JPH0869812A - Sealed lead-acid battery and its manufacture - Google Patents

Sealed lead-acid battery and its manufacture

Info

Publication number
JPH0869812A
JPH0869812A JP6205033A JP20503394A JPH0869812A JP H0869812 A JPH0869812 A JP H0869812A JP 6205033 A JP6205033 A JP 6205033A JP 20503394 A JP20503394 A JP 20503394A JP H0869812 A JPH0869812 A JP H0869812A
Authority
JP
Japan
Prior art keywords
active material
porosity
material layer
cathode
sealed lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6205033A
Other languages
Japanese (ja)
Inventor
Sono Ineji
園 稲次
Yuriko Yamane
由里子 山根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP6205033A priority Critical patent/JPH0869812A/en
Publication of JPH0869812A publication Critical patent/JPH0869812A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

PURPOSE: To lengthen the battery service life by restraining a charging current low at trickle charging time even if discharge capacity is increased by heightening porosity of a negative electrode active material of a sealed lead-acid battery. CONSTITUTION: Porosity of an active material layer of an outside surface 3 of a negative plate 2 positioned on an end surface of a plate group 1 is set lower than porosity of an active material layer of an inside surface 4. That is, porosity of the active material layer of the outside surface 3 of the negative plate 2 facing an inner wall of a battery jar 5 is set lower than the porosity of the active material layer of the inside surface 4. The negative plate 2 is manufactured by heating in such a way that a paste-like negative electrode active material to which a thermally expansive microcapsule is added is filled in one surface of a lead alloy grid body and a paste-like negative electrode active material to which the thermally expansive microcapsule is not added is filled in the other surface. Remains of the active material from which the low boiling point hydrocarbon in the thermally expansive microcapsule is gasified and is gone become pores, and porosity of the active material layer becomes high.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、密閉形鉛蓄電池および
その製造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sealed lead acid battery and a method for manufacturing the same.

【0002】[0002]

【従来の技術】密閉形鉛蓄電池の陰極板としては、格子
体の全体に同じ活物質を充填したものが用いられてい
る。放電容量を大きくするために、活物質の多孔度を高
くした陰極板を用いると、極板群の外側に位置する陰極
板の外側面では、充電時に発生する酸素ガスの吸収反応
が過剰になり、トリクル充電時の充電電流が高くなって
しまう問題がある。これは、極板群の外側に位置する陰
極板の外側面は酸素ガスと接触しやすい上に、活物質の
多孔度が高いことが酸素ガスとの接触面積を広くしてい
るためである。
2. Description of the Related Art As a cathode plate of a sealed lead-acid battery, a grid body filled with the same active material is used. When a cathode plate having a high porosity of the active material is used to increase the discharge capacity, the oxygen gas absorption reaction generated during charging becomes excessive on the outer surface of the cathode plate located outside the electrode group. However, there is a problem that the charging current during trickle charging becomes high. This is because the outer surface of the cathode plate located outside the electrode plate group is likely to come into contact with oxygen gas, and the high porosity of the active material makes the contact area with oxygen gas wide.

【0003】[0003]

