いが、扉の開閉直後や汚染の激しいクリーンルームで
実施する場合には、加熱源として紫外線ランプを補助す
る加熱ヒータを用いると循環流量が増えるのでより短時
間で効果的に超清浄空間が得られることから好ましい。
加熱源は、密閉空間内の下方適宜の位置に加熱源を設置
することにより行い、通常、微粒子除去部あるいは有害
ガス除去部の内、装置の下方に設置されている方に設置
すると空間内の気体の循環が効果的となることから好ま
しい。紫外線ランプと共に用いる補助の加熱源は周知の
手段を用いることができ、例えば、ヒータ(伝熱コイ
ル、温水)や赤外線ランプがある。勿論、本発明におい
ては熱対流が生じればよいのであるから密閉空間上方の
適宜の位置を冷却することを妨げるのではない。
Next, the heat source for forming the gas flow in the present invention will be described. Is the heat source due to heating,
Alternatively, the temperature difference between heating and cooling is used. As for the heating source, in normal operation, only the UV lamp is enough, but when performing immediately after opening / closing the door or in a clean room with severe pollution, use a heater that assists the UV lamp as the heating source to circulate. It is preferable because the ultra-clean space can be effectively obtained in a shorter time because the amount of water increases.
The heating source is installed by installing the heating source at an appropriate position in the lower part of the closed space. Normally, when the heating source is installed in the part for removing fine particles or the harmful gas, the part in the space is installed. It is preferable because the circulation of gas becomes effective. Well-known means can be used for the auxiliary heating source used with the ultraviolet lamp, and examples thereof include a heater (heat transfer coil, hot water) and an infrared lamp. Of course, in the present invention, it suffices that heat convection is generated, and therefore it does not prevent cooling of an appropriate position above the sealed space.

【0027】加熱と冷却の温度差は、利用分野、装置形
状、構造、大きさ、要求性能などにより適宜予備試験を
行い決めることができる。通常、温度差は、3℃以上で
効果があり、3℃〜10℃程度であれば、光電子放出用
の紫外線ランプの種類、出力、数量等を選択することに
より設定できる。温度差は高くなるに従い、循環流が多
くなり効果的であるので、適宜紫外線ランプに加えて、
上述の補助加熱源を分野、装置形状、大きさ、構造、材
質、媒体ガス種類、要求性能等により利用することがで
きる。通常温度差は3〜30℃である。用いる加熱源の
種類、加熱源設置の位置は、利用分野、装置形状、構
造、材質、要求性能、使用紫外線ランプの種類、出力、
数量、媒体ガスの種類等により適宜予備試験を行い決め
ることができる。
The temperature difference between heating and cooling can be determined by carrying out preliminary tests as appropriate depending on the field of use, apparatus shape, structure, size, required performance and the like. Usually, the temperature difference is effective at 3 ° C. or higher, and if it is about 3 ° C. to 10 ° C., it can be set by selecting the type, output, quantity, etc. of the ultraviolet lamps for photoelectron emission. As the temperature difference increases, the circulation flow increases and it is effective, so in addition to the ultraviolet lamp appropriately,
The above-mentioned auxiliary heating source can be used depending on the field, device shape, size, structure, material, medium gas type, required performance and the like. Usually the temperature difference is 3 to 30 ° C. The type of heating source used and the position of the heating source installation are used fields, device shape, structure, material, required performance, type of ultraviolet lamp used, output,
Preliminary tests can be appropriately performed and determined according to the quantity, type of medium gas, etc.

【0028】本発明において、密閉空間中に存在する気
体は、媒体気体の種類に何ら限定されず空気以外に窒素
やアルゴン等他の気体中でも同様に実施できる。なお、
本発明における有害ガス除去部、微粒子除去部の位置
は、何ら限定されるものではなく、例えば、有害ガス除
去部を装置の下方に設置することもできる。また、1個
所だけではなく、上方と下方に夫々複数個設置すること
もできる。このようにして得られる清浄空間は、ガラス
やウエハ基材や基板の接触角増加防止に効果があり、こ
の効果は、該基材や基板上に成膜した場合の膜の付着力
の維持に有効であることから実用上の価値が高い。
In the present invention, the gas existing in the closed space is not limited to the kind of the medium gas, and other gases such as nitrogen and argon can be used in the same manner as air. In addition,
The positions of the harmful gas removing unit and the fine particle removing unit in the present invention are not limited at all, and for example, the harmful gas removing unit may be installed below the device. Further, not only one place but also a plurality of places can be installed above and below. The clean space thus obtained has the effect of preventing an increase in the contact angle of the glass or wafer substrate or substrate, and this effect is to maintain the adhesive force of the film when the film is formed on the substrate or substrate. It is of high practical value because it is effective.