【発明が解決しようとする課題】本発明が解決しようと
する課題は、密閉形鉛蓄電池の陰極活物質の多孔度を高
くして放電容量を大きくしても、トリクル充電時の充電
電流を低く抑えて電池寿命を長くすることである。
The problem to be solved by the present invention is to reduce the charging current during trickle charging even if the porosity of the cathode active material of the sealed lead-acid battery is increased to increase the discharge capacity. It is to suppress and prolong battery life.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
の本発明に係る密閉形鉛蓄電池は、陰極板と陽極板とを
リテーナを介して交互に重ねて極板群を構成し、これを
電槽に収納した密閉形鉛蓄電池において、極板群の最も
外側には陰極板が位置し、当該陰極板の内側面の活物質
層の多孔度を外側面の活物質層の多孔度より相対的に高
くしたことを特徴とする。本発明に係る密閉形鉛蓄電池
の製造法は、陰極板と陽極板とをリテーナを介して交互
に重ねて極板群を構成し、これを電槽に収納する方法に
おいて、格子体の一方の面には熱膨張性マイクロカプセ
ルを含有したペースト状陰極活物質を充填し、格子体の
他方の面には熱膨張性マイクロカプセルを含有しないペ
ースト状陰極活物質を充填し、その後加熱工程を経て製
造した陰極板を準備する。そして、当該陰極板を極板群
の最も外側に位置する陰極板として使用し、熱膨張性マ
イクロカプセルを含有させなかった面を外側面とするこ
とを特徴とする。
A sealed lead-acid battery according to the present invention for solving the above-mentioned problems forms a plate group by alternately stacking a cathode plate and an anode plate via a retainer, In a sealed lead-acid battery housed in a battery case, a cathode plate is located on the outermost side of the electrode plate group, and the porosity of the active material layer on the inner surface of the cathode plate is relative to the porosity of the active material layer on the outer surface. It is characterized by being made higher. The method for manufacturing a sealed lead-acid battery according to the present invention, a cathode plate and an anode plate are alternately stacked via a retainer to form an electrode plate group, and in a method of storing this in a battery case, one of the grids The surface is filled with a paste-like cathode active material containing thermally expandable microcapsules, the other surface of the lattice is filled with a paste-like cathode active material containing no thermally expandable microcapsules, and then through a heating step. Prepare the manufactured cathode plate. The cathode plate is used as the outermost cathode plate of the electrode plate group, and the surface not containing the thermally expandable microcapsules is the outside surface.

【0005】[0005]

【作用】本発明に係る密閉形鉛蓄電池は、極板群の最も
外側に位置する陰極板の外側面(酸素ガスとの接触が最
も起こりやすい面)の活物質層の多孔度が内側面より低
いので、酸素ガスとの接触面積が狭くなり酸素ガスの吸
収反応が抑制される結果、トリクル充電時の充電電流も
低くなる。格子体の一方の面にだけ熱膨張性マイクロカ
プセルを含有したペースト状陰極活物質を充填し、他方
の面には熱膨張性マイクロカプセルを含有しないペース
ト状陰極活物質を充填した陰極板を加熱処理することに
より、一方の面の活物質層の多孔度を他方の面の活物質
層の多孔度より相対的に高くした陰極板を容易に製造す
ることができる。
In the sealed lead acid battery according to the present invention, the porosity of the active material layer on the outer surface (the surface most likely to come into contact with oxygen gas) of the cathode plate located on the outermost side of the electrode plate group is higher than that on the inner surface. Since it is low, the contact area with oxygen gas is narrowed and the absorption reaction of oxygen gas is suppressed. As a result, the charging current during trickle charging is also low. Heat the cathode plate filled with the paste-like cathode active material containing the heat-expandable microcapsules only on one surface of the lattice body and the paste-like cathode active material not containing the heat-expandable microcapsules on the other surface. By the treatment, it is possible to easily manufacture a cathode plate in which the porosity of the active material layer on one surface is relatively higher than the porosity of the active material layer on the other surface.

【0006】[0006]