【0029】[0029]

【実施例】以下、本発明を実施例により具体的に説明す
るが、本発明はこれに限定されるものではない。 実施例1 半導体工場のウエハ保管庫における空気清浄を、図1に
示した本発明の基本構成図を用いて説明する。ウエハ保
管庫1はクラス10,000のクリーンルームに設置さ
れている。密閉空間であるウエハ保管庫1の空気清浄
は、ウエハ保管庫1の片側に設置された接触角を増加さ
せる有害ガスを吸着する吸着材のシリカゲル2とフッ素
樹脂バインダのガラス繊維フィルタ3との充填部から成
る有害成分除去部A及び紫外線ランプ4、光電子放出材
5、電場設置のための電極6、荷電微粒子の捕集材6
(本構成では、電極が捕集材を兼用)及びリーク荷電微
粒子の捕集材7から成る微粒子除去部Bにより実施され
る。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited thereto. Example 1 Air cleaning in a wafer storage of a semiconductor factory will be described with reference to the basic configuration diagram of the present invention shown in FIG. The wafer storage 1 is installed in a class 10,000 clean room. The air cleaning of the wafer storage 1 which is a closed space is performed by filling the silica gel 2 which is an adsorbent which is installed on one side of the wafer storage 1 and which adsorbs a harmful gas which increases the contact angle, and the glass fiber filter 3 which is a fluororesin binder. Component removal part A consisting of parts, an ultraviolet lamp 4, a photoelectron emission material 5, an electrode 6 for setting an electric field, and a collection material 6 for charged fine particles
(In this configuration, the electrode also serves as a trapping material) and the fine particle removing unit B including the trapping material 7 for the leak-charged fine particles.

【0030】保管庫1は、保管庫の扉(図示せず)の開
閉によるウエハケース8の出し入れにより、保管庫の外
よりウエハ9の表面の接触角を増加させる有害ガス10
(ここでは主にH.C.と考えられる)及びウエハに付
着すると汚染をもたらす微粒子11が浸入する。ここで
の空気清浄を有害ガス除去部Aと微粒子除去部Bの作動
により述べる。保管庫1の開閉(ウエハケースの出し入
れ)に伴い、保管庫1にはクリーンルーム中の有害ガス
10と微粒子11が浸入するが、保管庫1内には発熱
源、ここでは紫外線ランプ4及び加熱ヒータ12により
自然循環流13-1〜13-4が生じており、該有害ガス1
0と微粒子11は、夫々有害ガス除去部A、微粒子除去
部Bで捕集・除去され、超清浄な空気13-3が得られて
いる。この空気13-3は接触角増加原因物質を除去して
いるので、この空気を長時間ウエハ9に暴露しておくと
接触角が上がらないため、ウエハ9の表面は長時間安定
に保つことができる。
In the storage case 1, the harmful gas 10 which increases the contact angle of the surface of the wafer 9 from the outside of the storage case by opening and closing the wafer case 8 by opening and closing the door (not shown) of the storage case.
(Here, it is mainly considered to be H.C.) and the fine particles 11 which cause contamination when attached to the wafer infiltrate. The air cleaning here will be described by operating the harmful gas removing unit A and the fine particle removing unit B. As the storage 1 is opened and closed (the wafer case is taken in and out), the harmful gas 10 and the fine particles 11 in the clean room enter the storage 1, but the heat source inside the storage 1 is the ultraviolet lamp 4 and the heater. Natural circulation flow 13 -1 to 13 -4 is generated by 12 and the harmful gas 1
0 and the fine particles 11 are collected and removed by the harmful gas removing unit A and the fine particle removing unit B, respectively, and ultra-clean air 13 -3 is obtained. The air 13 -3 removes the substance that causes the increase in the contact angle. Therefore, if the air is exposed to the wafer 9 for a long time, the contact angle does not rise, so that the surface of the wafer 9 can be kept stable for a long time. it can.

【0031】次に、微粒子除去部Bを説明する。ウエハ
保管庫1中の微粒子(微粒子状物質)11は、紫外線ラ
ンプ4が照射された光電子放出材5から放出される光電
子14により荷電され、荷電微粒子15となり、該荷電
微粒子13は荷電微粒子の捕集材6に捕集され、ウエハ
の存在する被処理空間部(清浄化空間部、C)は高清浄
化される。尚、本装置は超清浄空間を創出することを目
的としているため、荷電微粒子の捕集材6の後方には、
新規な電極材7が設置されている。すなわち極めて荷電
微粒子15が、前方の捕集材6で捕集されずリークし、
後方に流出する場合には、該荷電微粒子は後方の電極材
7で捕集される。これにより荷電微粒子は全て確実に捕
集・除去される。ここでの光電子放出材5は、保管庫1
の構成壁面の一部を用いている。すなわち、この構成壁
面はアルミニウムであり、該アルミニウムを光電子の供
給源に利用している。
Next, the fine particle removing section B will be described. The fine particles (particulate matter) 11 in the wafer storage 1 are charged by the photoelectrons 14 emitted from the photoelectron emitting material 5 irradiated by the ultraviolet lamp 4, and become charged fine particles 15. The charged fine particles 13 capture the charged fine particles. The space to be processed (cleaning space, C) in which the wafer is collected and collected by the collecting material 6 is highly cleaned. Since this device is intended to create an ultra-clean space, it is
A new electrode material 7 is installed. That is, the extremely charged fine particles 15 leak without being collected by the collecting material 6 in front.
When flowing out to the rear, the charged fine particles are collected by the rear electrode material 7. This ensures that all the charged fine particles are collected and removed. The photoelectron emission material 5 here is the storage 1
A part of the constituent wall surface of is used. That is, the constituent wall surface is aluminum, and the aluminum is used as a photoelectron supply source.

【0032】通常、清浄装置はアルミニウム、SUSで
作られるので、壁面を光電子放出材として有効利用でき
る。このように、装置を構成する壁面の一部を、光電子
放出材として利用することは本発明の1つの特徴であ
る。光電子放出材は、前述のごとく本発明者の別の発明
があり適宜に利用することができる。電極6は、光電子
放出材5からの光電子放出を電場で行うために設置して
いる。すなわち、光電子放出材5と電極6の間に電場を
形成している(光電子放出部)。微粒子の荷電は、電場
において光電子放出材に紫外線照射することにより発生
する光電子14により効率よく実施される。ここでの電
場の電圧は、50V/cmである。
Since the cleaning device is usually made of aluminum or SUS, the wall surface can be effectively used as a photoelectron emitting material. As described above, it is one of the features of the present invention that a part of the wall surface of the device is used as a photoelectron emitting material. The photoelectron emitting material has another invention of the present inventor as described above and can be appropriately used. The electrode 6 is installed to perform photoelectron emission from the photoelectron emission material 5 in an electric field. That is, an electric field is formed between the photoelectron emitting material 5 and the electrode 6 (photoelectron emitting portion). The charging of the particles is efficiently performed by the photoelectrons 14 generated by irradiating the photoelectron emitting material with ultraviolet rays in an electric field. The voltage of the electric field here is 50 V / cm.

【0033】ここでの運転は、保管庫の扉の開閉後の他
に、経時によるウエハケースや保管庫の壁面などからの
微粒子の放出(剥離)、又は緊急時などに保管庫やウエ
ハキャリアの振動などによる微粒子の放出(振動部から
の発生)の場合があっても被処理空間部Cは高清浄を維
持できるように連続運転あるいは、一定時間毎に運転を
行う間欠運転を行う。光電子による微粒子の除去は、本
発明者らのすでに提案した方法及び装置を適用分野、装
置形状、規模等により、適宜用いることができる。例え
ば上述形態(構成)の他に、荷電捕集ユニット装置を用
いる方法(特願平3−261289号)がある。
The operation here is, in addition to opening and closing the door of the storage cabinet, releasing (peeling) fine particles from the wafer case and the wall surface of the storage cabinet over time, or the storage cabinet and the wafer carrier in an emergency. Even if the particles are discharged (generated from the vibrating portion) due to vibration or the like, the space C to be processed is continuously operated so as to maintain high cleanliness or intermittently operated at regular intervals. For removal of fine particles by photoelectrons, the method and apparatus already proposed by the present inventors can be appropriately used depending on the application field, apparatus shape, scale, and the like. For example, in addition to the above-mentioned form (configuration), there is a method using a charge collection unit device (Japanese Patent Application No. 3-261289).