【実施例】【Example】

(実施例)陽極板5枚と陰極板6枚で1セル分の極板群
を構成し、3セルからなる6V,定格容量6Ahの密閉
形鉛蓄電池を組み立てた。極板群の最も外側(両端面)
に位置する陰極板2枚は、次のようにして製造したもを
使用した。すなわち、熱膨張性マイクロカプセル(商品
名「マツモトマイクロスフェアーEF」,松本油脂製薬
(株)製)を1wt%添加したペースト状陰極活物質を鉛
合金格子体の一方の面に1.0mmの厚さで充填する。前
記格子体の他方の面には熱膨張性マイクロカプセルを添
加していないペースト状陰極活物質を1.0mmの厚さで
充填する。使用した熱膨張性マイクロカプセルは、80
℃まで加熱すると内包されている低沸点炭化水素が膨張
し、当初の数μm径から数十μm径にまでなった後にカ
プセルが破れ、気化した低沸点炭化水素が抜けるもので
ある。上記のようにして製造した陰極板を100℃で2
分間加熱すると、熱膨張性マイクロカプセル中の低沸点
炭化水素が気化して活物質中から抜けた跡は空孔とな
り、活物質層の多孔度は65%となった。一方、熱膨張
性マイクロカプセルを添加しなかった側の活物質層の多
孔度は55%であった。尚、気泡が抜けた後のマイクロ
カプセルの素材は収縮して活物質層の空孔の中に残る
が、電池性能に悪影響を及ぼすものではない。極板群の
両端面には、上記陰極板を活物質層の多孔度が低い側を
外側面として配置した。極板群を構成する他の4枚の陰
極板は、熱膨張性マイクロカプセルを添加していない活
物質を使用している。活物質層の多孔度は55%であ
る。これら陰極板の寸法は、縦66mm、横44mm、厚さ
2mmである。図1は、この密閉形鉛蓄電池の構成を示し
たものである。極板群1の端面に位置している陰極板2
の外側面3の活物質層の多孔度は、内側面4の活物質層
の多孔度より低くなっている。すなわち、電槽5の内壁
に面している陰極板2の外側面3の活物質層の多孔度
が、内側面4の活物質層の多孔度より低くなっている。
図示していないが、同様に電槽5の隔壁に面している陰
極板2の外側面3の活物質層の多孔度が、内側面4の活
物質層の多孔度より低くなっている。
(Example) An anode plate group for one cell was constituted by five anode plates and six cathode plates, and a sealed lead-acid battery having 3V and 6V and a rated capacity of 6Ah was assembled. Outermost of the electrode group (both end surfaces)
The two cathode plates located at were used as follows. That is, heat-expandable microcapsules (trade name “Matsumoto Microsphere EF”, Matsumoto Yushi-Seiyaku Co., Ltd.)
1% by weight of a paste-like cathode active material added thereto is filled into one surface of the lead alloy grid to have a thickness of 1.0 mm. The other surface of the grid is filled with a paste-like cathode active material containing no thermally expandable microcapsules in a thickness of 1.0 mm. The heat-expandable microcapsules used are 80
When heated to 0 ° C., the low boiling point hydrocarbon contained therein expands, the capsule breaks after the initial diameter of several μm to several tens of μm, and the vaporized low boiling hydrocarbon escapes. The cathode plate manufactured as described above was heated at 100 ° C. for 2 hours.
When heated for a minute, the low boiling point hydrocarbons in the heat-expandable microcapsules were vaporized and the traces that had escaped from the active material became pores, and the porosity of the active material layer became 65%. On the other hand, the porosity of the active material layer on the side to which the heat-expandable microcapsules were not added was 55%. Note that the material of the microcapsules after the bubbles have escaped contracts and remains in the pores of the active material layer, but this does not adversely affect the battery performance. On both end faces of the electrode plate group, the above-mentioned cathode plates were arranged with the side having a low porosity of the active material layer as the outer face. The other four cathode plates constituting the electrode plate group use the active material to which the thermally expandable microcapsules are not added. The porosity of the active material layer is 55%. The dimensions of these cathode plates are 66 mm in length, 44 mm in width, and 2 mm in thickness. FIG. 1 shows the structure of this sealed lead-acid battery. Cathode plate 2 located on the end surface of electrode plate group 1
The porosity of the active material layer on the outer surface 3 is lower than the porosity of the active material layer on the inner surface 4. That is, the porosity of the active material layer on the outer surface 3 of the cathode plate 2 facing the inner wall of the battery case 5 is lower than the porosity of the active material layer on the inner surface 4.
Although not shown, the porosity of the active material layer on the outer surface 3 of the cathode plate 2 facing the partition wall of the battery case 5 is lower than the porosity of the active material layer on the inner surface 4 as well.

【0007】(比較例)熱膨張性マイクロカプセルを1
wt%添加したペースト状陰極活物質を鉛合金格子体の
両面に充填し、実施例と同様に加熱処理をした陰極板を
極板群の両端面に使用して、3セルからなる6V,定格
容量6Ahの密閉形鉛蓄電池を組み立てた。
(Comparative Example) 1 heat-expandable microcapsule
The paste-like cathode active material added by wt% was filled on both sides of the lead alloy grid, and the cathode plate which was heat treated in the same manner as in the example was used for both end faces of the electrode plate group, and 6 V consisting of 3 cells, rated. A sealed lead-acid battery with a capacity of 6 Ah was assembled.