【0034】次に、保管庫の開閉により浸入した有害ガ
スの除去を行う有害ガス除去部Aについて述べる。上述
の微粒子除去部Bの作動により、微粒子11が除去され
た有害ガス10を含む空気を自然循環流13-2によりシ
リカゲル2及びフッ素樹脂バインダのガラス繊維フィル
タ3の吸着材に通すことにより有害ガスは捕集・除去さ
れる。なお、フッ素樹脂バインダのガラス繊維フィルタ
3は、除塵性も有し、シリカゲルから発塵があった場合
でも後方に流出させない役目をはたす。ここでの運転
は、微粒子除去部Bと連動させれば良いが、H.C.の
汚染源の供給が、保管庫の扉開閉に伴う、クリーンルー
ム空気の浸入、及び装置や、ウエハ収納ケースの有機成
分の部分からと考えられるので、一定時間毎に運転を行
う間欠運転が好ましい。
Next, the harmful gas removing section A for removing the harmful gas that has entered by opening and closing the storage will be described. By the operation of the above-mentioned fine particle removing section B, the air containing the harmful gas 10 from which the fine particles 11 are removed is passed through the adsorbent of the silica gel 2 and the glass fiber filter 3 of the fluororesin binder by the natural circulation flow 13 -2. Are collected and removed. It should be noted that the glass fiber filter 3 of the fluororesin binder also has a dust-removing property, and even if dust is generated from the silica gel, it does not flow backward. The operation here may be performed in conjunction with the fine particle removing unit B. C. It is considered that the supply of the pollution source is due to the infiltration of clean room air accompanying the opening and closing of the door of the storage and the organic components of the apparatus and the wafer storage case. Therefore, the intermittent operation in which the operation is performed at regular intervals is preferable.

【0035】本発明の特徴は、密閉空間内(本例では保
管庫内)に、発熱源を設置し、自然循環流を生じせしめ
接触角を増加させる有害ガスと微粒子を夫々有害成分を
除去する工程、微粒子を除去する工程に通すものであ
る。そのため加熱源と冷却源を密閉空間内に設置してい
る。加熱と冷却の温度差が循環流の駆動力となってい
る。本例での加熱源は紫外線ランプ14と加熱ヒータ1
2であり、冷却部には冷却コイル16を用いている。加
熱源は通常運転では紫外線ランプ14のみでよいが、扉
の開閉直後や汚染の激しいクリーンルームで実施する場
合には、加熱源として紫外線ランプ14を補助する加熱
ヒータ12を用いるのがよい。
A feature of the present invention is that a heat source is installed in a closed space (in the storage case in this example) to remove harmful components from harmful gas and fine particles that cause a natural circulation flow and increase the contact angle. It passes through the process and the process of removing fine particles. Therefore, the heating source and the cooling source are installed in a closed space. The temperature difference between heating and cooling serves as the driving force for the circulating flow. The heating source in this example is the ultraviolet lamp 14 and the heater 1.
2 and the cooling coil 16 is used for the cooling unit. In the normal operation, only the ultraviolet lamp 14 may be used as the heating source. However, when the heating is performed immediately after the door is opened or closed or in a clean room where the pollution is severe, it is preferable to use the heater 12 that assists the ultraviolet lamp 14 as the heating source.

【0036】実施例2 図1に示した構成のウエハ保管庫に下記試料ガスを入
れ、紫外線照射と電場用電圧の印加を行い、紫外線ラン
プの場合及び加熱による微粒子除去部Bの上下の温度差
を設けた場合の保管庫内の微粒子濃度の経時変化及びウ
エハ上の接触角について測定した。 保管庫の大きさ ; 80リットル 光電子放出材 ; 保管庫の壁面(Al)を利用 電極材 ; Cu−Zn板 荷電微粒子捕集材: 電極材で兼用
Example 2 The following sample gas was placed in a wafer storage having the structure shown in FIG. 1, ultraviolet irradiation and application of a voltage for an electric field were performed, and in the case of an ultraviolet lamp and the temperature difference between the upper and lower portions of the fine particle removing portion B due to heating. The change with time of the particle concentration in the storage and the contact angle on the wafer were measured. Storage size: 80 liters Photoelectron emission material; Use storage wall surface (Al) Electrode material: Cu-Zn plate Charged particulate collection material: Also used as electrode material