【0008】(従来例)熱膨張性マイクロカプセルを添
加していないペースト状陰極活物質を鉛合金格子体の両
面に充填した陰極板を極板群の両端面に使用し、3セル
からなる6V,定格容量6Ahの密閉形鉛蓄電池を組み
立てた。
(Conventional example) A cathode plate in which both sides of a lead alloy grid body are filled with a paste-like cathode active material containing no thermally expandable microcapsules is used for both end faces of an electrode plate group, and 6 V consisting of 3 cells is used. , A sealed lead acid battery with a rated capacity of 6 Ah was assembled.

【0009】上記各密閉形鉛蓄電池の初期容量の比較
を、従来例を100として表1に示した。初期容量の測
定は、設定電圧7.35V(制限電流1.8A(0.3
C))で6時間充電した後、1.0Aの電流で終止電圧
5.1Vまで放電して行なったものである。
A comparison of the initial capacities of the above sealed lead-acid batteries is shown in Table 1 by taking the conventional example as 100. The measurement of the initial capacity was performed at a set voltage of 7.35 V (limited current of 1.8 A (0.3
C)) was charged for 6 hours and then discharged to a final voltage of 5.1 V with a current of 1.0 A.

【0010】[0010]

【表1】 [Table 1]

【0011】次に、上記各密閉形鉛蓄電池をアクリル樹
脂のケースで覆い、25,50,60,80℃の各恒温
中に置き、2.3V/セルの定電圧で充電(トリクル充
電)をして、トリクル充電電流を測定した。各温度にお
けるトリクル充電電流を、25℃の場合を1として図2
に示した。実施例の密閉形鉛蓄電池は、従来のものより
電池容量が大きいにもかかわらず、トリクル充電電流は
それほど上昇していない。充電電流が上昇しないので熱
逸走の現象が抑制されることになる。
Next, each of the above sealed lead-acid batteries is covered with an acrylic resin case, placed in each of the constant temperatures of 25, 50, 60, and 80 ° C. and charged at a constant voltage of 2.3 V / cell (trickle charge). Then, the trickle charge current was measured. Fig. 2 shows the trickle charge current at each temperature as 1 when the temperature is 25 ° C.
It was shown to. Although the sealed lead-acid battery of the embodiment has a larger battery capacity than the conventional one, the trickle charge current does not increase so much. Since the charging current does not rise, the phenomenon of heat escape is suppressed.

【0012】[0012]

【発明の効果】上述のように、本発明に係る密閉形鉛蓄
電池は、陰極板の活物質多孔度を高くして放電容量を大
きくしながら、トリクル充電電流を低く維持できるた
め、熱逸走の現象を抑制して電池寿命を長く保つことが
できる。
As described above, in the sealed lead-acid battery according to the present invention, the trickle charge current can be kept low while increasing the discharge capacity by increasing the porosity of the active material of the cathode plate, so that the thermal escape of heat can be prevented. The phenomenon can be suppressed and the battery life can be prolonged.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る実施例において密閉形鉛蓄電池の
要部を示す断面説明図である。
FIG. 1 is a cross-sectional explanatory view showing a main part of a sealed lead-acid battery in an example according to the present invention.

【図2】密閉形鉛蓄電池をトリクル充電したときの周囲
温度とトリクル充電電流との関係を示す曲線図である。
FIG. 2 is a curve diagram showing a relationship between an ambient temperature and a trickle charging current when a sealed lead-acid battery is trickle charged.

【符号の説明】[Explanation of symbols]

1は極板群 2は陰極板 3は外側面 4は内側面 5は電槽 1 is an electrode plate group 2 is a cathode plate 3 is an outer surface 4 is an inner surface 5 is a battery case

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】陰極板と陽極板とをリテーナを介して交互
に重ねて極板群を構成し、これを電槽に収納した密閉形
鉛蓄電池において、 極板群の最も外側には陰極板が位置し、当該陰極板の内
側面の活物質層の多孔度を外側面の活物質層の多孔度よ
り相対的に高くしたことを特徴とする密閉形鉛蓄電池。
1. A sealed lead acid battery in which a cathode plate and an anode plate are alternately stacked via a retainer to form an electrode plate group, and the electrode plate group is housed in a battery case. And the porosity of the active material layer on the inner surface of the cathode plate is made relatively higher than the porosity of the active material layer on the outer surface.
【請求項2】陰極板と陽極板とをリテーナを介して交互
に重ねて極板群を構成し、これを電槽に収納する密閉形
鉛蓄電池の製造において、 格子体の一方の面には熱膨張性マイクロカプセルを含有
したペースト状陰極活物質を充填し、格子体の他方の面
には熱膨張性マイクロカプセルを含有しないペースト状
陰極活物質を充填し、その後加熱工程を経て製造した陰
極板を準備し、 当該陰極板を極板群の最も外側に位置する陰極板として
使用し、熱膨張性マイクロカプセルを含有させなかった
面を外側面とすることを特徴とする密閉形鉛蓄電池の製
造法。
2. In the manufacture of a sealed lead-acid battery in which a cathode plate and an anode plate are alternately stacked via a retainer to form an electrode plate group, and the electrode plate group is housed in a battery case, one surface of a grid body is provided. Filled with a paste-like cathode active material containing a thermally expandable microcapsules, the other surface of the lattice is filled with a paste-like cathode active material containing no thermally expandable microcapsules, then the cathode manufactured through a heating step A sealed lead-acid battery characterized in that a plate is prepared, the cathode plate is used as the cathode plate located at the outermost side of the electrode plate group, and the surface not containing the thermally expandable microcapsules is the outer surface. Manufacturing method.
JP6205033A 1994-08-30 1994-08-30 Sealed lead-acid battery and its manufacture Pending JPH0869812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6205033A JPH0869812A (en) 1994-08-30 1994-08-30 Sealed lead-acid battery and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6205033A JPH0869812A (en) 1994-08-30 1994-08-30 Sealed lead-acid battery and its manufacture

Publications (1)

Publication Number Publication Date
JPH0869812A true JPH0869812A (en) 1996-03-12

Family

ID=16500335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6205033A Pending JPH0869812A (en) 1994-08-30 1994-08-30 Sealed lead-acid battery and its manufacture

Country Status (1)

Country Link
JP (1) JPH0869812A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006010894A1 (en) * 2004-07-27 2006-02-02 Oxis Energy Limited Improvements relating to electrode structures in batteries
US7695861B2 (en) 2005-03-22 2010-04-13 Oxis Energy Limited Lithium sulphide battery and method of producing the same
US8647769B2 (en) 2005-09-26 2014-02-11 Oxis Energy Limited Lithium-sulphur battery with high specific energy
US8679684B2 (en) 2004-12-02 2014-03-25 Oxis Energy, Ltd. Electrolyte for lithium-sulphur batteries and lithium-sulphur batteries using the same
US9196929B2 (en) 2005-01-18 2015-11-24 Oxis Energy Limited Electrolyte compositions for batteries using sulphur or sulphur compounds
US9219271B2 (en) 2004-07-27 2015-12-22 Oxis Energy Limited Battery electrode structure
US20160049637A1 (en) * 2014-08-13 2016-02-18 Samsung Sdi Co., Ltd. Positive electrode for rechargeable lithium battery and method of preparing same, negative electrode for rechargeable lithium battery and method of preparing same
US9893387B2 (en) 2013-03-25 2018-02-13 Oxis Energy Limited Method of charging a lithium-sulphur cell
US9899705B2 (en) 2013-12-17 2018-02-20 Oxis Energy Limited Electrolyte for a lithium-sulphur cell
US9935343B2 (en) 2013-03-25 2018-04-03 Oxis Energy Limited Method of cycling a lithium-sulphur cell
US10020533B2 (en) 2013-08-15 2018-07-10 Oxis Energy Limited Laminated lithium-sulphur cell
US10038223B2 (en) 2013-03-25 2018-07-31 Oxis Energy Limited Method of charging a lithium-sulphur cell
US10461316B2 (en) 2012-02-17 2019-10-29 Oxis Energy Limited Reinforced metal foil electrode
US10811728B2 (en) 2014-05-30 2020-10-20 Oxis Energy Ltd. Lithium-sulphur cell