【0037】 紫外線ランプ ; 殺菌灯、10W 電場電圧 ; 50V/cm 有害ガス捕集材 ; シリカゲル(5リットル)とフッ
素樹脂バインダのガラス繊維フィルタ(1リットル) 試料ガス(入口ガス): 空気(濃度(クラス):1
0,000) 加熱源 : ニクロム線ヒータ内蔵テープヒー
タを荷電・捕集部Bの入口部に設置 微粒子除去部Bにおける温度差(該B部の入口と出口の
温度差):3℃(紫外線ランプのみ)、5℃、10℃、
20℃(紫外線ランプとヒータの併用)
Ultraviolet lamp; germicidal lamp, 10 W electric field voltage; 50 V / cm toxic gas trapping material; silica gel (5 liters) and glass fiber filter of fluororesin binder (1 liter) Sample gas (inlet gas): Air (concentration ( Class): 1
Heat source: A tape heater with a built-in nichrome wire heater is installed at the inlet of the charging / collecting section B. Temperature difference in the particulate removal section B (temperature difference between the inlet and the outlet of the section B): 3 ° C. (ultraviolet lamp) Only) 5 ℃, 10 ℃,
20 ° C (use of both UV lamp and heater)

【0038】 ウエハ保管庫 : ウエハケースにウエハを15枚入
れて、収納したもの 微粒子濃度の測定: 光散乱式パーティクルカウンタ ウエハ表面の粒子数の測定: 光散乱式のウエハ表面粒
子計 接触角の測定 : 液滴式の接触角計 各温度差の実験においてクラス1の到達クリーン度を得
るために必要な運転時間を調べた。各温度差の運転にお
いて、運転60時間後のウエハ上の接触角を調べた。比
較としてヒータ加熱源を用いない場合についても同様に
調べた。(上記クラスは1ft3 中に存在する0.1μ
m以上の粒径の微粒子の総個数。)
Wafer storage: 15 wafers stored in a wafer case Particle concentration measurement: Light scattering type particle counter Wafer surface particle number measurement: Light scattering type wafer surface particle meter Contact angle measurement Droplet-type contact angle meter The operating time required to obtain the ultimate cleanliness of class 1 in each temperature difference experiment was investigated. In each temperature difference operation, the contact angle on the wafer 60 hours after the operation was examined. As a comparison, the same investigation was performed in the case where the heater heating source was not used. (The above class is 0.1μ present in 1ft 3.
Total number of fine particles with a particle size of m or more. )

【0039】(結果)微粒子について、クラス1を得る
ために必要な運転時間を図2に、接触角について表1に
示す。ヒータ加熱源を用いず、紫外線ランプのみの場
合、微粒子除去部Bの上、下の温度差は3℃であった。
なお、微粒子除去部Bと、被清浄空間部Cの循環量を測
定したところ、ヒータ加熱源を用いない場合、10リッ
トル/min、5℃の温度差の場合、18リットル/m
inであった。
(Results) With respect to the fine particles, the operating time required to obtain class 1 is shown in FIG. 2 and the contact angle is shown in Table 1. When only the ultraviolet lamp was used without using the heater heating source, the temperature difference between the upper part and the lower part of the particle removing portion B was 3 ° C.
The circulation rate between the fine particle removing section B and the space to be cleaned C was measured and found to be 18 liters / m when a heater heating source was not used and the temperature difference was 10 liters / min and 5 ° C.
It was in.

【0040】[0040]

【表1】 なお、紫外線ランプをオフにした場合、12時間、60
時間後の保管庫内の濃度は夫々クラス8,200、7,
500であり、ウエハ上の接触角は夫々10度、30度
であった。
[Table 1] If the UV lamp is turned off, 60 hours for 60 hours
Concentrations in the storage after time are class 8,200,7,
The contact angle on the wafer was 500 and the contact angles on the wafer were 10 and 30 degrees, respectively.

【0041】実施例3 実施例2において、有害ガス捕集材として (1)活性炭とフッ素樹脂バインダのガラス繊維フィル
タ (2)珪藻土とフッ素樹脂バインダのガラス繊維フィル
タ (3)合成ゼオライトとフッ素樹脂バインダのガラス繊
維フィルタ (4)銀とフッ素樹脂バインダのガラス繊維フィルタ を用い、同様に接触角について調べた。 (結果)いずれの温度差においても、4度以下であっ
た。
Example 3 In Example 2, as a harmful gas trapping material, (1) glass fiber filter of activated carbon and fluororesin binder (2) glass fiber filter of diatomaceous earth and fluororesin binder (3) synthetic zeolite and fluororesin binder Glass fiber filter (4) A glass fiber filter made of silver and a fluororesin binder was used to similarly examine the contact angle. (Results) It was 4 degrees or less at any temperature difference.

【0042】実施例4 実施例1において、有害ガス除去部Aが床面に設置され
ている場合を、図3に示す。図3の記号で図1と同じも
のは、同じ意味を示す。
Fourth Embodiment FIG. 3 shows a case where the harmful gas removing portion A is installed on the floor surface in the first embodiment. Symbols in FIG. 3 that are the same as those in FIG. 1 have the same meaning.

【0043】[0043]

【発明の効果】本発明によれば、以下のような効果を奏
することができる。 (1)接触角を増加させる気体中の有害成分を除去する
工程と、光電子により気体中の微粒子を除去する工程と
から成る気体の清浄化において、該工程を密閉空間内に
設置し、密閉空間内に加熱源を置くことにより、加熱源
により、密閉空間内に自然循環粒が生じるので、被処理
気体が、有害成分の除去工程と、微粒子除去工程に、効
果的に循環するので、該空間中の接触角を増加させる有
害ガス及び微粒子が迅速、簡便に除去できた。すなわ
ち、接触角の増加が防止できる超清浄空間が迅速で効果
的にできた。 (2)前記において、加熱源を、微粒子除去工程におけ
る紫外線ランプからの放射エネルギを用いることにより
紫外線のエネルギが有効利用でき、装置がコンパクト化
した。 (3)前記において、加熱源として、紫外線ランプに適
宜補助(例えばヒータや赤外線ランプ)の加熱源を加え
ることができるので、要求性能、運転条件、装置形状、
規模、利用先に好適な清浄ができ、利用範囲が広がり、
実用性が向上した。 (4)前記において、光電子放出材は、清浄装置を構成
する壁面を利用できるので、装置がコンパクト化した。
According to the present invention, the following effects can be obtained. (1) In a gas cleaning process including a step of removing harmful components in a gas that increases a contact angle and a step of removing fine particles in the gas by photoelectrons, the step is installed in a closed space, and a closed space is provided. By placing the heating source inside, natural circulation particles are generated in the closed space by the heating source, so that the gas to be treated is effectively circulated in the harmful component removing step and the fine particle removing step. The harmful gas and fine particles that increase the contact angle inside could be removed quickly and easily. That is, a super-clean space capable of preventing an increase in contact angle was quickly and effectively formed. (2) In the above, by using the radiation energy from the ultraviolet lamp in the step of removing fine particles as the heating source, the energy of ultraviolet rays can be effectively used, and the apparatus is made compact. (3) In the above, as a heating source, an auxiliary (for example, a heater or an infrared lamp) heating source can be appropriately added to the ultraviolet lamp, so that required performance, operating conditions, apparatus shape,
Can be cleaned suitable for scale and destination, widening the range of use,
Practicality improved. (4) In the above, since the photoelectron emitting material can utilize the wall surface forming the cleaning device, the device is made compact.