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9219271B2 (en) 2004-07-27 2015-12-22 Oxis Energy Limited Battery electrode structure
WO2006010894A1 (en) * 2004-07-27 2006-02-02 Oxis Energy Limited Improvements relating to electrode structures in batteries
JP2008508672A (en) * 2004-07-27 2008-03-21 オクシス・エナジー・リミテッド Improvements to electrode structures in batteries
KR101301193B1 (en) * 2004-07-27 2013-08-30 옥시스 에너지 리미티드 Improvements relating to electrode structures in batteries
US8679684B2 (en) 2004-12-02 2014-03-25 Oxis Energy, Ltd. Electrolyte for lithium-sulphur batteries and lithium-sulphur batteries using the same
US9196929B2 (en) 2005-01-18 2015-11-24 Oxis Energy Limited Electrolyte compositions for batteries using sulphur or sulphur compounds
US7695861B2 (en) 2005-03-22 2010-04-13 Oxis Energy Limited Lithium sulphide battery and method of producing the same
US8361652B2 (en) 2005-03-22 2013-01-29 Oxis Energy Limited Lithium sulphide battery and method of producing the same
US8647769B2 (en) 2005-09-26 2014-02-11 Oxis Energy Limited Lithium-sulphur battery with high specific energy
US10461316B2 (en) 2012-02-17 2019-10-29 Oxis Energy Limited Reinforced metal foil electrode
US9893387B2 (en) 2013-03-25 2018-02-13 Oxis Energy Limited Method of charging a lithium-sulphur cell
US9935343B2 (en) 2013-03-25 2018-04-03 Oxis Energy Limited Method of cycling a lithium-sulphur cell
US10038223B2 (en) 2013-03-25 2018-07-31 Oxis Energy Limited Method of charging a lithium-sulphur cell
US10020533B2 (en) 2013-08-15 2018-07-10 Oxis Energy Limited Laminated lithium-sulphur cell
US9899705B2 (en) 2013-12-17 2018-02-20 Oxis Energy Limited Electrolyte for a lithium-sulphur cell
US10811728B2 (en) 2014-05-30 2020-10-20 Oxis Energy Ltd. Lithium-sulphur cell
US20160049637A1 (en) * 2014-08-13 2016-02-18 Samsung Sdi Co., Ltd. Positive electrode for rechargeable lithium battery and method of preparing same, negative electrode for rechargeable lithium battery and method of preparing same

Similar Documents

Publication Publication Date Title
JPH0869812A (en) Sealed lead-acid battery and its manufacture
JP6400027B2 (en) Battery having internal phase change material and method of operating said battery
JP6575536B2 (en) Lead acid battery
JP2720689B2 (en) Lead storage battery
KR101850396B1 (en) All-liquid metal battery with inert gas flow and method for producing the same
JP3617084B2 (en) Floating charging method for sealed lead-acid batteries
EP0162996A1 (en) Lead-acid battery construction including improved means for oxygen recombination
JP2002324568A (en) Cell having a plurality of wound pole plates
JPS61165956A (en) Sealed type lead acid battery
JPS6199278A (en) Metal-hydrogen alkaline storage battery
JPH0883624A (en) Sealed storage battery
JPH04296464A (en) Sealed-type lead-acid battery
JPH07326380A (en) Sealed lead-acid battery
JPS58154171A (en) Lead-acid battery
JPH0610991B2 (en) Sealed lead acid battery
JPS60185370A (en) Enclosed type lead storage battery
JPH05159797A (en) Sealed lead-acid battery
JPH10144266A (en) Sealed lead-acid battery
JPH01186572A (en) Sealed type lead-acid battery
JPH03147262A (en) Collector for lead-acid battery
JPS63152871A (en) Sealed lead-acid battery
JPH09245847A (en) Storage battery
JPH0869813A (en) Sealed lead-acid battery
JPS62165877A (en) Storage battery
JPH09306436A (en) Mono-block type lead-acid battery