【0044】(5)被処理気体が有害ガス除去部及び光
電子による微粒子除去部に効果的に循環するので、密閉
空間中の有害ガス及び微粒子が迅速、簡便に除去でき
た。すなわち、超清浄空間が迅速で効果的にできた。従
来、清浄気体は通常流通式(ワンパス)の装置で得られ
ていたが、この場合製品ガス(気体)はそのまま放出さ
れてしまい製品ガス(清浄化気体)の有効利用の点で改
良の余地があった。また、この場合ワンパスで処理する
が、除去効率が高い必要があり、装置の構成において容
量を大きくする必要があり、装置のコンパクト化の点で
課題であった。 (6)密閉空間そのままの取扱い(処理)で良いので、
取扱い(操作)が容易となり、コンパクトでコストが安
価な清浄法及び装置となった。特に、大型装置(大容積
の清浄空間)に効果的であった。 (7)密閉空間で発生する有害ガスや微粒子も迅速で効
果的に捕集できるので、実用性が一層向上した。 (8)窒素やアルゴン等の各種気体中でも同様に実施で
きるので、実用上有効である。 (9)1〜8により各種分野の密閉空間の清浄化に幅広
く適用できた。
(5) Since the gas to be treated circulates effectively through the harmful gas removing section and the photoelectron-based fine particle removing section, the harmful gas and fine particles in the closed space can be removed quickly and easily. In other words, the ultra-clean space was created quickly and effectively. Conventionally, clean gas was normally obtained with a flow-through (one-pass) device, but in this case the product gas (gas) is released as it is, and there is room for improvement in terms of effective use of the product gas (cleaning gas). there were. Further, in this case, although the treatment is performed in one pass, it is necessary to have a high removal efficiency, and it is necessary to increase the capacity in the configuration of the device, which is a problem in terms of downsizing the device. (6) Since the enclosed space can be handled (treated) as it is,
The cleaning method and device are easy to handle (manipulate), compact and inexpensive. In particular, it was effective for a large-sized device (large-volume clean space). (7) Since harmful gas and fine particles generated in the closed space can be collected quickly and effectively, the practicality is further improved. (8) It can be carried out similarly in various gases such as nitrogen and argon, which is practically effective. (9) 1 to 8 can be widely applied to clean closed spaces in various fields.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明で用いる気体の清浄装置の基本構成図。FIG. 1 is a basic configuration diagram of a gas cleaning device used in the present invention.

【図2】クリーン度クラス1を得るための時間と温度差
の関係。
FIG. 2 shows the relationship between time and temperature difference for obtaining cleanliness class 1.

【図3】本発明で用いる他の気体の清浄装置の基本構成
図。
FIG. 3 is a basic configuration diagram of another gas cleaning device used in the present invention.

【符号の説明】[Explanation of symbols]

1:ウエハ保管庫、2:シリカゲル、3:ガラス繊維フ
ィルタ、4:紫外線ランプ、5:光電子放出材、6:電
場設定用電極兼捕集材、7:捕集材、8:ウエハケー
ス、9:ウエハ、10:有害ガス、11:微粒子、1
2:加熱ヒータ、13-1〜13-4:循環流、14:光電
子、15:荷電微粒子 A:有害成分除去部、B:微粒子除去部、C:清浄化空
間部
1: Wafer storage, 2: Silica gel, 3: Glass fiber filter, 4: Ultraviolet lamp, 5: Photoelectron emitting material, 6: Electrode for setting electric field and collector, 7: Collector, 8: Wafer case, 9 : Wafer, 10: Hazardous gas, 11: Fine particles, 1
2: Heater, 13 -1 to 13 -4 : Circulating flow, 14: Photoelectron, 15: Charged fine particles A: Harmful component removing part, B: Fine particle removing part, C: Cleaning space part

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 基材又は基板表面の接触角の増加を防止
する気体の清浄方法において、密閉空間内で有害成分及
び微粒子を含む気体を、接触角を増加する気体中の有害
成分を除去する工程及び光電子により気体中の微粒子を
除去する工程に、該密閉空間内に設けられた発熱源に基
づく気体流によって通すことを特徴とする気体の清浄方
法。
1. A method of cleaning a gas for preventing an increase in the contact angle of a substrate or a substrate surface, wherein a gas containing harmful components and fine particles in a closed space, and a harmful component in a gas increasing the contact angle are removed. A method for cleaning a gas, characterized in that the step and the step of removing fine particles in the gas by photoelectrons are passed by a gas flow based on a heat source provided in the closed space.
【請求項2】 基材又は基板表面の接触角の増加を防止
する気体の清浄装置において、密閉空間内に、気体中の
有害成分を除去するための、活性炭、珪藻土、シリカゲ
ル、合成ゼオライト、高分子化合物、ガラス材又はフッ
素樹脂から選ばれた少なくとも1種類の吸着材を用いた
有害ガス除去部と、該気体中の微粒子を除去するため
の、紫外線源及び/又は放射線源と該線源からの照射に
より光電子を放出する光電子放出材と電場用電極及び荷
電微粒子捕集材を有する微粒子除去部と、該密閉空間内
に気体循環流を発生させる発熱源とを備えたことを特徴
とする気体の清浄装置。
2. A gas cleaning device for preventing an increase in contact angle of a base material or a substrate surface, wherein activated carbon, diatomaceous earth, silica gel, synthetic zeolite, high-purity material for removing harmful components in the gas are enclosed in a closed space. From a harmful gas removing section using at least one adsorbent selected from a molecular compound, a glass material or a fluororesin, and an ultraviolet ray source and / or a radiation source and a radiation source for removing fine particles in the gas A gas comprising: a photoelectron emitting material that emits photoelectrons upon irradiation with a particle, a particle removal unit having an electric field electrode and a charged particle trapping material, and a heat source that generates a gas circulation flow in the closed space. Cleaning equipment.
【請求項3】 前記発熱源が、微粒子除去部の紫外線源
からの放射エネルギーであることを特徴とする請求項2
記載の気体の清浄装置。
3. The heat generating source is radiant energy from an ultraviolet ray source of the fine particle removing section.
The gas cleaning device described.
【請求項4】 前記清浄装置の装置を構成する壁面の一
部が、微粒子除去部の光電子放出材であることを特徴と
する請求項2記載の気体の清浄装置。
4. The gas cleaning apparatus according to claim 2, wherein a part of a wall surface constituting the cleaning apparatus is a photoelectron emitting material of the particle removing section.
JP6257300A 1994-09-28 1994-09-28 Method and device for cleaning gas Pending JPH0889746A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6257300A JPH0889746A (en) 1994-09-28 1994-09-28 Method and device for cleaning gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6257300A JPH0889746A (en) 1994-09-28 1994-09-28 Method and device for cleaning gas

Publications (1)

Publication Number Publication Date
JPH0889746A true JPH0889746A (en) 1996-04-09

Family

ID=17304456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6257300A Pending JPH0889746A (en) 1994-09-28 1994-09-28 Method and device for cleaning gas

Country Status (1)

Country Link
JP (1) JPH0889746A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002336632A (en) * 1997-05-08 2002-11-26 Takasago Thermal Eng Co Ltd Filter and cleaning apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002336632A (en) * 1997-05-08 2002-11-26 Takasago Thermal Eng Co Ltd Filter and cleaning apparatus

Similar Documents

Publication Publication Date Title
US6620385B2 (en) Method and apparatus for purifying a gas containing contaminants
EP0931581B1 (en) Method and apparatus for purifying contaminant-containing gas
JP3693315B2 (en) Gas cleaning method and apparatus in clean room
JP2989031B2 (en) Method and apparatus for removing hydrocarbon
JP3888806B2 (en) Photoelectron emitting material and negative ion generator using the same
JP3460500B2 (en) Gas cleaning apparatus, method for cleaning closed space using the same, and closed space
JP3429522B2 (en) Conveying device having gas cleaning means
EP1258917A1 (en) Method and device for preventing oxidation on substrate surface
JPH0889746A (en) Method and device for cleaning gas
JP3543593B2 (en) Gas cleaning method and apparatus
JP2722297B2 (en) Gas cleaning method and apparatus
JPH11147051A (en) Method and device for cleaning storage space
JP2005329406A (en) Sterilization and cleaning method for enclosed space including germs and enclosed space with sterilization and cleaning function
JP2000300936A (en) Method and apparatus for obtaining negative ion- containing clean air for removing static electricity
JP3797845B2 (en) Photoelectron emitting material and negative ion generator
JP2863419B2 (en) Method and apparatus for preventing contamination of substrate or substrate surface
JP3841196B2 (en) Method for charging particulate matter and method and apparatus for using the same
JP2000167435A (en) Generating method of negative ion and device therefor
JP3446985B2 (en) Gas cleaning method and apparatus
JP3770363B2 (en) Clean space and carrier box
JP3460465B2 (en) Gas cleaning method and equipment
JP3797635B2 (en) SPACE CLEANING MATERIAL AND SPACE CLEANING METHOD USING THE SAME
JP2006314999A (en) Method and apparatus for separation and classification of granular matter
JPH0210034A (en) Method and device of cleaning gas
JPH028638A (en) Method and apparatus for cleaning gas

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040213